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Abstract: Object detection is an important process in surveillance system to locate objects and it is

considered as major application in computer vision. The Convolution Neural Network (CNN) based

models have been developed by many researchers for object detection to achieve higher performance.

However, existing models have some limitations such as overfitting problem and lower efficiency

in small object detection. Object detection in remote sensing hasthe limitations of low efficiency in

detecting small object and the existing methods have poor localization. Cascade Object Detection

methods have been applied to increase the learning process of the detection model. In this research,

the Additive Activation Function (AAF) is applied in a Faster Region based CNN (RCNN) for object

detection. The proposed AAF-Faster RCNN method has the advantage of better convergence and

clear bounding variance. The Fourier Series and Linear Combination of activation function are used

to update the loss function. The Microsoft (MS) COCO datasets and Pascal VOC 2007/2012 are used

to evaluate the performance of the AAF-Faster RCNN model. The proposed AAF-Faster RCNN

is also analyzed for small object detection in the benchmark dataset. The analysis shows that the

proposed AAF-Faster RCNN model has higher efficiency than state-of-art Pay Attention to Them

(PAT) model in object detection. To evaluate the performance of AAF-Faster RCNN method of object

detection in remote sensing, the NWPU VHR-10 remote sensing data set is used to test the proposed

method. The AAF-Faster RCNN model has mean Average Precision (mAP) of 83.1% and existing

PAT-SSD512 method has the 81.7%mAP in Pascal VOC 2007 dataset.

Keywords: Additive Activation Function; cascade object detection; Faster Region based Convolution

Neural Network; Fourier series and linear combination of activation function; remote sensing

1. Introduction

In computer vision, object detection is a significant step to develop various systems
such as intelligent surveillance, autonomous driving vehicles, and motion capture. The
object detection is required in various applications security, home automation, retail, safety,
control applications, traffic monitoring, etc. In intelligent surveillance systems, object
detection is an important task to detect the useful insights from Remote Sensing images,
image data, such as sidelined objects, intrusion detection, and traffic data collection [1,2].
The object detection in remote sensing images is a challenging task due to the presence of
object at different scale, viewpoint variation, and shadows. The motion, color, and shape
features are mostly used in the various segmentation and tracking methods in cascade
object detection. However, this is difficult to accurately detect the foreground object in
the image data [3]. There are many challenges in object detection due to complexities
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in an image data such as unpredictable objects motion, noise, partial or full occlusion,
variation in background, illumination variation, etc. If the images arecaptured by moving
camera, the foreground and background features of each frames change their position [4–6].
Recently, the deep learning method provides the efficient performance in cascade object
detection. However, still some challenges in the existing cascade object detection methods
is detection of small objects in the video, especially when resources are limited [7,8].

The Convolutional Neural Networks (CNNs) have a significant performance in var-
ious computer vision tasks such as object detection, image classification, human pose
estimation, semantic segmentation, etc. The CNNs methods have the capacity to effectively
learn rich representations compared tohand-craftedconventional representations [9,10].
Among CNN models, the R-CNN framework is one of the most influential methods that
performs a classification based on CNN using various methods. Two enhanced R-CNN
models such as Fast R-CNN model and Faster R-CNN model are applied for the classifica-
tion. The Fast R-CNN method learns convolutional feature maps before extracting features
from input images for classification. The Faster R-CNN model has shared convolutional
layers for a combination of Region Proposal Network (RPN) and Fast R-CNN [11–13].
The cascade learning process determines the cascade learning parameter to increase the
classifier efficiency. The cascade parameter involves in a number of stages, and each stage
has a number of weak classifier and thresholds [14,15]. In this paper, the AAF-Faster RCNN
method is proposed for object detection and it has the advantage of better convergence and
clear bounding values. In remote sensing object detection, objects such as airplane, ships,
storage tanks, baseball diamonds, tennis courts, basketball courts, ground track fields,
harbors, bridges, and vehicles are detected by the proposed AAF-Faster RCNN method.
The contributions of the research are discussed as follows:

1. The AAF activation is analyzed in the input data and update the loss function for
a Faster RCNN method to improve the detection efficiency. The Fourier series and
Linear activation function are used to update the loss function.

2. The proposed AAF-Faster RCNN method is applied in the object detection to increases
the efficiency of detection and cascade object detection method is applied to detect
the small object in datasets. The analysis shows that AAF-Faster RCNN model has an
efficient performance in small object detection.

3. The MS COCO datasets and Pascal VOC 2007/2012 were used to evaluate the robust-
ness of the proposed AAF-Faster RCNN model. The proposed AAF-Faster RCNN
model has a robust performance on MS COCO datasets and Pascal VOC 2007/2012
dataset for object detection.

4. In Remote Sensing, object detection is achallenging process due to the presence
of objects at different scales, and existing methods have poor localization in small
object detection. The proposed AAF-Faster RCNN model has the advantage of better
convergence and clear bounding values. The proposed AAF-Faster RCNN model
provides the effective detection of object in the Remote Sensing images.

5. The NWPU VHR-10 data set is applied to test the efficiency of proposed AAF-Faster
RCNN model for object detection in remote sensing images. The proposed AAF-
Faster RCNN model uses the cascade method to effectively detect the small object in
the image.

This paper is organizedas follows. The literature review is presented in Section 2
and the proposed AAF-Faster RCNN method is explained in Section 3. The experimental
design is provided in Section 4 and the experimental result is provided in Section 5. The
conclusion of this research work is provided in Section 6.

2. Literature Review

Convolution Neural Networks (CNN) have been highly applied in object detection and
have achieved considerable improvement in the performance. Recent methods involved in
applying the cascade object detection method were reviewed in this section.



Remote Sens. 2021, 13, 200 3 of 19

Liu et al. [16] proposed the Pay Attention to Them (PAT) method to combine the
bottom-up and top-down operating strategy in CNN for general object detection. The PAT
method applies the CNN regression method on the entire input images. The intelligent
agent was applied in attention mechanism refine the sub-regions that contain the relevant
object in the image. The refining process was carried out until bounding box were scaled
and removed the overlapping parts to provide final output. Two benchmark datasets such
as Pascal VOC and MS COCO to estimate the PAT method efficiency. The analysis shows
that the PAT method increases baseline detector performance. The PAT method uses the
discrete action set to realize the attention mechanism and tends to provide the irrelevant
information for cascade refinement.

