Header menu link for other important links
X
Carbon-coated Fe3O4core-shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications
M. Imran, N. Zouli, T. Ahamad, S.M. Alshehri, , S. Hussain, A. Aziz, M.A. Dar, A. Khan
Published in Royal Society of Chemistry
2021
Volume: 3
   
Issue: 7
Pages: 1962 - 1975
Abstract
Herein, we report the investigation of the electrical and thermal conductivity of Fe3O4and Fe3O4@carbon (Fe3O4@C) core-shell nanoparticle (NP)-based ferrofluids. Different sized Fe3O4NPs were synthesizedviaa chemical co-precipitation method followed by carbon coating as a shell over the Fe3O4NPsviathe hydrothermal technique. The average particle size of Fe3O4NPs and Fe3O4@C core-shell NPs was found to be in the range of ∼5-25 nm and ∼7-28 nm, respectively. The thickness of the carbon shell over the Fe3O4NPs was found to be in the range of ∼1-3 nm. The magnetic characterization revealed that the as-synthesized small average-sized Fe3O4NPs (ca.5 nm) and Fe3O4@C core-shell NPs (ca.7 nm) were superparamagnetic in nature. The electrical and thermal conductivities of Fe3O4NPs and Fe3O4@C core-shell NP-based ferrofluids were measured using different concentrations of NPs and with different sized NPs. Exceptional results were obtained, where the electrical conductivity was enhanced up to ∼3222% and ∼2015% for Fe3O4(ca.5 nm) and Fe3O4@C core-shell (ca.7 nm) NP-based ferrofluids compared to the base fluid, respectively. Similarly, an enhancement in the thermal conductivity of ∼153% and ∼116% was recorded for Fe3O4(ca.5 nm) and Fe3O4@C core-shell (ca.7 nm) NPs, respectively. The exceptional enhancement in the thermal conductivity of the bare Fe3O4NP-based ferrofluid compared to that of the Fe3O4@C core-shell NP-based ferrofluid was due to the more pronounced effect of the chain-like network formation/clustering of bare Fe3O4NPs in the base fluid. Finally, the experimental thermal conductivity results were compared and validated against the Maxwell effective model. These results were found to be better than results reported till date using either the same or different material systems. © The Royal Society of Chemistry 2021.
About the journal
JournalData powered by TypesetNanoscale Advances
PublisherData powered by TypesetRoyal Society of Chemistry
ISSN25160230