
BREAK, MAKE and TAKE: an information retrieval approach

A PRANAV1, R RAJESHKANNAN1,*, V VIJAYARAJAN1 and V B SURYA PRASATH2,3,4,5

1School of Computer Science and Engineering, VIT University, Vellore, India
2Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,

USA
3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
4Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267,

USA
5Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221,

USA

e-mail: cs.pranav.a@gmail.com; rajeshkannan.r@vit.ac.in; vijayarajan.v@vit.ac.in; prasatsa@uc.edu

MS received 18 February 2019; revised 28 June 2019; accepted 9 July 2019

Abstract. Ranking functions used in information retrieval are primarily used in the search engines and they

are often adopted for various language processing applications. This paper introduces some novel heuristics

combined with probabilistic retrieval functions and are employed in the domain of approximate string similarity

problem. Various algorithms have been proposed in the literature to solve approximate string similarity prob-

lems; however, none of them makes use of probabilistic retrieval functions. We are the first to explore the

intersection between these two areas, that is between string similarity and information retrieval, and propose

heuristic designs to resolve this problem. First, we propose chunking heuristic function, called BREAK. We

show the variants BREAK-1, -2, -OFF, which split up the terms with the sequential notion. Then we propose

BREAK-n, which generalizes these variants and scales to larger datasets. In order to relate these split-ups, we

propose a graphical error modelling heuristics MAKE over the BREAK variants. Finally, we propose TAKE

curve, a novel feature engineering probabilistic distribution, which replaces the prevalent normalization

heuristics. Taking the advantage of flexibility over the choice of heuristics, we assess the variants on the cognate

detection, mutant identification and problems based on isolated spelling correction. In the extensive evaluation

methods, we found that our designs perform better than prevalent heuristics and are robust against database

characteristics.

Keywords. Approximate string similarity; cognate detection; information retrieval; mutant identification;

isolated-spelling-correction-based problems; probabilistic retrieval functions.

1. Introduction

Approximate string similarity problems deal with returning

of a ranked list of closest possible strings against the given

query string. These problems require matching patterns, as in

string matching, approximately rather than the exact ideal

matches. This problem can be posed generally as the fol-

lowing. Given a set of possible strings and a strong example

drawn from the set, find a string that approximately matches

the drawn one. Some representatives of this problem are

1. isolated spelling correction, which involves returning a

list of suggestions for a misspelled word [1],

2. genetic mutant identification, which is the process of

returning a set of possible closest mutations of the given

genome sequence [2],

3. cognate detection, which deals with identification of the

words that have same linguistic derivation [3].

On the other hand, information retrieval (IR) models por-

tray the idea of relevance, so that one can score a document

with a given respective query. There are prevailing models

like BM25 [4], Dirichlet-prior smoothing [5] and PL2 [6]

that are commonly employed mainly in search engine

application.

This paper deals with the intersection between these two

areas, that is between string similarity and IR, which is

largely under-explored in the literature. We show how the

notion of retrieval can be incorporated in the approximate

string similarity problem by breaking a word into small

units. Furthermore, Nguyen et al [2] have stated that bro-

ken words are more practical to query large databases of

*For correspondence

Sådhanå          (2019) 44:204 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-019-1187-9Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)



sequences as compared with conventional methods.

Additionally, retrieval models provide a variety of

alternative heuristics, which can be chosen for the

desired application area [7]. Taking advantages of the

flexibility of these models, the combination of approxi-

mate string similarity operations with IR systems could

be beneficial in many cases. The overview of various

methods used in approximate string similarity problems

is shown in table 1.

1.1 Related work

Isolated spelling correction involves returning a list of

suggestions for a misspelled word. Some of the prevalent

techniques include brute-force candidate generation

method [8], weighted longest common subsequence

search [9], usage of subsequences [10, 11] and corrections

based on finite state automata [12]. Genetic mutant iden-

tification is the process of returning a set of possible closest

mutations of the given genome sequence. Many biological

sequence alignment algorithms such as dot-matrix [16],

Needleman–Wunsch [17], Smith–Waterman [18] and tools

like FASTA [19], BLAST [20], T-COFFEE [21] are com-

monly employed for this problem. Cognates are words that

exist in different languages but have a common origin. For

example, the word night in English and nuit in French are a

pair of cognates, which have a Proto-Germanic origin.

Cognate detection is the problem of identification of such

pairs within a cross-language corpus. Current approaches

based on machine learning include SVM and Naive-Bayes

classifiers, which distinguish whether a pair is cognate or

not. [3, 13–15].

Probabilistic retrieval functions are used frequently in

search engines for returning a ranked list of relevant doc-

uments [22]. These functions provide a variety of heuris-

tics, which can be chosen for the desired application

area [7]. Taking this advantage of flexibility of these

functions, we propose modified versions of these functions

for the applications in approximate string similarity

problems.

IR deals with the task of retrieving, or in simple words,

obtaining relevant and necessary information resources

from a huge collection of documents. The information

obtained is considered relevant according to a piece of

information asked about (also known as query) [22]. The

use of IR has been fundamental for developing search

engines. However, there are many other interesting appli-

cations such as recommendation systems, spam filtering,

plagiarism detection and so on [23]. Ranked IR uses

ranking functions that determine the decreasing order of the

documents in relevance to the query.

