Header menu link for other important links
Comparative performance of coated and uncoated inserts during intermittent cut milling of AISI 4340 steel
S. Lakshmanan,
Published in Taylor's University
Volume: 10
Issue: 5
Pages: 606 - 616
Machining behaviour of TiN coated and uncoated cemented carbide tools were studied during intermittent milling operation of AISI 4340 steel. Series of orthogonal intermittent milling tests were performed subsequently to investigate the role of the selected tools and cutting parameters. Three cutting parameters namely cutting speed, feed and depth of cut with three different levels and two types of cutting tools (coated and uncoated) were considered for conducting the experimental trials. Intermittent face milling was employed to study the wear behaviour of the tools and the resulting surface roughness. The cyclic load induced during the entry and exit of the tool, leads to unstable temperature at cutting zone. This unstable temperature affects the tool life badly during intermittent milling. Tool wear increases considerably with an increase in frequency of the interruption. The experimental results indicated that the coated tool out performed uncoated tool in terms of tool life and surface finish. The other interesting observation was the uncoated tool performed better than coated tool at moderate cutting parameters. Results also indicated that the fracture and chipping were the dominant tool failure modes in uncoated tool. The chipping of uncoated tool causes the surface quality to deteriorate. TiN coating ensures the toughness of the cutting tool, which leads to good surface quality during the machining process. A detailed analysis of tool wear and surface roughness was done and the results are employed to create a linear regression model. This model established the relation between the cutting parameters and the response variables. ANOVA was used to identify the influential parameters which affect the tool wear and surface roughness. © School of Engineering, Taylor’s University.
About the journal
JournalJournal of Engineering Science and Technology
PublisherTaylor's University