Header menu link for other important links
Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies
Judith vijaya j, Kombaiah k, , Jothi ramalingam r, Al lohedan ha, V m ma, Maaza m, Judith vijaya j, Kombaiah k, Show More
Published in Elsevier BV
PMID: 29069633
Volume: 177
Pages: 62 - 68
Green synthesis of silver nanoparticles (Ag NPs) using an extract of dried Zingiber officinale (ginger) root as a reducing and capping agent in the presence of microwave irradiation was herein reported for the first time. The formation of symmetrical spheres is confirmed from the UV–Visible spectrum of Ag NPs. Fourier transform infra-red spectroscopy confirms the formation of the Ag NPs. X-ray diffraction analysis was utilized to calculate the crystallite size of Ag NPs and the value was found to be 10 nm. High-resolution transmission electron microscopy and high-resolution scanning electron microscopy were used to investigate the morphology and size of the synthesized samples. The sphere like morphology is confirmed from the images. The purity and crystallinity of Ag NPs is confirmed by energy-dispersive X-Ray analysis and selected area electron diffraction respectively. The electrochemical behavior of the synthesized Ag NPs was assessed by cyclic voltammetry (CV) and shows the redox peaks in the potential range of − 1.1 to + 1.1 V. Agar diffusion method is used to examine the antibacterial activity of Ag NPs. For this purpose, two gram positive and two gram negative bacteria were studied. This single step approach was found to be simple, short time, cost-effective, reproducible, and eco-friendly. © 2017
About the journal
JournalData powered by TypesetJournal of Photochemistry and Photobiology B: Biology
PublisherData powered by TypesetElsevier BV
Open AccessNo