1.2 System architecture

The set-up of the project is similar to the IR system. Here,

the given strings are processed with our proposed chunking

methods. The given chunks are stored in the inverted index

in the form of the linked lists. This inverted index is pro-

cessed with the double-barrel-based cache, which is

developed according to the term frequency of the chunks.

The query is given and with the help of the ranking func-

tion’s heapsort, the top relevant documents are collected

and displayed to the user.

A lot of algorithms have been proposed in the literature to

solve approximate string similarity problem; however, none of

them makes use of probabilistic retrieval functions. Nyugen

et al [2] have stated that word split-ups are more practical to

query large databases of sequences as compared with con-

ventional methods. Thus, we believe that using probabilistic

retrieval functions [24] can improve solutions obtained in

solving the approximate string similarity problems. Thus,

combination of approximate string similarity operations with

IR systems could be beneficial in these cases.

We organize the rest of the paper as follows. Section 2

introduces our BREAK–MAKE–TAKE approach for string

similarity along with the generalizations. Section 3 evalu-

ates our proposed tools in cognate detection, mutant iden-

tification and isolated spelling correction. Finally, section 4

concludes the paper.

2. BREAK–MAKE–TAKE – proposed IR

approach

2.1 Proposed method 1 – BREAK

A typical text-based search engine system tokenizes queries

and documents into words and uses heuristics to return a

Table 1. A brief overview of related topics and prevalent

methods used in approximate string similarity. Some of these

methods are used as baselines in the evaluation section.

Problem

domain Prevalent methods Source

Isolated

spelling

correction

Brute-force candidate generation

method

[8]

Weighted longest common

subsequence search

[9]

Usage of subsequences (s-grams) [10] [11]

Corrections based on finite state

automata

[12]

Cognate

detection

Using Naive Bayes [13] [14]

Using support vector machines

(SVM)

[15] [3]

Gene mutant

identification

Dot matrix alignment [16]

Needleman–Wunsch alignment [17]

Smith–Waterman alignment [18]

FASTA tool [19]

BLAST tool [20]

T-COFFEE [21]

  204 Page 2 of 11 Sådhanå          (2019) 44:204 



ranked list of relevant documents to the query. This analogy

can be extended towards string-related operations, where

instead of dividing a sentence into words, one could divide

a string into small chunks.

The k-gram splitting technique illustrates the trivial

chunking. The word pizza is split with k ¼ 2 as

hsip; pi; iz; zz; za; ah=sif g. Here, hsi is the start token and

h=si is the stop token. For the sake of simplicity, we

have ignored terminal tokens in the k-gram splits.

Hence, the split set looks like p; pi; iz; zz; za; af g. We

would label this approach as BREAK-0 because it splits

the words into smaller k-grams without any sequential

information.

2.1a BREAK-1: sequencing from one end We argue that

BREAK-0 could lead to an extremely generalized matching

of tokens since an expansion set could be visualized as a

bag-of-words method. Thus, we propose a positional k-

gram splitting technique, BREAK-1, which introduces

position number in the splits to incorporate the notion of the

sequence of the tokens in the word. For example, the word

pizza could be position-wise split with k ¼ 2 as

1p; 2pi; 3iz; 4zz; 5za; 6af g. Thus, the member 4zz simply

means that it is the fourth member of the set. The moti-

vation behind this tweak is that it gives us a rough amount

of sequential-insight for spelling splits when they are used

in probabilistic retrieval ranking functions.

2.1b BREAK-2: sequencing from two ends The main

disadvantage of BREAK-1 is that some misspellings can

easily disturb the order of the set, which leads to low

similarity. For example, if the misspelling (query) is ppizza,

the split set would be 1p; 2pp; 3pi; 4iz; 5zz; 6za; 7af g. The
order of the members after 2pp is misplaced; thus, this

would lead to low similarity with the correct spelling

(document) 1p; 2pi; 3iz; 4zz; 5za; 6af g. Only 1pf g is com-

mon between correct and incorrect spell-splits. Hence, we

propose BREAK-2, a split algorithm that is robust against

such displacements.

We attach position number to the left if the numbering

begins from the start, and to the right if the numbering

begins from the end. Then the smallest position number

would be selected between the two position numbers. If

the position numbers are equal, then we select the left

position number as a convention. Figure 1 gives an

exemplification of this algorithm illustrated with splits of

pizza and hearts.

If the misspelling is ppizza, the double-end split set

would be

1p; 2pp; 3pi; 4iz; zz3; za2; a1f g:

Thus it gives higher similarity with the correct spelling

(document) as compared with positional split, as the set

members 1p; zz3; za2; a1f g would be matched.

2.1c BREAK-OFF: sequencing with offsets We propose

another variant, BREAK-X-OFF, which introduces offsets

in the split sets. (Here X stands for the BREAK variant

number used). Let the BREAK-1 of pizza be

S0 ¼ f1p; 2pi; 3iz; 4zz; 5za; 6ag

which has no offsets. An offset of 1 would mean the counts

would be displaced by 1, which gives

S1 ¼ 2p; 3pi; 4iz; 5zz; 6za; 7af g:

An offset of �1 would mean the counts would be displaced

by �1, which gives S�1 ¼ 0p; 1pi; 2iz; 3zz; 4za; 5af g. Now
the complete split-up would be, thus, S ¼ S�1 [ S0 [ S1.

Similarly, offsets can be applied to the BREAK-2 splits too.

The motivation behind BREAK-X-OFF is that inclusion of

offsets would be robust against the incorrect query provided.

