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Abstract

Common fixed point results are obtained in 0-complete partial metric spaces under

various contractive conditions, including g-quasicontractions and mappings with a

contractive iterate. In this way, several results obtained recently are generalized.

Examples are provided when these results can be applied and neither corresponding

metric results nor the results with the standard completeness assumption of the

underlying partial metric space can.
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1 Introduction and preliminaries

Matthews [] introduced the notion of a partialmetric space as a part of the study of deno-

tational semantics of dataflow networks. He showed that the Banach contractionmapping

theorem can be generalized to the partial metric context for applications in program ver-

ification. Subsequently, several authors (see, e.g., [–, , , –, , , , ]) derived

fixed point theorems in partial metric spaces. See also the presentation by Bukatin et al.

[] where the motivation for introducing non-zero distance (i.e., the ‘distance’ p where

p(x,x) =  need not hold) is explained, which is also leading to interesting research in

foundations of topology.

The following definitions and details can be seen, e.g., in [, , , , , ].

Definition  A partial metric on a nonempty set X is a function p : X×X →R+ such that

for all x, y, z ∈ X:

(p) x = y⇐⇒ p(x,x) = p(x, y) = p(y, y),

(p) p(x,x)≤ p(x, y),

(p) p(x, y) = p(y,x),

(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X,p) is called a partial metric on X.

It is clear that, if p(x, y) = , then from (p) and (p) x = y. But if x = y, p(x, y) may not

be .
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Each partial metric p on X generates a T topology τp on X which has as a base the fam-

ily of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}

for all x ∈ X and ε > . A sequence {xn} in (X,p) converges to a point x ∈ X (in the

sense of τp) if limn→∞ p(x,xn) = p(x,x). This will be denoted as xn → x (n → ∞) or

limn→∞ xn = x.

If T : X → X is continuous at x ∈ X (with respect to τp), then for each sequence {xn}

in X, we have

xn → x ⇒ Txn → Tx.

Remark  Clearly, a limit of a sequence in a partial metric space need not be unique.

Moreover, the function p(·, ·) need not be continuous in the sense that xn → x and yn → y

imply p(xn, yn) → p(x, y).

If p is a partial metric on X, then the function ps : X ×X →R+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y) (.)

is a metric on X. Furthermore, limn→∞ ps(xn,x) =  if and only if

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm).

Example 

() A paradigmatic example of a partial metric space is the pair (R+,p), where

p(x, y) = max{x, y} for all x, y ∈R+. The corresponding metric is

ps(x, y) = max{x, y} – x – y = |x – y|.

() If (X,d) is a metric space and c≥  is arbitrary, then

p(x, y) = d(x, y) + c

defines a partial metric on X and the corresponding metric is ps(x, y) = d(x, y).

Other examples of partial metric spaces which are interesting from a computational

point of view may be found in [, ].

Definition  Let (X,p) be a partial metric space. Then:

. A sequence {xn} in (X,p) is called a Cauchy sequence if limn,m→∞ p(xn,xm) exists

(and is finite).

. The space (X,p) is said to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm).

. [] a sequence {xn} in (X,p) is called -Cauchy if limn,m→∞ p(xn,xm) = . The space

(X,p) is said to be -complete if every -Cauchy sequence in X converges (in τp) to a

point x ∈ X such that p(x,x) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/113


di Bari et al. Fixed Point Theory and Applications 2012, 2012:113 Page 3 of 13

http://www.fixedpointtheoryandapplications.com/content/2012/1/113

Lemma  Let (X,p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps).

(b) The space (X,p) is complete if and only if the metric space (X,ps) is complete.

(c) Every -Cauchy sequence in (X,p) is Cauchy in (X,ps).

(d) If (X,p) is complete, then it is -complete.

The converse assertions of (c) and (d) do not hold as the following easy example shows.

Example  ([]) The space X = [,+∞) ∩ Q with the partial metric p(x, y) = max{x, y}

is -complete, but is not complete (since ps(x, y) = |x – y| and (X,ps) is not complete).

Moreover, the sequence {xn} with xn =  for each n ∈N is a Cauchy sequence in (X,p), but

it is not a -Cauchy sequence.

