Header menu link for other important links
X
Characterization and genome analysis of B1 sub-cluster mycobacteriophage PDRPxv
A. Sinha, K. Eniyan, P. Manohar, , U. Bajpai
Published in Elsevier B.V.
2020
PMID: 31981773
Volume: 279
   
Abstract
Mycobacteriophages are viruses specific to mycobacteria that have gained attention as alternative therapeutic strategies for treating antibiotic-resistant infections. Mycobacteriophages are highly diverse and have been grouped into 29 clusters, 71 sub-clusters and 10 singletons based on the genome sequence. Here, we annotate the genome of PDRPxv, a lytic mycobacteriophage isolated from New Delhi; it belongs to the Siphoviridae family as determined by transmission electron microscopy. This phage survives at higher temperatures (up to 55 °C) and in alkaline conditions (up to pH11). PDRPxv phage genome is 69,171 bp in length with 66.35 % GC content and encodes 107 putative open reading frames and belongs to the B1 sub-cluster. Genome annotation indicated that genes for DNA encapsidation, structural proteins, replication/transcription and lysis of the host are present in functional clusters. Structural proteins encoded by Gp10-Gp12, Gp18, Gp25 and Gp28-Gp33 were identified by mass spectrometry. Interestingly, no gene encoding a holin function was found. Single-step growth curve revealed that PDRPxv has an adsorption time of 45 min, a latency time of 135 min and an average burst size of 99 phage particles per infected cell. The short latency period and the large burst size mark the lytic nature of the PDRPxv phage, which could therefore be a promising therapeutic candidate against pathogenic Mycobacterium species. © 2020
About the journal
JournalData powered by TypesetVirus Research
PublisherData powered by TypesetElsevier B.V.
ISSN01681702