For example, a spelling typographical error could have been

caused by the insertion or deletion of the letter. Such

insertions and deletions would displace the position sequences

for the chunks. Hence, the key here is to already index these

possible errors; thus, for insertion it would have an offset of 1

and for deletion, it would have an offset of �1.

For example, the split set for pizza, which was originally

1p; 2pi; 3iz; 4zz; 5za; 6af g

after adding positional offset of 1 becomes

2p; 3pi; 4iz; 5zz; 6za; 7af g:

Offset with double-ended split set now gives

2p; 3pi; 4iz; zz4; za3; a2f g:

For deletion errors, positional offset of �1 is included. For

example, the split set for pizza after adding positional offset

of �1 is

0p; 1pi; 2iz; 3zz; 4za; 5af g

Figure 1. The process of BREAK-2. On the left, algorithm slices

pizza into pieces. The output set would be 1p; 2pi; 3iz;f
zz3; za2; a1g. On the right, algorithm breaks hearts into pieces.

The output set would be 1h; 2he; 3ea; 4ar; rt3; ts2; s1f g.

Sådhanå          (2019) 44:204 Page 3 of 11   204 



Offset with double-ended split set now looks like

0p; 1pi; 2iz; zz2; za1; a0f g:

The complete split set would include offsets of �1, 0 and 1.

Thus, complete split set of pizza now is

f0p; 1pi; 2iz; zz2; za1; a0; 1p; 2pi; 3iz;

zz3; za2; a1; 2p; 3pi; 4iz; zz4; za3; a2g:

However, set members 0p; a0; 2p; a2f g are unlikely to

happen as the numbering always starts from 1. Hence, we

can ignore these members. The final set is now

C ¼ f1pi; 2iz; zz2; za1; 1p; 2pi; 3iz;

zz3; za2; a1; 3pi; 4iz; zz4; za3g

where C is the correct split set.

Let the misspelling (query) be entered as piza. The I,

incorrect split set, by this method would be

I ¼ f1pi; 2iz; za1; 1p; 2pi;

3iz; za2; a1; 3pi; 4iz; za3g:

Then the match C \ I is

C \ I ¼ f1pi; 2iz; za1; 1p; 2pi;

3iz; za2; a1; 3pi; 4iz; za3g:

Thus, this method received more number of term matches,

jC \ Ij, than any other methods. Similarly, this method can

be visualized for other types of spelling errors like insertion

of letters.

2.2 BREAK-n: sequential splits for longer terms

The main drawback of BREAK-2 algorithm is that the

double-ended counts would be inefficient for the longer

words. With elongation, the advantage of having two

extremities would fade away, causing a similar drawback

like BREAK-1. This is undesirable for the non-natural

language processing tasks like genome sequence analysis

where a typical genetic sequence can be thousands of base

pairs long. In this section, we tackle this problem by

proposing BREAK-n algorithm, which would generalize

BREAK-2 and is a workaround for longer words.

2.2a Anchoring:

Here, we introduce the notion of the anchor points.

Every te;ij entry will have information about the distance

between ith anchor point and its position j, or simply

te;ij ¼ jposi � jj: ð1Þ

Here, e stands for an entity that can be either a document d

or query q. We have illustrated a basic example in figure 2

to exemplify this process.

2.2b Redefining intersection: Comparing the analogy

from BREAK-2, we impose conditional intersection here.

A term tq in query and td in document are said to be

completely intersected if any of their relative positions from

anchor points are the same. To achieve this, we would

investigate their column vectors at the matched positions.

Let the matching position for tq and td be p1 and p2,

respectively. We would extract p1 and p2 column vectors and

check their corresponding indices for every anchor point.

Afterwards, we extract p1 and p2 column vectors tq;:p1 and td;:p2 ,

respectively. Then we see if any of their corresponding indices

are the same. If this happens, we say that they are completely

intersected. In other words, any of the cells in the absolute

difference between tq;:p1 and td;:p2 should be 0. Mathematically

Y

n

i¼1

jtq;ip1 � td;ip2 j ¼ 0 ð2Þ

where n is the length of the column vector (number of the

anchor points). If the resulting product around 0 is

achieved, we say that the term intersects completely

between query and document.

Continuing the example from figure 2, let us assess the

term za, which is common between tq (p1 ¼ 3) and td

(p2 ¼ 4). The tq column vector at p1 ¼ 3 is tq;:3 ¼ ½3 1�T and

for td at p2 ¼ 4 it is td;:4 ¼ ½4 1�T . Applying Eq. (2), we get

j3� 4jð Þ j1� 1jð Þ ¼ 0, which means the term za is com-

pletely intersected. Analytically, this makes sense because

position of za from the end is the same in the two entities, and

hence it should be completely intersected. Although here we

have shown the example of BREAK-n for a small word with

two anchor points, BREAK-n can be logically extended to

longer words with more anchor points.

2.3 Proposed Method 2: MAKE error modelling

Here we extend our proposed split-up heuristics to graph-

ical error models or the algorithm MAKE (figure 3). The

motivation behind this creation of MAKE is to aid the

identification and suggestion of solutions to the most

probabilistic errors. For example, there are many common

errors in the spelling typographical errors: ie is commonly

mistaken with ei, adding or deleting of an extra l in lly and

so on.

Figure 3 provides the process of MAKE. Let Q be the

query and D be the document. Thus Q \ D shows number

of terms common between them. We are interested in the

leftover terms in the sets. For this, we need to infer a certain

pattern from leftover sets, which are Q� fQ \ Dg and

D� fQ \ Dg. Thus we can draw mappings to gather

information of the corrections.