Recall that Romaguera proved in [, Theorem .] that a partial metric space (X,p) is

-complete if and only if every ps-Caristi mapping on X has a fixed point.

It is easy to see that every closed subset of a -complete partial metric space is -

complete.

Let (X,p) be a partial metric space and f , g : X → X be two selfmaps.When constructing

various contractive conditions, usually one of the following sets is used:

M
f ,g(x, y) =

{

p(gx, gy),p(gx, fx),p(gy, fy),p(gx, fy),p(gy, fx)
}

,

M
f ,g(x, y) =

{

p(gx, gy),p(gx, fx),p(gy, fy),




(

p(gx, fy) + p(gy, fx)
)

}

,

M
f ,g(x, y) =

{

p(gx, gy),




(

p(gx, fx) + p(gy, fy)
)

,




(

p(gx, fy) + p(gy, fx)
)

}

.

Then, the contractive condition takes the form

p(fx, fy) ≤ λmaxMi
f ,g(x, y), (.)

where λ ∈ [, ). Mappings f satisfying (.) with i =  for all x, y ∈ X (in metric case) are

usually called g-quasicontractions (see Ćirić [] and Das and Naik []).

(Common) fixed point results in partial metric spaces using conditions of mentioned

type in the case i = , were obtained in various papers. We prove in Section  a common

fixed point theorem for g-quasicontractions in -complete spaces that contains as special

cases several other results. In Section  a partial metric extension of Sehgal-Guseman

result formappings having a contractive iterate is obtained. Finally, in Section we deduce

a partial metric version of (common) fixed point theorem under the condition [, ()] of

B. E. Rhoades.

Examples are provided when these results can be applied and neither corresponding

metric results nor the results with the standard completeness assumption of the underly-

ing partial metric space can.

2 Quasicontractions in partial metric spaces

Theorem  Let (X,p) be a -complete partial metric space and let f , g : X → X be two

selfmaps such that fX ⊂ gX, and one of these two subsets of X is closed. If there exists λ ∈

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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[, ) such that the condition

p(fx, fy) ≤ λmaxM
f ,g(x, y) (.)

holds for all x, y ∈ X, where

M
f ,g(x, y) =

{

p(gx, gy),p(gx, fx),p(gy, fy),p(gx, fy),p(gy, fx)
}

,

then f and g have a unique point of coincidence. If, moreover, f and g areweakly compatible,

then they have a unique common fixed point u such that p(u,u) =  = p(fu, fu).

Recall that x ∈ X is called a coincidence point of f , g : X → X and y is their point of

coincidence if fx = gx = y. If f and g commute at their coincidence points, they are called

weakly compatible.

Proof For arbitrary x ∈ X, and using that fX ⊂ gX, choose a Jungck sequence {yn} in X by

yn = fxn = gxn+, n ∈N.

Denote by Of ,g(x;n) = {y, y, . . . , yn} the nth orbit of x and by Of ,g(x;∞) = {y, y, y, . . .}

its orbit. Also, denote by diamA = sup{p(x, y) | x, y ∈ A} the diameter of a nonempty set

A⊂ X. Note that diamA =  implies that A is a singleton, but the converse is not true.

If p(yn, yn+) =  for some n ∈ N, then it is easy to prove (using properties (p) and

(p) of the partial metric, and the contractive condition (.)) that p(yn+, yn+) = , i.e.,

yn = yn+ = yn+ = · · · . Hence, in this case, {yn} is a -Cauchy sequence in (X,p).

Suppose now that p(yn, yn+) >  for each n ∈N.

Claim .

diamOf ,g(x;∞) ≤


 – λ
p(fx, fx) =



 – λ
p(y, y).

Indeed, let  ≤ i, j ≤ n. Then

p(yi, yj) = p(fxi, fxj)

≤ λmax
{

p(gxi, gxj),p(gxi, fxi),p(gxj, fxj),p(gxi, fxj),p(gxj, fxi)
}

= λmax
{

p(yi–, yj–),p(yi–, yi),p(yj–, yj),p(yi, yj–),p(yj–, yi)
}

. (.)

