Header menu link for other important links
X
Blood lipid profile and myocardial superoxide dismutase in swim-trained young and middle-aged rats: Comparison between left and right ventricular adaptations to oxidative stress
T. Ravi Kiran, M.V.V. Subramanyam, S. Prathima,
Published in
2006
PMID: 16786334
Volume: 176
   
Issue: 8
Pages: 749 - 762
Abstract
Region-wise interactive effects of age, swim intensity, and duration on exercise performance in the myocardium and serum lipid profile in young (4 months) and middle-aged (12 months) rats were examined. Animals were allocated to the sedentary control (SE-C) or one of the nine trainee groups. Swim training was for 6 days/week and for 4 weeks at 3 durations (20, 40, and 60 min/day) and intensities (2%, low; 3%, medium; 5%, high). Swim velocity and external work showed an age-related decline with low-intensity of 20 min/day in the middle aged. Reduction in serum cholesterol, low-density lipoproteins (LDLs), and triglycerides were accompanied by elevated levels in high-density lipoprotein in the low-to-moderately trained ones for 20 and 40 min/day. Training at 2%, intensity for 20 min/day was sufficient to alter the blood lipid profile and improve swim performance, and endurance in terms of blood lactate. A concomitant increase in Mn-superoxide dismutase (Mn-SOD) activity and reduced malondialdehyde in the left ventricle (LV) and right ventricle (RV) were evident. Lipofuscin was higher in the LV compared to RV. Our results reflect the minimization of free radical generation through appropriate exercise protocols. Our findings on improved blood lipid profile could be related to lower free radicals, which would otherwise oxidize LDLs. Further, swim training when initiated in the young and middle age for as low as 20 min/day at 2% intensity improves the Mn-SOD in the LV and RV. However, the adaptive response of the LV was weaker when compared to the RV, more so in the middle aged. © 2006 Springer-Verlag.
About the journal
JournalJournal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
ISSN01741578