Let first and second be the ordered sets referring to Q�
fQ \ Dg and D� fQ \ Dg, respectively. If first or second
is empty, then we insert an empty token / in them (Lines

2–5 of the algorithm).

  204 Page 4 of 11 Sådhanå          (2019) 44:204 



If size of first is less than size of the second, then we keep

inserting empty tokens / in the middle of first, unless the

size of first becomes equal to the size of second (Lines 6–

8). Similarly, if the size of second is less than size of the

first, then we keep inserting empty tokens / in the middle

of second, unless the size of second becomes equal to the

size of first (Lines 9–11).

We now initialize a hash map graph (Line 12). We make

pairs from the members of the first that correspond to the

second and insert in the graph. We insert pairs of the

corresponding same index of first and second in the graph

(Lines 13–15). We then insert pairs of the corresponding

indexes of first and second in the graph, with one index

ahead of others (Lines 16–18). In the same way, we insert

pairs of the corresponding indexes of first and second in the

graph, with one index before others (Lines 19–21).

After removing the duplicates, we can return the graph as

a result. Following examples illustrates the procedure of the

proposed approach.

Example 1, deletion error: We visualize pizza again.

Let the correct split set of pizza (ignoring the offsets) be D,

which is indexed in the document. Hence

D ¼ 1p; 2pi; 3iz; zz3; za2; a1f g:

Let the incorrect split set of piza (ignoring the offsets) be Q

given as the query. Hence, Q ¼ 1p; 2pi; 3iz; za2; a1f g. Thus
the term matches are Q \ D ¼ 1p; 2pi; 3iz; za2; a1f g.

Now we can analyse the leftover pizza sets, which are

D� Q \ D (first) and Q� Q \ D (second). Hence,

Q� Q \ D ¼ zz3f g. Similarly, D� Q \ D ¼ /f g.

piza

p pi iz za a

 pizza

p pi iz zz za a

Figure 2. In this example, the words piza and pizza are given as q and d, respectively, split into 2-grams. If we chose 2 anchor points,

the position according to the equation would be at the first and the last (which are shown in arrows). Now we fill every te;ij entry by

calculating relative distance given in Eq. (1).

Figure 3. MAKE algorithm.

Sådhanå          (2019) 44:204 Page 5 of 11   204 



Graph is now constructed from the members of D� Q \
D to Q� Q \ D. The graph constructed is / ! zz3f g.

Intuitively, / ! zz3 means that the letter z should have

been inserted around position 3 from the end.

The query set Q is denoted here as I, which is the

incorrect split set, and the document set D is denoted here

as C, which is the correct split set.

Example 2, insertion error: For the misspelled word

pizzza, we have

C ¼ 1p; 2pi; 3iz; zz3; za2; a1f g;

I ¼ 1p; 2pi; 3iz; 4zz; zz3; za2; a1f g;

C \ I ¼ 1p; 2pi; 3iz; zz3; za2; a1f g;

C � C \ I ¼ /f g;

I � C \ I ¼ 4zz:f g

Thus, the graph constructed is 4zz ! /f g. Intuitively,

4zz ! / means that the letter z starting around 4th position

should have been deleted.

Example 3, substitution error: For the misspelled word

panc and the correct word pant, we have

C ¼ 1p; 2pa; 3an; nt2; t1f g;

I ¼ 1p; 2pa; 3an; nc2; c1f g;

C \ I ¼ 1p; 2pa; 3anf g;

C � C \ I ¼ nt2; t1f g;

I � C \ I ¼ nc2; c1f g:

Figure 4 shows the set mappings done by the for loop.

They correspond to the same index, one index ahead and

one index behind from the first set to the second set.

Thus the graph constructed is nc2 ! nt2; nc2 ! t1;f
c1 ! nt2; c1 ! t1g. Intuitively, this graph depicts that the

last letter should have been t.

Example 4, swapping error: For the misspelled word

sieze and the correct word seize, we have

C ¼ 1s; 2se; 3ei; iz3; ze2; e1f g;

I ¼ 1s; 2si; 3ie; ez3; ze2; e1f g;

C \ I ¼ 1s; ze2; e1f g;

C � C \ I ¼ 2se; 3ei; iz3f g;

I � C \ I ¼ 2si; 3ie; ez3f g:

Thus the graph constructed is f2si ! 2se; 2si !
3ei; 3ie ! 2se; 3ie ! 3ei;
3ie ! iz3; ez3 ! 3ei; ez3 ! iz3g. Thus, the graph neatly

captures the idea that the letters i and e should have been

swapped, see figure 5.

Example 5, unequal set length: For the misspelled word

pth and the correct word path, we have

C ¼ 1p; 2pa; 3at; th2; h1f g;

I ¼ 1p; 2pt; th2; h1f g;

C \ I ¼ 1p; th2; h1f g;

C � C \ I ¼ 2pa; 3at; th2f g;

I � C \ I ¼ 2ptf g:

Since the size of topmost set was not equal to that of the

bottom one, we inserted empty tokens in the top one until

they became of equal sizes. Thus, the graph constructed is

f2pt ! 2pa; 2pt ! 3at;/ ! 2pa;/ ! 3atg. This graph

roughly conveys the information that the letter t should be

second last, see figure 6.