Since the points yi–, yi, yj–, yj belong to the set Of ,g(x;n), it follows that

p(yi, yj) ≤ λdiamOf ,g(x;n) < diamOf ,g(x;n).

Hence, there exists k ≤ n such that diamOf ,g(x;n) = p(y, yk). Since, by (p),

p(y, yk) ≤ p(y, y) + p(y, yk) – p(y, y)

≤ p(y, y) + p(y, yk),

http://www.fixedpointtheoryandapplications.com/content/2012/1/113


di Bari et al. Fixed Point Theory and Applications 2012, 2012:113 Page 5 of 13

http://www.fixedpointtheoryandapplications.com/content/2012/1/113

we have

diamOf ,g(x;n) ≤ p(y, y) + λdiamOf ,g(x;n),

i.e., diamOf ,g(x;n) ≤ 
–λ

p(y, y). Taking the supremum in this inequality, the proof of

Claim  is obtained.

Claim . Let m > n≥ . Then

p(ym, yn) ≤
λn

 – λ
p(y, y). (.)

Similarly as in (.), we have that

p(ym, yn) ≤ λmax
{

p(ym–, yn–),p(ym–, ym),p(yn–, yn),p(ym, yn–),p(yn–, ym)
}

.

Since ym–, ym, yn–, yn ∈Of ,g(xn–;m – n + ), we have

p(ym, yn) ≤ λOf ,g(xn–;m – n + ) = λp(yn–, yk ) (.)

for some k ≤ m. Now, similarly,

p(yn–, yk ) ≤ λmax
{

p(yn–, yk–),p(yn–, yn–),p(yk–, yk ),p(yn–, yk ),p(yn–, yk–)
}

≤ λdiamOf ,g(xn–;m – n + ),

which, together with (.), gives

p(ym, yn) ≤ λp(yn–, yk )

for some k ≤ m. Continuing the process, we obtain that

p(ym, yn) ≤ λn– diamOf ,g(x;m – ) = λn–p(y, ykn– )

≤ λn– · λdiamOf ,g(x;m) ≤
λn

 – λ
p(y, y)

and Claim  is proved.

It follows that p(ym, yn) →  asm,n→ ∞, i.e., {yn} is a -Cauchy sequence. Since (X,p)

is -complete, there exists v ∈ X, u = gv ∈ gX such that yn = gxn → u, n → ∞ (we have

supposed that gX is closed, and hence -complete) and

p(u,u) = lim
n→∞

p(yn,u) = lim
m,n→∞

p(ym, yn) = .

Now, we prove that also fv = u. We have

p(fv,u) ≤ p(fv, fxn) + p(fxn,u)

≤ λmax
{

p(gv, gxn),p(gv, fv),p(gxn, fxn),p(gv, fxn),p(gxn, fv)
}

+ p(yn,u)

= λmax
{

p(u, yn–),p(u, fv),p(yn–, yn),p(u, yn),p(yn–, fv)
}

+ p(yn,u).

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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Since p(u, yn–), p(yn–, yn) and p(u, yn) tend to  as n→ ∞, and since

p(yn–, fv) ≤ p(yn–,u) + p(u, fv) – p(u,u) = p(yn–,u) + p(u, fv),

if we suppose that p(fv,u) > , we get a contradiction

p(fv,u) ≤ λp(fv,u).

Hence, p(fv,u) =  and so fv = u.

Suppose that there exists v,u ∈ X, u �= u and v �= v such that fv = gv = u. Then

p(u,u) = p(fv, fv)

≤ λmax
{

p(gv, gv),p(gv, fv),p(gv, fv),p(gv, fv),p(gv, fv)
}

= λmax
{

p(u,u),p(u,u),p(u,u),p(u,u),p(u,u)
}

= λp(u,u) by (p),

which is possible only if p(u,u) = , and hence u = u. Thus, we have proved that the

point of coincidence of f and g is unique. By a well-known result, if f and g are weakly

compatible, it follows that f and g have a unique common fixed point. �

Remark  If u is the unique common fixed point of f and g obtained as a limit of a Jungck

sequence {yn} as in the previous proof, then the following error estimate holds

p(yn,u) ≤
λn

 – λ
p(y, y).