Cai and Vasconcelos [17] proposed cascade R-CNN for the object detection method
to reduces the overfitting problem and computational time. The cascade R-CNN method
consists of sequence of detection trained with Intersection over Union (IoU). The detectors
were trained sequentially, and the output of detector wasused for next detection training.
The hypotheses quality was progressive improved by the resampling and reduces the over
fitting problem. The benchmark datasets such as COCO, VOC, KITTI, CityPerson, and
WiderFace were used to estimate the performance. The experimental analysis shows that
the cascade R-CNN has ahigher performance compared with Mask R-CNN. The small
object detection was not addressed properly in this method and need to be enhanced.

Cevikalp and Triggs [18] applied Support Vector Machine (SVM) that use a short
cascade of asymmetric one-class classifier to reject the negative class within the sliding
window framework. The asymmetric representation was highly focused on the coherent
positive class and tightly modelling rare extent that can lead to simpler classification and
faster rejection. The developed method uses the simple convex model to progressively
improve the bound based on positive class. The dataset such as FDDB face detection,
INRIA Person and ESOGU face detection were used to evaluate the efficiency of the model
and also analyzed in VOC dataset. The model is involved in significantly reducing the
computation complexity and computational time due to the elimination of large negative
classes. The model has lower efficiency in detecting the small objects and CNN method
was needed to analyze the features. The developed method failed to analyze the inter-class
interaction information for the overlapping of the object detection.

Zhong et al. [19] proposed a lightweight cascade structure to increase the performance
of the Region Proposal Network (RPN) for object detection. The pre-trained RPN, cascade
RPN, and constrained ratio of negative over positive class were applied for object detection.
The extracted proposal was used for the object detection and datasets such as VOC, COCO,
and ILSVRC were used to estimate the method’s efficiency. The evaluation shows that the
RPN based method achieveda considerable performance in the dataset with less computa-
tional cost. The performance of the model degrades for the large threshold of IoU due to
the elimination of small object in refinements. The developed method failed to reduce the
overheating problem which affects the performance.

Zhu et al. [20] proposed two stage method for object detection technique: (1) a locally
sliding line-based point regression (LocSLPR) and (2) a rotated cascade R-CNN method.
The LocSLPR method estimates the object outlier that denotes the sliding line intersection
and bounding box of the object. The rotated cascade R-CNN methodgradually regresses
the target object that increases efficiency of object detection. The developed method has a
considerable performance in the aerial image dataset namely DOTA and the developed
method has lower efficiency compared to the one-stage detection due to the refinement of
the relevant information.

Dai and Wei [21] proposed two-stage regression-based cascade object detection,
namely HybridNet, for fast and precise object detection. The regression modes are used in
the first and second stage. In second stage, a transitional stage was added to extract the
features of desired refinement on high resolution feature map. The datasets such as KITTI
and PASCAL VOC were used to analyzethe method’s efficiency. The experimental results
showed that HybridNet method has higher performance and less computational time in
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object detection. The small object detection is not well addressed in this method due to the
refinement of negative classes.

Zouet al. [22] established multi-task cascade CNN for hierarchical image classification
and object detection, in recognition large scale commodity. The object detection method
was used to locate the object and the hierarchical clustering method was used to develop
a category and an image classification model in a tree shape. The developed method
identified the group of classes to provide insight intothe data. The experimental analysis
shows that the multi-task cascade CNN method has higher efficiency in object detection
and the object detection efficiency needs to be improved.

Xu et al. [23] presented a Deep Regionlets model which combinesadeep neural net-
work and convolution detection for accurate object detection. The Regionlets applies
an end-to-end trainable deep learning framework for modelling object deformation and
multiple aspect rations. The region selection method provides guidance to select feature for
bounding box region. The Regionlet learning modules focus on selecting local features and
transform to alleviate the effect of appearance variation. Datasets such as PASCAL VOC
and Microsoft COCO were used to evaluate the efficiency of the model. The results show
that the Deep Regionlets model has abetterperformance than RetinaNet and Mask R-CNN
method. The overfitting problem needs to be solved to increase the efficiency of the model.

Denget al. [24] proposed Concatenated ReLU and Inception module in a Faster RCNN
method for the detection of objectsofdifferent sizes in remote sensing images. The devel-
oped method increases the reception field size variety and is suitable for multi-class object
detection. Two sub-networks such as Multi-Scale Object Proposal Network (MS-OPN)
and Accurate Object Detection Network (AODN) are used for object detection. The image
blocks are cropped and augment the image with rotation and re-sampling for training
the network to detect the large-scale remote sensing images. The Google Earth remote
sensing dataset of NWPU VHR-10 was used to evaluate the efficiency of MS-OPN method
for object detection in remote sensing. The analysis shows that the MS-OPN method has
ahigher efficiency in detecting the object with various scale variation in remote sensing
images. The overfitting in the model needs to be solved and deep features of rotation
invariant need to be added for object detection.

Ding, et al. [25] proposed a VGG16-Net framework of CNN to reduce the computa-
tional time of object detection in remote sensing. The fully convolutional neural network is
applied in the Faster RCNN and this reduces the memory requirement of the method as
well as the computational time. The dilated convolutional layer is applied to detect the
dense object in remote sensing and bootstrapping strategy is applied in Faster RCNN to
detect the smaller object. The computational time of the developed method is reduced, and
the precision of the detection is also increased. The detection ability of the model needs to
be improved and the overfitting of the model needs to be reduced.

Longet al. [26] applied the regional proposal method to detect object in the input
high resolution remote sensing images. The CNN model is applied to extract the generic
image features from local image of regions. Bounding box regression-based score in a
non-maximum suppression is used to optimize the bounding box region and improve
the detection performance. The developed method has a higher performance in object
detection in remote sensing. The developed method has lower efficiency in detecting small
objects in remote sensing.