Example 6, unequal set length: For the misspelled word

patthhs and the correct word paths, we have

C ¼ 1p; 2pa; 3at; th3; hs2; s1f g;

I ¼ 1p; 2pa; 3at; 4tt; th4; hh3; hs2; s1f g;

C \ I ¼ 1p; 2pa; 3at; hs2; s1f g

C � C \ I ¼ th3f g;

I � C \ I ¼ 4tt; th4; hh3f g:

Since the size of bottom set was not equal to the top one,

we inserted empty tokens in the bottom set at the middle,

until they became of equal sizes. Thus, the graph con-

structed is f4tt ! /; th4 ! /; th4 ! th3; hh3 ! /;
hh3 ! th3g. This graph roughly conveys the information

that the letter t and letter h should have been deleted, see

figure 7.

Figure 4. Graphical error model construction from panc to pant.

Figure 5. Graphical error model construction from sieze to seize.

  204 Page 6 of 11 Sådhanå          (2019) 44:204 



2.4 Proposed Method 3: TAKE curve

The lengths of the misspelled word and correctly spelled

word should be almost similar. Usually edit distance

between misspelled and correctly spelled word is around 1

or 2. The idea here is to reward the documents more in

which document length and query length are closer to each

other, and similarly penalize the extremely dissimilar

lengths.

Let |q| be the query length and |d| be the document

length. Let h(|q|, |d|) be the heuristic function to calculate

length similarity. Here we have used two variants, namely

power penalization and bucket-shaped sigmoidal function.

• Power penalization

This uses hyperparameter c that varies in [0, 1]:

hðjqj; jdjÞ ¼ ðjjqj � jdjj þ 1Þc : ð3Þ

The curve is plotted in figure 8.

• Bucket-shaped sigmoidal penalization

Here, the function would be modelled using Richard’s

curve, also known as generalized sigmoidal curve [25].

The curve is defined by

gðxÞ ¼ lþ
u� l

ðAþ e�Bðx�MÞÞ1=m
: ð4Þ

Here, l is lower limit, u is upper limit andM; m;A;B are

free parameters

As compared with the normal sigmoid function, this

function allows more flexibility in the choice of the

parameters. Since, we have to model a penalization

function, the aim would be to model a ‘‘trough’’ in the

curve as |q| approaches |d|. We divide this function into

three parts:

1. monotonically decreasing Richard’s curve gðx1Þ

when jdj\jqj, or ogðx1Þ
ox1
\0;

2. monotonically increasing Richard’s curve gðx2Þ

when jdj[ jqj, or ogðx2Þ
ox2
[ 0;

3. value of heuristic function hðjdj; jqjÞ ¼ 1 when

jdj ¼ jqj
where x1 2 ½0; jdj�, x2 2 ½jdj;1� and x1; x2 � jqj. If
we solve the limiting derivatives, use binomial

approximations and remodel our parameters, we get

the following penalization function:

hðjdj; jqjÞ ¼

1þ
b1 � 1

1þ eB1ðjdj�cjqjÞ
if jdj\jqj

1 if jdj ¼ jqj

1þ
b2 � 1

1þ e�B2ðjdj�ð1þcÞjqjÞ
if jdj[ jqj

8

>

>

>

>

<

>

>

>

>

:

ð5Þ

where

– b1 is the upper limit on the left side,

– b2 is the upper limit on the right side,

– B1 and B2 are growth parameters, which can be

typically set to 1,

– c is the trough curvature, where c 2 ð0; 1Þ.

This feature can be plotted as shown in figure 9

against various parameters.

If we observe the graph we see a neat bucket-shaped

trough when |d| approaches |q|. It does not penalize

when the lengths are almost similar but starts

Figure 6. Directed graph guiding from the incorrect pth to the

correct path.

Figure 7. Graphical error model construction.

Figure 8. The power penalization h(|d|, |q|) curve. The value of

h(|d|, |q|) dips when |d| approaches |q|. As c increases, penalization

would become harsher.

Sådhanå          (2019) 44:204 Page 7 of 11   204 



penalizing when they are extremely dissimilar. This is

feasible as a misspelling (query length) would be

around the length of the correct spelling (document

length). Using harsh penalization when lengths are

dissimilar can prune unnecessary spelling matches

with this heuristic.

Clearly, these two penalization heuristics behave and

achieve the stated objectives. We now demonstrate how we

can use this penalization heuristics in our ranking functions.

We know that BM25 ranking function is given by

scoreðq; dÞ ¼
X

t2d\q

f ðt; qÞ log
M þ 1

df ðtÞ

�
ðk þ 1Þf ðt; dÞ

f ðt; dÞ þ k 1� bþ b
jdj

avgdl

� � ;

where f(t, q) is the frequency of terms in queries, M is the

number of documents, k is a hyperparameter that sets the

bound, f(t, d) is the frequency of terms in documents, df(t)

is the document frequency, b is the normalization param-

eter, |d| is the document length and avgdl is the average

document length. Here 1� bþ b
jdj

avgdl

� �

is the normaliza-

tion heuristic. If we replace this heuristic with h(|d|, |q|) we

get

scoreðq; dÞ ¼
X

t2d\q

f ðt; qÞ log
M þ 1

df ðtÞ

�
ðk þ 1Þf ðt; dÞ

f ðt; dÞ þ k hðjdj; jqjÞð Þ
:

ð6Þ

If the value of h(|d|, |q|) decreases, that is if |d| and |q| are

similar, then the value of score(q, d) increases. This means

similar document and query word lengths are rewarded.