Since p is not continuous in general, this cannot be obtained directly from (.). Instead,

notice that form > n

p(yn,u) ≤ p(yn, ym) + p(ym,u) ≤
λn

 – λ
p(y, y) + p(ym,u).

Passing to the limit when m → ∞, we get that

p(yn,u) ≤
λn

 – λ
p(y, y) + p(u,u) =

λn

 – λ
p(y, y).

According to the well-known classification of Rhoades [] (which obviously holds for

partial as well as for standard metric), Theorem  implies several other (common) fixed

point results, e.g., those of Banach, Kannan, Chatterjea, Bianchini, Hardy-Rogers and

Zamfirescu. We state the last one which was obtained in [, Theorem .] in the spe-

cial case g = iX .

Corollary  Let (X,p) be a -complete partial metric space, and let f , g : X → X be such

that fX ⊂ gX and one of these two subsets of X is closed. Suppose that there exist α, β , γ ,

with  ≤ α <  and  ≤ β ,γ < 
 , such that for all x, y ∈ X, at least one of the following

conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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. p(fx, fy) ≤ αp(gx, gy);

. p(fx, fy) ≤ β[p(gx, fx) + p(gy, fy)];

. p(fx, fy) ≤ γ [p(gx, fy) + p(gy, fx)].

Then f and g have a unique point of coincidence u ∈ X. If, moreover, f and g are weakly

compatible, then they have a unique common fixed point u and p(u,u) =  holds.

Proof Let the assumption of corollary hold and denote λ = max{α, β , γ }. Then for all

x, y ∈ X, condition (.) of Theorem  is satisfied and the conclusion follows. �

We give an easy example of a partial metric space, which is not a metric space, and a

selfmap in it which is a quasicontraction and not a contraction.

Example  Consider the set X = {a,b, c} and the function p : X×X →R given by p(a,b) =

p(b, c) = , p(a, c) = 
 , p(x, y) = p(y,x), p(a,a) = p(c, c) = 

 and p(b,b) = . Obviously, p is a

partial metric on X, not being a metric (since p(x,x) �=  for x = a and x = c). Define a

selfmap f on X by

f :

(

a b c

b b a

)

.

Then f is not a (Banach)-contraction since

p(fc, fc) = p(a,a) =



= p(c, c)

and there is no λ ∈ [, ) such that p(fc, fc) ≤ λp(c, c). We will check that f is an iX-

quasicontraction with λ = 
 . If x, y ∈ {a,b}, then p(fx, fy) = p(b,b) =  and (.) trivially

holds. Let, e.g., y = c; then we have the following three cases:

p(fa, fc) = p(b,a) =  ≤



·



= λmax

{

p(a, c),p(a, fa),p(c, fc),p(a, fc),p(c, fa)
}

,

p(fb, fc) = p(b,a) = ≤



·



= λmax

{

p(b, c),p(b, fb),p(c, fc),p(b, fc),p(c, fb)
}

,

p(fc, fc) = p(a,a) =



<



·



= λmax

{

p(c, c),p(c, fc)
}

.

Thus, the conditions of Theorem  are satisfied and the existence of a common fixed point

of f and iX (which is b) follows. The same conclusion cannot be obtained by Banach-type

fixed point results from [, ].

We present another example showing the use of Theorem . It also shows that there are

situations when standard completeness of the p-metric as well as usual metric arguments

cannot be used to obtain the existence of a fixed point.

Example  Let X = [, ] ∩ Q be equipped with the partial metric p defined by p(x, y) =

max{x, y} for x, y ∈ X. Let f , g : X → X be given by

fx =
x

 + x
, x ∈ X and g = iX .

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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By Example , the space (X,p) is -complete (but not complete). Take λ = 
 . The contrac-

tive condition (.) for (say) x ≥ y takes the form

p(fx, fy) = max

{

x

 + x
,
y

 + y

}

=
x

 + x

≤



max

{

p(x, y),p

(

x,
x

 + x

)

,p

(

y,
y

 + y

)

,p

(

x,
y

 + y

)

,p

(

y,
x

 + x

)}

=



max

{

x,x, y,x,max

{

y,
x

 + x

}}

=



x,

and it is satisfied for all x, y ∈ X since  ≤ x ≤ . Hence, all the conditions of Theorem 

are satisfied and f and g have a unique common fixed point (u = ).