Li et al. [27] applied RPN with a local-contextual feature fusion method for object
detection in remote sensing. Multi-angle anchors based on conventional multi-scale wereap-
plied to analyzethe characteristics of the geospatial object. A double channel feature fusion
method wasapplied to learn the contextual and local region of the image to overcome the
ambiguity problem. In the final layer, two kinds of features were combined to provide
apowerful joint representation. The publicly available dataset was used to evaluate the
performance of the developed model and shows the considerable performance. The model
efficiency in detecting the smaller object in the image is low and the false positive rate
needs to be reduced.
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Linet al. [28] applied a faster R-CNN method using the squeeze and excitation mech-
anism to improve the performance detection in Synthetic Aperture Radar (SAR) image.
A multi-scale feature map based on ImageNet pre-trained VGG network was used to pro-
vide multi-scale feature map. The scale vector is applied to recalibrate the sub feature maps
to suppress the redundant feature map. The analysis on Sentinel-1 images shows ahigher
performance in the detection compared to existing method. The overfitting problem in the
second-stage classification needs to be reduced for efficient detection.

Cui et al. [29] applied Dense Attention Pyramid Network (DAPN) for the ship detec-
tion method in SAR images. The abundant features containing the resolution and semantic
information are extracted from multi-scale ship detection. The salient features are inte-
grated with global unblurred features to improve the accuracy intheSAR images. The
analysis shows that the DAPN method for multi-scale ships in various scales in various
SAR images has high performance compared to existing method. Cascade object detection
needs to be applied to improve the learning of feature maps.

Problem Definition and Solution

Various CNN models have been developed for object detection to increase the effi-
ciency. Many existing methods have the limitations of an overfitting problem and low
efficiency in detecting small objects. Some methods involve enlarging the image for small
object detection and can be localized more easily, while few focus on adding up-sampled
high-level features into low-level features to enhance the small object representation. This
enlarging method requires more memory and computation time and some of the refine-
ment methods do not fully account for the samples’ diversity, thus leaving more precision
location and small objects. The object detection in remote sensing images is a challeng-
ing task due to the presence of smaller objects and because existing methods have lower
efficiency in localizing small objects. The standard IoU threshold value of CNN based
methods is 0.5, which leads to noisy detection and a degradation of the performance of
some existing methods for a larger threshold. A major problem of the high-quality detector
is overfitting due to a vanishing sample for large threshold.

Differ from Existing Faster R-CNN model: The faster R-CNN model using thesqueeze
and excitation method [28] has the limitation of the second-stage classification. The DAPN
with R-CNN [29] learning performance is affected by the small object and high loss in the
activation function. The proposed AAF-Faster R-CNN method applies a linear combination
of three activation function to improve the learning. The proposed AAF-Faster R-CNN
uses the positive and negative reward update in the feature map to solve the problem of
overfitting.

Solutions: This research proposes Fourier series and the linear activation method for
the loss value analysis; the loss value is used in the cascade step to the improve thelearning
process of the object. The Fourier series and linear activation method havethe advantage
of better convergence that helps to solve the overfitting problem by considering positive
classes in the analysis. The proposed method also has the advantage of a clear bounding
value that helps to detect the small object without enhancement of image and sampling.
The proposed AAF method has the advantages of better convergence and clear bounding
value, which provides the relevant features that increase the performance for a higher IoU
threshold.

3. Proposed Method

Object detection plays animportant role in computer vision applications such as
surveillance system and vehicle identification. The existing methods have the limitations
of overfitting and low efficiency in small object detection. This research applies the FLS-
Faster RCNN model to increases the efficiency of small object detection. The MS COCO
datasets and Pascal VOC 2007/2012 were used to evaluate the performance of the proposed
FLS-Faster RCNN model. The proposed FLS-Faster RCNN model is based on ResNet-101
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architecture. The block diagram of the FLS-Faster RCNN model in object detection is
shown in Figure 1.

 
Figure 1. The proposed FLS-Faster region-based Convolution Neural Network (RCNN) method forobject detection.

From the input images, the feature maps are created and stored in the shared convolu-
tion layer based on the weight values. ROI pooling reshape the input image with arbitrary
size for a size constrained fully connected layer. The convolutional layer applies the set of
filters for learning the feature maps based on the activation function. The proposed Fourier
series activation function updates the loss function based on the feature maps and provide
rewards for cascade sub-region selection. The cascade sub-region selection updates the
shared convolution layer based on the loss function from the activation function. The final
detected object is provided with a boundary box based on updated feature maps. The
input image is used to analyze the convolutional feature map and RPN in the detector. The
regions are extracted based on the feature map and ROI pooling is performed to provide
fixed size of the image. The Faster R-CNN method stores the RPN and convolutional
feature maps in shared convolutional layer. The cascade object detection method provides
the reward function to the Faster R-CNN method to learn the features. The AAF is used to
measure the loss function to update the Faster R-CNN method.

3.1. Cascade Object Detection

The current object detection datasets rarely contain cascade attention labels and this
is not easy to directly train the classifier. To overcome this problem, the Markov Decision
Process (MDP) is used to develop attentional region generation. An agent is developed in
MDP to make decision sequentially and ground truths of cascade are not required.

Generally, the MDP contains an actions set (A), a states set (S) and a reward function
(R). The agent analyzesthe state of an environment and based on its policy function, selects
an action. A states to actions probability distribution are mapped in policy function. The
state present in the environment changes based on the selected action and current state.
A reward signal of real value is applied to the agent to punish or award the choice [16].
The analysis process continues for a step of a finite number or until the stopping signal is
received from the environment.

The parameters and details in MDP are as follows.
From the observed regions of image, the CNN feature maps are extracted are called as

states. Through an ROI pooling layer, the feature maps are down sampled to a fixed size to
handle multi-scale inputs.