Vice versa can be said if the value of h(|d|, |q|) increases.

Equation (6) is mentioned as the TAKE curve, which

would be involved in our experimental set-ups.

3. Experimental evaluation

We evaluate our heuristics over three problems: isolated

spelling correction, cognate detection and SNP detection. All

of the hyperparameters of baselines presented in this section

are tuned in the mentioned datasets according to their best

performances. MeTA toolkit [26] is employed to build the

search engine. We performed these experiments on a Mac-

Book Pro Laptop with an Intel Core i7 2.2GHz CPU, 16 GB

of RAM and a 512 GB disk. The time complexity of our

proposed BREAK, MAKE and TAKE approach depends on

the dataset size and the three problems considered. However,

our models are faster than the compared methods; for exam-

ple, in the cognate detection problem, SVM classifier took

2.54 s whereas our approach took 0.648 s.

3.1 Spelling correction

This problem is tested using four different datasets:

1. Conventional English Spelling Evaluation (CESE): A

collection of 4000 misspellings and their corrections

were organized from Fawthrop’s contribution in Birk-

beck and Wikipedia spelling error corpus [27, 28]. These

datasets are considered as the gold standard and are

commonly tested by other researchers in the spelling

correction. The dataset is divided into two parts: training

set (comprises 3000 words) and test set (comprises 1000

words).

2. Low Training Set Evaluation (LTSE): We simulated

50000 English misspellings probabilistically. This data-

set was then divided into two parts: training set

(comprises 5 words) and test set (comprises 49995

words). This dataset is constructed to assess how

algorithm behaves with less training data (LT).

3. Corrupted Label Evaluation (CLE): We simulated 50000

English misspellings probabilistically. This dataset was

then divided into two parts: training set (comprises

40000 words) and test set (comprises 10000 words).

From the 40000 words, we mislabelled 20000 of them

randomly. This dataset is constructed to check the

robustness of the algorithms.

4. Hindi Spelling Evaluation (HSE): A collection of 5000

Hindi errors were taken (error corpus constructed by

ourselves). The dataset is divided into two parts: training

set (comprises 4000 words) and test set (comprises 1000

words). We used the technique called varn-viched to

tokenize the split of the Hindi words into individual k-

grams, which is analogous to letter splitting technique in

Roman languages.

Figure 9. The nature of sigmoidal curve h(|d|, |q|) with B1 ¼ 1,

B2 ¼ 1 and c ¼ 0:5.

  204 Page 8 of 11 Sådhanå          (2019) 44:204 



We chose five baselines for the evaluation purposes: a

brute-force looped method [8], weighted longest common

subsequence [9], finite state transducer [12], basic split-up

(BREAK-0) with Jaccard similarity and skip-grams [10].

We used MRR (Mean Reciprocal Rank) here as our

evaluation metric, since each misspelling had only one

solution in our dataset. The MRR is given by

MRR ¼
1

Q

X

jQj

i¼1

1

ranki
;

where ranki refers to the rank position for a sample of

queries Q. Aspell [29] with the dictionary size of 60 has

been used to create the spell-check dictionary for the

English evaluation.

Table 2 shows that BREAK-2 with BM25-based length

penalty (TAKE) and graphical error models (MAKE) per-

formed the best in conventional English and Hindi spelling

evaluation. BREAK-2 combined with the BM25-based

length penalty (MAKE) performed the best in the corrupted

label and low training dataset size evaluation, as these

techniques are robust against data abnormalities.

3.2 Cognate detection

This experiment was performed on the dataset and

evaluation scheme proposed by Rama [3]. In this dataset,

the word pairs are organized into cognate class numbers.

Positive and negative labels are assigned to the same and

different class numbers, respectively. For comparisons, we

chose SVM classifier for cognates detection as proposed by

Kondrak and Sherif [13] and Naive-Bayes-based features as

proposed by Ciobanu and Dinu [15]. The dataset was

divided in the ratio of 3:1 for the training and testing

purposes.

Precision at k ¼ 1 and F1 scores are used to evaluate the

algorithms used in this experiment. Precision and F1 scores

are given by

precision ¼
true positive

true positiveþ false positive
;

F1 ¼ 2�
precision� recall

precisionþ recall
;

with recall ¼
true positive

true positiveþfalse negative
, respectively.

The results in table 3 show that BREAK-2 with MAKE and

TAKE performed slightly better than the others.

3.3 SNP detection

This is a new problem for detecting SNPs (single-nu-

cleotide polymorphism), which corresponds to genetic mutant

identification suggested by Nguyen et al [2]. For this experi-

ment, we simulated two datasets. The dataset D1 contained

10000 genomes. Each genome sequence comprises length of

500–600 base pairs for the artificial DNA sequences. Ten

distinct mutations were created for each genome sequence.

Later the dataset is populated with 99% noise, resulting in

total size of D1 as 1 million genome sequences. The dataset

D2 has 50000 protein sequences with length around 1000–

1500 base pairs, which is populated with 99:9% noise,

resulting in total size of D2 as 1.5 million protein sequences.

The D2 dataset was artificially created by simulation of the

random patterns and mutations caused by the 21 proteins. The

BREAK-0 with Jaccard similarity is chosen as a baseline and

we use MinDist proximity heuristic clubbed with BM25 and

BREAK-0 [30], to compare our results.