Since (X,p) is not complete, nor is the space (X,d), where d = ps is the Euclidean metric,

the existence of a (common) fixed point cannot be deduced using known results.

3 Mappings with a contractive iterate

In this section, we prove a version of Sehgal-Guseman theorem ([, ], see also []) for

-complete partial metric spaces.

Theorem  Let (X,p) be a -complete partial metric space and let f : X → X. Suppose

that there exists λ ∈ [, ) such that for each x ∈ X there is k(x) ∈N satisfying

p
(

f k(x)x, f k(x)y
)

≤ λp(x, y) (.)

for every y ∈ X. Then f has a unique fixed point z ∈ X. Moreover, p(z, z) =  and every

Picard sequence {f nx} converges to z.

Proof We first note that, similarly as in the metric case, the following can be proved:

Under the assumptions of the theorem,

R(x) = sup
n∈N

p
(

x, f nx
)

≤


 – λ
max

{

p
(

x, f jx
)

:  ≤ j ≤ k(x)
}

. (.)

In particular, supn∈N p(x, f
nx) is a finite real number for each x ∈ X.

Let x ∈ X be arbitrary. Construct the sequence {xn} in the following way:

x = f k(x)x, x = f k(x)x, . . . , xn = f k(xn–)xn–, . . . .

We will prove that this is a -Cauchy sequence.

If p(xn–,xn) =  for some n, then it easily follows that this sequence is eventually con-

stant, and hence a -Cauchy one. Suppose further that p(xn–,xn) >  for each n. Condition

(.) implies that

p(xn,xn+) = p
(

f k(xn–)xn–, f
k(xn)xn

)

= p
(

f k(xn–)xn–, f
k(xn)f k(xn–)xn–

)

= p
(

f k(xn–)xn–, f
k(xn–)f k(xn)xn–

)

≤ λp
(

xn–, f
k(xn)xn–

)

.

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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Repeating this procedure n times, we get that

p(xn,xn+) ≤ λnp
(

x, f
k(xn)x

)

≤ λnR(x) → 

as n→ ∞ since R(x) < +∞ by (.).

Now, using standard arguments, it is easy to show that p(xm,xn) →  as m,n → ∞.

Hence, {xn} is a -Cauchy sequence. Since the space (X,p) is -complete, there exists z ∈ X

satisfying p(xn, z) → , n → ∞, with p(z, z) = .

It follows from condition (.) that

p
(

f k(z)z, f k(z)xn
)

≤ λp(z,xn) → λp(z, z) = ,

as n→ ∞. Hence, f k(z)xn → f k(z)z in (X,p). Further we have

p
(

f k(z)z, z
)

≤ p
(

f k(z)z, f k(z)xn
)

+ p
(

f k(z)xn, z
)

– p
(

f k(z)xn, f
k(z)xn

)

≤ p
(

f k(z)z, f k(z)xn
)

+ p
(

f k(z)xn, z
)

≤ p
(

f k(z)z, f k(z)xn
)

+ p
(

f k(z)xn,xn
)

+ p(xn, z) – p(xn,xn)

≤ p
(

f k(z)z, f k(z)xn
)

+ p
(

f k(z)xn,xn
)

+ p(xn, z).

The first and third summand on the right-hand side tend to when n→ ∞. For the second

summand we have

p
(

f k(z)xn,xn
)

= p
(

f k(z)f k(xn–)xn–, f
k(xn–)xn–

)

= p
(

f k(xn–)f k(z)xn–, f
k(xn–)xn–

)

≤ λp
(

f k(z)xn–,xn–
)

≤ · · · ≤ λnR(x)

→ ,

as n → ∞. Thus, p(f k(z)z, z) =  and so f k(z)z = z. If z and u were two distinct fixed points

of f k(z), then (.) would imply that

p(z,u) = p
(

f k(z)z, f k(z)u
)

≤ λp(z,u) < p(z,u),

a contradiction.