A pre-defined hierarchy are used to cascade the attended region for five movement
actions. The five candidates related to five actions in the observed region, i.e., four quarters
plus a central one. Overlapped regions and non-overlapped regions are explored as two
versions of the elemental design.
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The reward function is important to build a classical reward [30] and the agent is
shown in Equation (1):

Rα

(

s, s′
)

= sign(IoU
(

b′, g
)

− IoU(b, g) (1)

where b and s are the predicted box and current state, when agent selects action a, then
the b and s are the predicted box and next state. The ground truth boxes are represented
as g and IoU denotes the Intersection over Union. If IoU between the ground truth and
predicted box is improved, a positive rewardisgiven, otherwise a negative reward is given
to the actions, provided in Equation (2):

Rα

(

s, s′
)

=

{

sign(AvgIoU(B′, G′
s)− AvgIoU(B, Gs)), i f G′

s > 0

−η, otherwise
(2)

where Gs and B are denotes the ground truth and predicted boxes on observed region and
when agent select action a, Gs and B are the ground truth and predicted boxes on the next
region. The AvgIoU denotes the average IoU between the ground truths and predicted
boxes in an image region. A positive value of reward function is return when AvgIoU
is increased and if AvgIoU is not optimized, a negative value is returns. If there is no
target box is located in the attended area, then Gs is zero and the situation is penalized by a
negative reward −η.

3.2. Faster R-CNN

The Faster R-CNN key aspects are briefly described in this section. The Faster R-CNN
original paper [31] is referred to for a detailed description.

In the RPN, a 3 × 3 convolutional layer isfollowed to pre-train the convolution layer.
In the input image, the convolution layer performs mapping large spatial window or a
receptive field at a center stride to reduce the dimensional feature vector. For the regression
and classification of all spatial windows, two 1×1 convolutional layers are added.

The anchors are introduced in RPN to analyzevarious objects aspect ratios and scales.
Each convolutional map’s sliding location contains an anchor and at each spatial window
center. Each anchor is related with an aspect ratio and a scale and the default settings of
research [31], 3 aspect rations (1: 1, 1: 2, and 2: 1), 3 scales (1282, 2562, and 5122 pixels),
leads to k = 9 at each location. The parameters of each proposal arerelated to an anchor.
The most possible proposals W × Hk are present for convolutional feature map size W × H.
Instead of training a single regressor and k sets features extraction, the same features are
present for all the sliding location to regress k = 9 proposals. The Stochastic Gradient
Descent (SGD) is applied to train RPN in an end-to-end manner for classification and
regression branches. Both RPN and Fast R-CNN modules are considered for the entire
system to share convolutional layers. In this research, the approximate joint learning
method is adopted for training [32]. The Fast R-CNN and RPN are trained in an end-to-end
manner, independently. The Fast R-CNN input is dependent on the RPN output and this is
not a trivial optimization problem [32].

An image patch x of the four coordinates ispresent in a bounding box b =
(

bx, by, bw, bh

)

.
The bounding box regressor f (x, b) regress a candidate bounding box b into a target bound-
ing box g. Minimizing the risk in a training set (gi, bi), as shown in Equations (3) and (4):

Rloc[ f ] = ∑
i

L( f (xi, bi), gi) (3)

L(a, b) = ∑
i∈{x,y,w,h}

smoothL(ai − bi) (4)

Assign an image patch x based on Function h(x) to one of M + 1 classes, where
the background is present in class 0 and detect the remaining classes of the object. The
posterior distribution over classes of a M + 1 dimensional estimate is based on Function
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h(x), i.e., hk(x) = p(y = k|x) , where y is the class label. Consider that thetraining set

(xi, yi) is learned by minimizing the classification risk, as shown in Equations (5) and (6):

Rcls[h] = ∑
i

Lcls(h(xi)× Rα, yi) (5)

Lcls(h(x), y) = −loghy(x) (6)

where Lcls(h(x), y) is cross-entropy loss.

3.3. Detection Network

For cascade object detection, the modified version of Faster R-CNN method is used.
Based on Faster R-CNN, the coarse to fine bounding boxes are used to detect the object.

Coarse to Fine Forward: The region proposal network B1 = {Bi, 1}i ∈ {1, ..., K}
is developed based on a first set of K object proposal from an input image. A feature
map is used to extract the regions and the ROI Pooling [14] is used to pool to a fixed size.
The extracted regions are applied in a network and reduced using offset transformations.
A second set of K objects B2 = {Bi, 2}i ∈ {1, ..., K} is applied and the final set of bounding
boxes B3 is developed by repeating the process. This bounding box process differs from
Faster R-CNN, refinement sets overcome variationconstraints in large object scale and
provide more accurate detection. In this method, first convolution feature maps are used to
extract ROI pooled regions for keeping high resolution to detect small objects.

3.4. Faster R-CNN Network Training

The section denotes the tasks of network and associated loss functions. Three refine-
ment levels l ∈ {1, 2, 3} and five functions is used to minimize the loss function: Lrpn,
LReLU , Lsigmoid, Llinear and Ltanh. Lrpn is the RPN loss function [32]. The Faster R-CNN
framework [33] based on RPN learn end-to-end model. The network joint optimization
based on an input image minimizes the global function, as shown in Equations (7)–(10):

L = L1 + L2 + L3 (7)

With
L1 = Lrpn (8)

L2 = ∑
i

act(x)Fourier (9)

L3 = ∑
i

act(x)linear (10)

3.4.1. Fourier Series Activated Function

Fourier series is selected for better convergence and activation function naturally
satisfy the Dirichlet Fourier series conditions. The Fourier series represent any suitable
activation function [34]. Dirichlet Fourier series conditions are explained as follows.

1. Integrable over a period
2. Bounded interval has bounded variation
3. Discontinuities are in finite number in any given bounded interval

At continuous points, the Fourier series converge to function, and discontinuity points
havethe mean of the negative and positive limits. The activation function is continuous
or non-continuous points that will make the output neuron meaningless, integrable, and
havezero discontinuities. The activation function should have finite extreme points and
as for the neuron, it should be stable for similar input and any given bounded interval
has bounded variation for this reason. The Dirichlet Fourier series conditions satisfy the
activation functions and any functions suitable for activation function can be represented
in Fourier series including ReLU, Sigmoid, and the tanh activation function. The best
performance can be seen in thenetwork with Fourier series as the activation function has
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higher performance than the Sigmoid, ReLU, and tanh activation functions. Fourier series
activation function satisfy the Dirichlet Fourier series conditions and Fourier series can
represent any function that is suitable for activation function (e.g., ReLU, Sigmoid, and
tanh). Hence, the performance of Fourier series activation function is higher than ReLU,
Sigmoid, and tanh function. The positive and negative reward function is used in the
cascade learning to handle the loss in the activation function.