Along with the MRR we also utilized the Normalized

Discounted Cumulative Gain (NDCG) as metrics for this

experiment. The NDCG is given by

NDCGp ¼
DCGp

IDCGp

;

where IDCGp ¼
Pjrelij

i¼1
2reli�1

log2 ðiþ1Þ is the ideal discounted

cumulative gain, reli represents the list of relevant docu-

ments up to position p and DCGp ¼
Pp

i¼1
2reli�1

log2 ðiþ1Þ. Table 4

Table 2. Test dataset mean reciprocal rank (MRR) results for

spelling correction evaluation.

Algorithm applied CESE LTSE CLE HSE

Brute-force [8] 68% 70% 71% 38%

LCS [9] 61% 59% 52% 23%

FST [12] 81% 22% 19% 31%

BREAK-0 ? Jaccard 63% 68% 67% 35%

Skip-grams [10] 65% 70% 68% 29%

BREAK-0 ? Dirichlet 70% 65% 69% 66%

BREAK-0 ? BM25 69% 70% 68% 64%

BREAK-2 ? Dirichlet 72% 72% 69% 68%

BREAK-2-OFF ? Dirichlet 75% 76% 71% 70%

BREAK-2 ? TAKE ? BM25 78% 79% 74% 75%

BREAK-2 ? TAKE ? MAKE ?

BM25

86% 38% 35% 84%

Table 3. Test dataset results for cognate detection experiment.

Algorithm applied P@1 F1

Naive Bayes [15] 0.75 0.4

SVM [13] 0.78 0.46

BREAK-2-OFF ? Dirichlet 0.76 0.42

BREAK-2 ? MAKE ? TAKE ? BM25 0.80 0.48

Sådhanå          (2019) 44:204 Page 9 of 11   204 



shows that BREAK-n with Dirichlet outperforms others.

We used 41 and 83 anchor points for D1 and D2, respec-

tively, which were obtained by experimentation on cross-

validation dataset. This shows that our heuristics is scalable

and works well with larger datasets.

3.4 Analysis of results

Before indexing the documents, the dataset must be split

according to the desired BREAK variant. For the usage of

BREAK-n, note that one can store the positional vectors

while indexing the corresponding term, or generate the

vector directly during evaluation. This choice highly

depends on the time–space tradeoff. However, in our

experiments we have stored the vectors during indexing,

prioritizing faster evaluation.

The common trend in the experimental set-ups is that

Dirichlet tends to perform better than Okapi BM25. This is

due to the fact that Dirichlet prior smoothing factor takes

account of the language modelling, which in turn makes it

more successful than vanilla BM25. We investigate the

effect of Dirichlet prior with BREAK-2 l1 and with MAKE

in l2. Figure 10 shows that both reach the maximum MAP

equally; however l1 reaches earlier.

Now we analyse the effect of weighted average equation

of MAKE, the hyperparameter tuning of the factor k. We

investigate the effect of hyperparameter sensitivity in iso-

lated spelling correction k1 and with cognate detection in

k2. Figure 11 describes the optimal conditions of the suit-

able hyperparameters. The late reach of k2 suggests that

cognate detection experiments depend more on graphical

error modelling MAKE algorithm than the BREAK

heuristic.

One of the limitations of the presented experimental

results is the amount of noise robustness. When tested for a

relatively small noise level (up to 10%) our approach gave

good results; however a deeper analysis for higher levels

([10%) requires elaborate experiments, which constitutes

one of the current works.

4. Conclusion

The central theme of this paper is to bring retrieval models

and approximate string similarity algorithms together. We

proposed sequential splitting variants like BREAK-1, -2, -

OFF, -n. To relate these sequential splits, we propose

MAKE algorithm, which constructs the probabilistic dis-

tribution between the query and document split sets. Finally

we designed the TAKE curve, to fit these heuristics in the

normalization function of the ranking functions. In the

experiments, we see that our heuristics is robust against the

datasets characteristics like mislabelling and low training

dataset size, and scales well in larger datasets. We plan to

improve BREAK-n and apply SNP detection problem to

real datasets and complex bioinformatics applications in the

future.

Acknowledgements

The authors sincerely thank the reviewers for their com-

ments that helped improve the presentation of the paper.

Table 4. Results for gene mutant detection simulation

experiment.

Algorithm

D1

(MRR)

D1

(NDCG)

D2

(MRR)

D2

(NDCG)

BREAK-0 ? Jaccard 0.33 0.16 0.31 0.12

MinDist ? BM25 ?

BREAK-0

0.55 0.40 0.49 0.38

BREAK-n ? Dirichlet 0.99 0.98 0.95 0.94

Figure 10. Effect of Dirichlet prior against MAP with BREAK-2

(l1) and with MAKE (l2).

Figure 11. The effect of hyperparameter sensitivity in isolated

spelling correction k1 and with cognate detection in k2.

  204 Page 10 of 11 Sådhanå          (2019) 44:204 



Compliance with ethical standards

Conflicts of interest None.