Now, we easily get that

f k(z)fz = ff k(z)z = fz

and it must be fz = z, i.e., z is a (unique) fixed point of f .

In order to prove that f is a Picard operator, let x ∈ X be arbitrary and {f nx} be the

corresponding Picard sequence. Each n ∈ N, n > k(z) can be uniquely written in the

form

n =m · k(z) + q,

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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andm→ ∞ when n→ ∞. Let z be the (unique) fixed point of f whose existence has just

been proved. Then

p
(

z, f nx
)

= p
(

f k(z)z, f k(z)f (m–)k(z)+qx
)

≤ λp
(

z, f (m–)k(z)+qx
)

= λp
(

f k(z)z, f k(z)f (m–)k(z)+qx
)

≤ λp
(

z, f (m–)k(z)+qx
)

≤ · · · ≤ λmp
(

z, f qx
)

≤ λm
(

p(z,x) + p
(

x, f qx
))

≤ λm
(

p(z,x) + R(x)
)

.

Now, using what was previously proved, we obtain that p(z, f nx) →  = p(z, z) and f is a

Picard operator. �

Example  Let (X,p) and f be as in Example . We have seen that f is not a contraction

in the partial metric space (X,p). However, f  :
(

a b c

b b b

)

and f satisfies condition (.) of

Theorem  with k(x) =  for each x ∈ X since p(f x, f y) = p(b,b) =  for each y ∈ X. As we

have seen, f has a unique fixed point b.

4 Partial metric version of a theorem of Rhoades

The following theorem is a partial metric version of an interesting result obtained by B. E.

Rhoades [, Theorem ].

Theorem  Let (X,p) be a -complete partial metric space. Let f , g : X → X be two map-

pings such that fX ⊂ gX and one of these subsets of (X,p) is closed. Suppose that there ex-

ist decreasing functions αi : [, +∞) → [, ), i = , . . . , , such that
∑

i= αi(t) <  for each

t ∈ [, +∞) and satisfying

p(fx, fy) ≤ α
(

p(gx, gy)
)

p(gx, gy) + α
(

p(gx, gy)
)

p(gx, fx) + α
(

p(gx, gy)
)

p(gy, fy)

+ α
(

p(gx, gy)
)

p(fy, gx) + α
(

p(gx, gy)
)

p(fx, gy) (.)

for all x, y ∈ X. Then f and g have a unique point of coincidence. If, moreover, f and g are

weakly compatible, then f and g have a unique common fixed point, say z, with p(z, z) =

p(fz, fz) = p(gz, gz) = .

Proof Suppose, e.g., that gX is closed. Take an arbitrary x ∈ X and, using that fX ⊂ gX,

construct a Jungck sequence {yn} defined by yn = fxn = gxn+, n = , , , . . . . Let us prove

that this is a -Cauchy sequence. If p(yn, yn–) =  for some n, then as in the proof of The-

orem , one proves that the sequence {yn} becomes eventually constant, and thus conver-

gent.

Suppose that p(yn, yn–) >  for each n ∈ N. Using (.) (and putting temporarily αi =

αi(p(yn–, yn)), i = , . . . , ), we obtain that

p(yn, yn+) = p(fxn, fxn+)

≤ αp(yn–, yn) + αp(yn–, yn) + αp(yn, yn+)

+ αp(yn+, yn–) + αp(yn, yn)

≤ αp(yn–, yn) + αp(yn–, yn) + αp(yn, yn+)

+ α
[

p(yn–, yn) + p(yn, yn+) – p(yn, yn)
]

+ αp(yn, yn),

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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for each n ∈ N. Also,

p(yn+, yn) = p(fxn+, fxn)

≤ αp(yn–, yn) + αp(yn, yn+) + αp(yn–, yn) + αp(yn, yn) + αp(yn–, yn+)

≤ αp(yn–, yn) + αp(yn, yn+) + αp(yn–, yn)

+ αp(yn, yn) + α
[

p(yn–, yn) + p(yn, yn+) – p(yn, yn)
]

.