The Fourier series can be written as Equation (11).

act(x) = A +
∞

∑
n=1

(an cos(nwx) + bn sin(nwx)) (11)

where parameters A, ω, an, and bn are trainable parameters. The Fourier series rank does
not need to be high. In this method, this is fixed to 5 (i.e., n = 1, 2, ..., 5).

The gradient descent algorithms is used to train the activation function. The gradient
descent algorithm normalizes the range of the activation function and helps to compute
the activation function easily.The gradient descent method normalizes the value of three
activation function into the range of 0 to 1 to update the loss function. The gradient of such
activation function is given in Equations (12)–(16):

∂act(x)

∂A
= 1 (12)

∂act(x)

∂an
= −nwsin(nwx) (13)

∂act(x)

∂bn
= nwcos(nwx) (14)

∂act(x)

∂w
=

∞

∑
n=1

(annxcos(nwx)− bnnxsin(nwx)) (15)

=
∞

∑
n=1

nx(an cos(nwx)− bn sin(nwx)) (16)

If sin(nωx), cos(nωx) and x is stored in the local, then the gradient computing task is
greatly simplified and perform several multiplies. In training, memory and time complexity
are both O(n) and n is a very small integer which represents Fourier series rank.

3.4.2. Linear Combination of Activated Function

The candidate functions arethe process of linearly combining multiple functions and
this is another way to train the activation function [34]; such activation functions in CNNs
are called LC-CNN. The dot product of a hyperspace unit vector and vector of various
activation functions are used for such activation function, as shown in Equations (17)–(19):

act(x) =
∑

n
i=1 wiacti(x)

∑
n
i=1 wi

(17)

= [w1, w2, . . . , wn−1, wn]× [act1(x), act2(x), . . . , actn−1(x), actn(x)]T (18)

=
W × Acts

||W||
(19)

where ||W|| = ∑
n
i=1 wi.

A linear combination is used for two reasons. One reason is thatsuch a combination is
easily converted into simple activation functions based on letting weight vector W to be
one-hot. This means that such method will not have lower perform than single activation
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function. Another advantage is the gradient of these functions are easy to compute. The
gradients are given in Equations (20)–(22).

∂act(x)

∂(wk)
=

actk(x)∑
n
i=1 wi − ∑

n
i=1 wiacti(x)

(∑n
i=1 wi)

2
(20)

=
actk(x)∑

n
i=1 wi − act(x)∑

n
i=1 wi

(∑n
i=1 wi)

2
(21)

=
actk(x)− act(x)

||W||
(22)

The sum of weights and each activation function output is stored to easily compute
the gradient. In training, the efficiency of gradient decent training is considerable. In this
method, the activation function is the combination of ReLU, tanh, Sigmoid, and linear.

4. Experimental Design

Various CNN based models have been developed for the object detection and shows
considerable performance. The proposed AAF-Faster RCNN method have been applied
for object detection. The experimental design of the AAF-Faster RCNN model is explained
in this section.

Datasets: The Pascal 2007/2012 [35] and Microsoft (MS) COCO dataset [36] contains
20 and 80 objects. The Pascal 2007/2012 and MS COCO datasets were used to estimate the
proposed model efficiency. From the Pascal VOC 2007/2012 dataset, 16,551 images were
applied for training and 4952 images were applied for testing. From MS COCO dataset,
118 k images were applied for training and 20 k images were applied for testing. The NWPU
VHR-10 dataset consists of 565 color images collected from Google Earth and has objects
such as Airplanes, ships, baseball diamonds, storage tanks, ground track fields, basketball
courts, tennis courts, bridges, and vehicles. In NWPU VHR-10 dataset evaluation, 60%
is used for training and 40% is used for testing. Generally, training-testing of 80–20 was
applied to estimate the performance of the object detection model. The training-testing of
60–40 is used to evaluate the efficiency of the proposed AAF-Faster RCNN mode.

Metrics: The mean Average Precision (AP) and Average Precision (AP) were used to
estimate the efficiency of the proposed AAF-Faster RCNN. The sensitivity is measured
using analytic tool [37] and computational time were also analyzed in the model. The
AP is measured for standard VOC IoU (0.5) andanalyzed for IoU (0.75). The proposed
AAF-Faster RCNN method is analyzed to detect the small, medium, and large objects.

Parameter Settings: The proposed AAF-Faster RCNN method is based on ResNet-101
architecture. The learning rate is set as 1 × 10−4 and η is set as 0.3. The analysis shows
there is no performance gain after 20 epoch and training is applied as 20 epochs. The
image size of 512 × 512 is used to train the proposed method. The NWPU VHR-10 dataset
consists of 60% training and 40% testing in the evaluation.

System Requirement: The proposed AAF-Faster RCNN method is implemented
inthe system and consists of an Intel i7 processer with 16 GB RAM and 4 GB graphic card.
The proposed AAF-Faster RCNN method is developed and tested on Python 3.7. The
proposed and existing method is tested on the same dataset and in the same environment.

5. Experimental Results

Various CNN based models were developed for object detection and achievedcon-
siderable performance in detection. The existing methods of object detection have the
limitation of overfitting and low efficiency in small object detection. This research applies
the AAF-Faster RCNN model to increase the object detection efficiency. The AAF has
abetter convergence and has clear bounding variance for the analysis. The developed
model is based on the ResNet-101 structure. The Pascal VOC 2007, Pascal VOC 2012 and
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Microsoft COCO dataset were used to analysis the performance. The detailed description
of the AAF-Faster RCNN model performance is provided in this section.