References

[1] Kukich K 1992 Techniques for automatically correcting

words in text. ACM Comput. Surv. 24: 377–439

[2] Nguyen K, Guo X and Pan Y 2016 Multiple biological

sequence alignment: scoring functions, algorithms and

evaluation. Hoboken: Wiley

[3] Rama T 2015 Automatic cognate identification with gap-

weighted string subsequences. In: Proceedings of the 2015

Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language

Technologies, pp. 1227–1231

[4] Robertson S E and Walker S 1994 Some simple effective

approximations to the 2-Poisson model for probabilistic

weighted retrieval. In: Proceedings of the 17th Annual

International ACM SIGIR Conference on Research and

Development in Information Retrieval, New York, NY, USA,

pp. 232–241

[5] Zhai C and Lafferty J 2004 A study of smoothing methods

for language models applied to information retrieval. ACM

Trans. Inf. Syst. 22(2): 179–214

[6] Amati G and Van Rijsbergen C J 2002 Probabilistic models

of information retrieval based on measuring the divergence

from randomness. ACM Trans. Inf. Syst. 20: 357–389

[7] Fang H, Tao T and Zhai C 2011 Diagnostic evaluation of infor-

mation retrieval models. ACM Trans. Inf. Syst. 29: 7:1–7:42.

[8] Norvig P 2007 How to write a spelling corrector. http://nor

vig.com/spell-correct.html

[9] Islam A and Inkpen D 2009 Real-word spelling correction

using Google web IT 3-grams. In: Proceedings of the 2009

Conference on Empirical Methods in Natural Language

Processing, vol. 3, Association for Computational Linguis-

tics, pp. 1241–1249

[10] Järvelin A, Järvelin A and Järvelin K 2007 s-grams: defining

generalized n-grams for information retrieval. Inf. Process.

Manag. 43: 1005–1019

[11] Keskustalo H, Pirkola A, Visala K, Leppänen E and Järvelin

K 2003 Non-adjacent diagrams improve matching of cross-

lingual spelling variants. In: Proceedings of the International

Symposium on String Processing and Information Retrieval,

pp. 252–265

[12] Pirinen T and Lindén K 2010 Finite-state spell-checking with

weighted language and error models. In: Proceedings of

LREC 2010 Workshop on Creation and Use of Basic Lexical

Resources for Less-resourced Languages, Malta, pp. 1–6

[13] Kondrak G and Sherif T 2006 Evaluation of several phonetic

similarity algorithms on the task of cognate identification. In:

Proceedings of the Workshop on Linguistic Distances.

Association for Computational Linguistics, pp. 43–50

[14] Inkpen D, Frunza O and Kondrak G 2005 Automatic

identification of cognates and false friends in French and

English. In: Proceedings of the International Conference

on Recent Advances in Natural Language Processing,

pp. 251–257

[15] Ciobanu A M and Dinu L P 2014 Automatic detection of

cognates using orthographic alignment. In: Proceedings of

the 52nd Annual Meeting of the Association for Computa-

tional Linguistics, pp. 99–105

[16] Huang Y and Zhang L 2004 Rapid and sensitive dot-

matrix methods for genome analysis. Bioinformatics 20:

460–466

[17] Needleman S B and Wunsch C D 1970 A general method

applicable to the search for similarities in the amino acid

sequence of two proteins. J. Mol. Biol. 48(3): 443–453

[18] Smith T F and Waterman M S 1981 Identification of com-

mon molecular subsequences. J. Mol. Biol. 147: 195–197

[19] Pearson W R 1990 Rapid and sensitive sequence comparison

with FASTP and FASTA. Methods Enzymol. 183: 63–98

[20] Kent W J 2002 BLAT—the BLAST-like alignment tool.

Genome Res. 12: 656–664

[21] Notredame C, Higgins D G and Heringa J 2000 T-coffee: a

novel method for fast and accurate multiple sequence

alignment. J. Mol. Biol. 302: 205–217

[22] Zhai C and Massung S 2016 Text data management and

analysis: a practical introduction to information retrieval

and text mining. USA: Morgan & Claypool

[23] Manning C D, Raghavan P and Schütze H 2008 Introduction

to information retrieval. New York, NY, USA: Cambridge

University Press

[24] Robertson S and Zaragoza H 2009 The probabilistic rele-

vance framework: BM25 and beyond. Found. Trends Inf.

Retr. 17: 333–389

[25] Birch C P 1999 A new generalized logistic sigmoid growth

equation compared with the Richards growth equation. Ann.

Bot. 83: 713–723

[26] Massung S, Geigle C and Zhai C 2016 MeTA: a unified

toolkit for text retrieval and analysis. In: Proceedings of the

54th Annual Meeting of the Association for Computational

Linguistics, pp. 91–96

[27] Mitton R 1985 Birkbeck spelling error corpus. Retrieved

from The Oxford Text Archive. http://ota.ahds.ac.uk

[28] Wikipedia 2017 Commonly misspelled English words. https://

en.wikipedia.org/wiki/Commonly_misspelled_English_words

[29] Atkinson K Spell checking oriented word lists. GNU Aspell.

http://aspell.net/

[30] Tao T and Zhai C 2007 An exploration of proximity mea-

sures in information retrieval. In: Proceedings of the 30th

Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pp. 295–302

Sådhanå          (2019) 44:204 Page 11 of 11   204 


	BREAK, MAKE and TAKE: an information retrieval approach
	Abstract
	Introduction
	Related work
	System architecture

	BREAK--MAKE--TAKE -- proposed IR approach
	Proposed method 1 -- BREAK
	BREAK-n: sequential splits for longer terms
	Proposed Method 2: MAKE error modelling
	Proposed Method 3: TAKE curve

	Experimental evaluation
	Spelling correction
	Cognate detection
	SNP detection
	Analysis of results

	Conclusion
	Acknowledgements
	References