Adding up the last two relations, we obtain

p(yn, yn+) ≤ β
(

p(yn–, yn)
)

p(yn–, yn),

where

β(t) =
α(t) + α(t) + α(t) + α(t) + α(t)

 – (α(t) + α(t) + α(t) + α(t))
.

It is easy to see that monotonicity of all αi’s implies that β is also a decreasing function

and that  < β(t) <  for each t ∈ [, +∞). In particular, p(yn, yn+) < p(yn–, yn) and so the

sequence {p(yn, yn+)} is strictly decreasing (and bounded frombelow). It follows that there

exists limn→∞ p(yn, yn+) = r and  ≤ r ≤ p(yn, yn+) for each n. Then  > β(r) > β(p(yn, yn+))

for each n, and hence

p(yn, yn+) ≤ β(r)p(yn–, yn) ≤
(

β(r)
)
p(yn–, yn–) ≤ · · · ≤

(

β(r)
)n
p(y, y),

where β(r) ∈ [, ) is fixed.

Now we prove that {yn} is a -Cauchy sequence in the usual way: form > n it is

p(yn, ym) ≤ p(yn, yn+) + · · · + p(ym–, ym)

≤
((

β(r)
)n

+ · · · +
(

β(r)
)m–)

p(y, y)

≤
(β(r))n

 – β(r)
p(y, y) →  as n→ ∞.

It follows that {yn} is a -Cauchy sequence. Since this space is -complete, there exists

z ∈ gX (i.e., z = gu, u ∈ X) such that yn = gxn+ → z, n → ∞ (we have supposed that gX is

closed, and hence -complete) and p(z, z) = . We will prove that fu = gu.

Put x = xn, y = u in the contractive condition. We obtain (writing temporarily αi =

αi(p(xn,u))) that

p(gu, fu) ≤ p(gu, gxn+) + p(fxn, fu)

≤ p(gu, gxn+) + αp(gxn, gu) + αp(gxn, fxn)

+ αp(gu, fu) + αp(fu, gxn) + αp(fxn, gu)

≤ p(gu, gxn+) + αp(gxn, gu) + (α + α)p(gxn, fxn)

+ αp(gu, fu) + αp(fu, fxn) + αp(fxn, gu)

http://www.fixedpointtheoryandapplications.com/content/2012/1/113
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≤ p(gu, gxn+) + αp(gxn, gu) + (α + α)p(gxn, fxn)

+ (α + α)p(gu, fu) + (α + α)p(fxn, gu).

Taking into account that all αi’s are bounded in [, ), passing to the limit in the last in-

equality, we obtain that

p(gu, fu) ≤  + α ·  + (α + α) ·  + (α + α)p(gu, fu) + (α + α) · ,

i.e., p(gu, fu) ≤ (α + α)p(gu, fu). Since α + α < , it follows that p(fu, gu) = , gu = fu = z,

and f and g have a point of coincidence z.

Suppose that z = fu = gu is another point of coincidence for f and g . Then (.) implies

that p(z, z) =  and also that

p(z, z) = p(fu, fu)

≤ αp(gu, gu) + αp(gu, fu) + αp(gu, fu) + αp(fu, gu) + αp(fu, gu)

= αp(z, z) + α ·  + α ·  + αp(z, z) + αp(z, z)

= (α + α + α)p(z, z).

Since α + α + α < , the last relation is possible only if p(z, z) =  and hence z = z. So,

the point of coincidence is unique.

The proof is similar if the subset fX of X is closed.

By a well-known result, if f and g are weakly compatible, it follows that f and g have a

unique common fixed point. �

Remark  Taking (X,p) to be a standard metric space and g = iX , we obtain a shorter

proof of [, Theorem ].

Remark  Taking appropriate choices of f , g and αi, i = , . . . ,  in Theorem , one can

easily get the results of Reich [, (), ()], Hardy-Rogers [, ()] and Ćirić [, ()] in

the setting of partial metric spaces.

Remark  We finally note that, in a similar way, several other fixed point results in par-

tial metric spaces obtained recently (e.g., [, Theorem ], [, Theorem ], [, Theorems 

and ], [, Theorem .], [, Theorem ], [, Theorems  and ]) can be proved with a

(strictly) weaker assumption of -completeness instead of completeness.
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