The output samples of AAF-Faster RCNN samples on PASCAL VOC 2007 dataset is
shown in Figure 2: (a) plane, (b) swarm and (c) Two dogs. The proposed AAF-Faster RCNN
method has higher performance in object detection and provides ahigher performance in
multiple object detection.

 

Figure 2. (a) plane, (b) swarm and (c) Two dogs: The output samples of proposed AAF-Faster RCNN method on PASCAL

VOC 2007 dataset.

The output samples of AAF-Faster RCNN method on PASCAL VOC 2012 dataset
are shown in Figure 3a–c. The proposed AAF-Faster RCNN method has higher efficiency
in the object detection of the overlap region due to the fact that the AAF-Faster RCNN
method has clear bounding values for the object and better convergence, as shown in
Figure 3a. The proposed AAF-Faster RCNN model has ahigher efficiency in detecting the
small object due to cascade method is applied in the proposed AAF-Faster RCNN method
to analyze the sub-region in the image, as shown in Figure 3b. The existing methods has a
lower performance in detecting the small object. The existing method has lower efficiency
in detecting the overlap region in the image. To overcome this problem, the proposed
AAF-Faster RCNN method has clear bounding values based on the loss function.

 
Figure 3. (a) Boy on the horse, (b) three children in the beach, and (c) Cyclist: The output samples of proposed AAF-Faster

RCNN method on PASCAL VOC 2012 dataset.

The output samples of AAF-Faster RCNN method on MS COCO dataset, as shown
in Figure 4a–c. The proposed AAF-Faster RCNN method has the advantage of better
convergence and clear bounding values based on loss function. The proposed AAF-Faster
RCNN method has a higher performance in detecting the overlap object and small object,
as shown in the Figure 4c.
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Figure 4. (a) Baseball, (b) Stop sign, and (c) Domestic animals: The output samples of proposed AAF-Faster RCNN method

on MS COCO dataset.

The output samples of proposed AAF-Faster RCNN method on PASCAL VOC 2007,
PASCAL VOC 2012, and MS COCO dataset are shown in Figures 2–4, respectively. The
proposed AAF-Faster RCNN method has the ability to detect the small object, as shown in
Figure 3b. The AAF-Faster RCNN method has the abilityto effectively detect the overlap
region of the image, as shown in Figures 3a–c and 4a. The proposed AAF-Faster RCNN
method has the advantage of better convergence and clear bounding value and this helps
to detect the small object in the image and solves the overfitting problem.

The sample images of proposed AAF-Faster RCNN method for object detection in
Remote sensing are shown in Figure 5a,b. The efficiency of the proposed AAF-Faster RCNN
method is high in the object detection in remote sensing images. Figure 5a shows that the
proposed AAF-Faster RCNN method has a higher efficiency in detecting the airplane and
Figure 5b shows that the proposed AAF-Faster RCNN method has ahigher efficiency in
detecting the ship. The proposed AAF-Faster RCNN method has the advantage of better
convergence and clear bounding.

 

Figure 5. (a) Airplanes, and (b) Ships: The proposed AAF-Faster RCNN method sample object detection in Remote

sensing images.

The detection error of proposed AAF-Faster RCNN method in PASCAL 2012 and MS
COCO images are shown in Figure 6. In Figure 6a, one boat is missed in the classification
due to the presence of object in the narrow pattern and in Figure 6b, instead of two hot
dogs one hot dog is detected due to the presence of a similar pattern.

 
Figure 6. (a) Boat, and (b) Hot Dogs: Detection error in PASCAL 2012 and MS COCO.
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The detection error of the proposed AAF-Faster RCNN in NWPU VHR-10 dataset
method is shown in the Figure 7a,b. In the Figure 7a, the airplane is falsely detected due
to the color features and small object of the image. In Figure 7b, the small airplane is
undetected due to the presence of small object in the image.

 
Figure 7. (a) Street, and (b) Plane runway: Detection error in the NWPU VHR-10 dataset.

5.1. Performance Analysis on Pascal VOC 2007 Dataset

The proposed AAF-Faster RCNN method is tested on the Pascal VOC 2007 dataset
and compared with other models, as shown in Table 1. The mAP metric is measured for
various models in the Pascal dataset and compared with existing methods.

Table 1. Performance analysis of the Pascal VOC 2007 dataset.

Method Structure mAP

Faster w ResNet [38] ResNet-101 76.4

R-FCN [39] ResNet-101 80.5

R-FCN w Deformable CNN ResNet-101 82.6

AOL Net AlexNet 46.1

Attention Net [40] VGG 70.7

Faster [31] VGG 73.2

PAT-Faster [16] VGG 75.9

YOLOv2 352 [41] Darknet 73.7

PAT-YOLOv2 352 [16] Darknet 77.1

YOLOv2 544 [41] Darknet 78.6

PAT-YOLOv2 544 [16] Darknet 80.1

SSD300 [42] VGG 77.2

DSSD321 ResNet-101 78.6

PAT-SSD300 [16] VGG 80.5

SSD512 [42] VGG 79.8

DSSD513 ResNet-101 81.5

PAT-SSD512 [16] VGG 81.7

AAF-Faster RCNN ResNet-101 83.1

The Fourier series linear combination of activation function is used in the proposed
AAF-Faster RCNN model to improve the efficiency of the detection. The proposed AAF-
Faster RCNN model uses the cascade detection to increase the learning rate and effectively
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detect the small object. The existing methods [16,41,42] have overfitting problem in cas-
caded object detection. The proposed model overcame the overfitting problem using better
convergence and clear bounded variation in the analysis. The models with various structure
are analyzed in the Pascal VOC 2007 dataset and compared with the proposed AAF-Faster
RCNN model. The evaluation shows that the proposed AAF-Faster RCNN model has the
higher mAP value compared to other existing models. The proposed AAF-Faster RCNN
method also has abetter convergence and clear bounded variation in the analysis. The
proposed AAF-Faster RCNN method achieves the mAP of 83.1% and existing PAT-SSD512
method achieves 81.7% mAP in the Pascal VOC 2007 dataset. The proposed AAF-Faster
RCNN model is trained and tested with the image of 512 × 512 size and existing PAT
method also trained and tested with the same image size.

5.2. Performance Analysis of PASCAL VOC 2012 Dataset

The proposed AAF-Faster RCNN method is analyzedinthe PASCAL VOC 2012 dataset
and compared with other models, as shown in Table 2. The same parameter settings of
PASCAL VOC 2007 dataset areused in this analysis.

Table 2. Performance analysis in the PASCAL VOC 2012 dataset.

Method
Faster w
ResNet

[38]

R-FCN
[39]

Attention
Net [40]

Faster
[31]

PAT-
Faster

[16]

YOLO-v2
544 [41]

PAT-
YOLO-v2
544 [16]

PAT-
SSD300

[16]

PAT-
SSD512

[42]

AAF-
Faster
RCNN

mAP 73.8 77.6 65.6 70.4 74 73.4 74.5 78.2 80.6 81.11

aero 86.5 86.9 79.1 84.9 84.2 86.3 86.9 89.9 91.3 92.1

bike 81.6 83.4 68.9 79.8 80.6 82 82.8 86.7 88.2 89.2

bird 77.2 81.5 65.5 74.3 75.5 74.8 75.6 77 81 82.2

boat 58 63.8 52.3 53.9 59.6 59.2 61 64.4 68.6 69.1

bottle 51 62.4 55.9 49.8 56.5 51.8 55.7 54.1 62.7 63.5

bus 78.6 81.6 73.5 77.5 79.6 79.8 79.6 84.2 85.2 85.4

car 76.6 81.1 76.5 75.9 81.5 76.5 78.9 82.5 86.7 87.2

cat 93.2 93.1 79.1 88.5 89.4 90.6 89.9 91.6 92.5 92.7

chair 48.6 58 42.3 45.6 54.3 52.1 52.1 61.5 64 64.2

cow 80.4 83.8 70.9 77.1 78.7 78.2 82.9 84.3 84.9 85.1

table 59 60.8 42.7 55.3 57.9 58.5 57.8 65.1 68.1 68.7

dog 92.1 92.7 76.8 86.9 86.7 89.3 87.1 89.9 90.4 90.5

horse 85.3 86 73.9 81.7 83.1 82.5 86.7 86.9 88.5 88.7

mbike 84.8 84.6 73.3 80.9 84 83.4 84.9 87.7 89.1 89.3

person 80.7 84.4 79.2 79.6 83.6 81.3 83.5 85.3 87.6 88.2

plant 48.1 59 48.1 40.1 52.4 49.1 49.8 57 58.6 58.7

sheep 77.3 80.8 74.1 72.6 78 77.2 78.5 82.7 86.2 87.1

sofa 66.5 68.6 44.9 60.9 64.4 62.4 62.9 72.1 73 74.5

train 84.7 86.1 73.7 81.9 81.9 83.8 83.8 87.8 86.7 87.8

tv 65.6 72.9 62.2 68.8 68.8 68.7 70.4 74.2 77.4 78.1

The proposed AAF-Faster RCNN model uses the reward function to improve the learn-
ing based on the Fourier series and linear combination of activation function. The cascade
object detection method is used in proposed AAF-Faster RCNN model to effectively detect
the small object. The existing models [16,42] have the limitation of notfully accounting for
the samples’ diversity and they have lower efficiency. The proposed AAF-Faster RCNN
model considers the samples’ diversity based on cascade object detection. The performance
analysis of proposed AAF-Faster RCNN model is analyzed with mAP on the PASCAL VOC
2012 dataset, as shown in Table 2. The analysis shows that the AAF-Faster RCNN model
has ahigher mAP value compared to the existing methods. The PAT-SSD 512 method has
the second highest performance in object detection. The AAF-Faster CNN method has the
advantage of better convergence and clear bounded variation in the analysis. The proposed
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AAF-Faster RCNN model is based on the ResNet-101 structure for the object detection.
The proposed AAF-Faster RCNN model has amAP of 81.11% and state of art method of
PAT-SSD512 method has 80.6% mAP value in PASCAL VOC 2012 dataset. The state of art
PAT method uses discrete set of value for realization and proposed AAF method integrate
over the period of time for clear bounding variance. The analysis clearly shows that the
proposed AAF-Faster RCNN model has ahigher performance compared to other models.

5.3. Performance Analysis on Microsoft COCO Dataset

The proposed AAF-Faster RCNN model is analyzed in the MS COCO dataset and
compared with existing models, as shown in Table 3. The MS COCO dataset consists of
small objects and this is challenging for the object detection model. The proposed AAF-
Faster RCNN model and existing PAT with YOLOv2 are trained in same parameter settings.
The dataset is divided in three kinds, namely: Small (S) i.e., area less than 322, Medium (M)
i.e., area between 322 and 962, and Large (L) i.e., area greater than 962 pixels.

Table 3. Performance analysis in theMS COCO dataset.

Method Structure
AP IoU AP Area

Time 0.5:0.95 0.5 0.75 S M L

Faster+++ [38] ResNet-101 336 3.49 55.7 37.4 15.6 38.7 50.9

R-FCN [39] ResNet-101 110 29.9 51.9 - 10.8 32.8 45

Mask R-CNN
ResNext-
101-FPN

210 37.1 60 39.4 16.9 39.9 53.5

Faster [31] VGG 147 21.9 42.7 - - - -

PAT-Faster [16] VGG 160 26.9 47 27.9 11.9 31 37.8

YOLOv2 544 [41] Darknet 25 21.6 44 19.2 5 22.4 35.5

PAT-YOLOv2 544 [16] Darknet 50 27.4 50.7 27 11.8 30.9 36.4

SSD300 [42] VGG 22 25.1 43.1 25.8 6.6 25.9 42.4

PAT-SSD 300 [16] VGG 37 28.9 48.7 30 11.2 31.8 42.3

SSD 512 [42] VGG 53 28.8 48.5 30.3 10.9 31.8 43.5

PAT-SSD 300 [16] VGG 85 31.9 53.1 33.5 16.2 36.1 43

PAT-SSD 800 [16] VGG 110 37.1 57.7 39.8 22.5 41.5 50.7

AAF-Faster RCNN ResNet-101 82 37.2 58.1 40.2 23.1 43.4 51.2

The proposed AAF-Faster RCNN model uses the cascade learning method to improve
the learning model. The Fourier series and linear combination of activation function
areused in the proposed AAF-Faster RCNN model is used to improve the efficiency of the
object detection. The existing detection models [16,42] have the limitation of overfitting
due to the samples vanishing for a large threshold. The proposed AAF-Faster RCNN
model uses reward function to improve the learning and solve the overfitting problem. The
performance analysis of Proposed AAF-Faster RCNN method is analyzed in the MS COCO
dataset, as shown in Table 3. The analysis shows that the AAF-Faster RCNN method
has higher mAP value compared to existing method in cascade object detection. The
AAF-Faster RCNN method has the advantage of better convergence and clear bounding
variance. The proposed AAF-Faster RCNN method has lower computation time compared
to the state of art PAT SSD 300 method. The proposed AAF-Faster RCNN method uses
a 512 × 512 image size and PAT SSD method has a 300 × 300 image size. The proposed
AAF-Faster RCNN method has lower computation time due to integral of value and higher
mAP value due to clear bounding variance. The proposed AAF-Faster RCNN method has
a higher mAP value for various IoU and various area sizes. The proposed AAF-Faster
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RCNN method has the mAP of 43.4% in a medium-sized area and existing PAT-SSD 800
method has 41.5% mAP in the MS COCO dataset.

5.4. Performance Analysis on Small Object Detection

The proposed AAF-Faster RCNN method and state of art PAT-SSD 300 is measured
with sensitivity using an analysis tool [37]. The Pascal VOC challenging classes such
as boat, bird, chair, bottle, plant and table were used to analyzethe performance of the
proposed AAF-Faster RCNN method, as shown in Table 4.

Table 4. Performance analysis forsmall object detection.

PAT-SSD300 [16] AAF-Faster RCNN

Small Medium Large Small Medium Large

Bird 0.83 0.87 0.91 0.85 0.89 0.92

Boat 0.79 0.8 0.92 0.8 0.83 0.93

Bottle 0.57 0.64 0.75 0.59 0.66 0.76

Chair 0.63 0.77 0.73 0.65 0.78 0.74

Table 0.78 0.94 0.96 0.79 0.95 0.97

Potted plant 0.56 0.62 0.72 0.56 0.63 0.73

tv monitor 0.66 0.83 0.9 0.67 0.84 0.91

The proposed AAF-Faster RCNN model applies the Fourier series and linear combi-
nation of activation function to effectively detect small objects in the dataset. The cascade
object detection improves the learning performance of the proposed AAF-Faster RCNN
model. The existing models [16] do not fully account for thesamples’ diversity, thus leaving
more precision location and small objects. The proposed AAF-Faster RCNN model uses
loss function to consider samples diversity that improves the efficiency. The proposed
AAF-Faster RCNN is based on ResNet-101 structure helps to detect the object with consid-
erable computation time and it is clear that AAF activation method boosts the performance
of the Faster RCNN model. The proposed AAF-Faster RCNN method is analyzedforsmall
object detection in Pascal VOC dataset, as shown in Table 4. The analysis shows that the
proposed AAF-Faster RCNN method is more stable compared to the PAT-SSD 300 method.
The proposed AAF-Faster RCNN method has the advantage of better convergence and
clear bounding variance. The sensitivity of the proposed AAF-Faster RCNN method is
84% for Medium area and existing PAT-SSD300 method has 83% sensitivity forsmall object
detection.

Performance Analysis of Object Detection in Remote Sensing Images

The efficiency of the proposed AAF-Faster RCNN model is evaluated in the remote
sensing images to detect objects. The NWPU VHR-10 dataset was used to estimate the
performance of the proposed AAF-Faster RCNN model. The proposed AAF-Faster RCNN
model and existing model mAP were measured for object detection in the NWPU VHR-10
dataset, as shown in Table 5. The proposed AAF-Faster RCNN model has ahigher mAP
compared to existing methods in object detection. The proposed AAF-Faster RCNN model
has the advantage of better convergence and clear bounding value. The MS-OPN with fuse
feature map has the second highestmAP value due to its capacity to detect the small object.

In remote sensing images, the objects are present in various scale and the existing
models have lower efficiency due to poor localization. The proposed AAF-Faster RCNN
model uses Fourier series and the linear activation function to improve the localization.
The proposed AAF-Faster RCNN model uses the cascade learning method to improve the
efficiency of small object detection based on reward function. The proposed AAF-Faster
RCNN model has mAP value of 95.21% and existing MS-OPN with fuse method has value
of 94.87%mAP in NWPU VHR-10 dataset.
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Table 5. Performance analysis of object detection in remote sensing.

Methods mAP (%)

Fast—RCNN 72.32

Faster—RCNN 76.42

YOLO1 66.72

YOLO2 78.73

R-FCN 92.8

SSD 89.39

MS-OPN 91.52

MS-OPN with Fuse 94.87

AAF-Faster RCNN 95.21

6. Conclusions

Object detection is animportant task in the computer vision application such as surveil-
lance system, vehicle identification, etc. Various CNN based models have been developed
for the object detection and have achieved considerable performance. However, the ex-
isting methods suffers from the overfitting problem and lower efficiency in small object
detection. This research proposed the AAF-Faster RCNN model to increases the efficiency
in object detection. The proposed AAF-Faster RCNN model has the advantage of better
convergence and clear bounding variance. The datasets such as Pascal VOC 2007/2012 and
MS COCO were used to analyzethe efficiency of the proposed AAF-Faster RCNN method.
The proposed AAF-Faster RCNN method is evaluated in the NWPU VHR-10 dataset to
estimate itsperformance forremote sensing images. The analysis shows that the proposed
AAF-Faster RCNN model has higher performance compared to the existing modelsin terms
of AP. The AAF-Faster RCNN model has ahigher mAP of 83.1% and existing PAT-SSD512
method has 81.7%mAP in the Pascal VOC 2007 dataset.
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