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In this work, the most detrimental missense mutations of aspartoacylase that cause Canavan’s disease were identified computa-
tionally and the substrate binding efficiencies of those missense mutations were analyzed. Out of 30 missense mutations, 
I-Mutant 2.0, SIFT and PolyPhen programs identified 22 variants that were less stable, deleterious and damaging respectively. 
Subsequently, modeling of these 22 variants was performed to understand the change in their conformations with respect to the 
native aspartoacylase by computing their root mean squared deviation (RMSD). Furthermore, the native protein and the 22 
mutants were docked with the substrate NAA (N-Acetyl-Aspartic acid) to explain the substrate binding efficiencies of those 
detrimental missense mutations. Among the 22 mutants, the docking studies identified that 15 mutants caused lower binding 
affinity for NAA than the native protein. Finally, normal mode analysis determined that the loss of binding affinity of these 15 
mutants was caused by altered flexibility in the amino acids that bind to NAA compared with the native protein. Thus, the pre-
sent study showed that the majority of the substrate-binding amino acids in those 15 mutants displayed loss of flexibility, 
which could be the theoretical explanation of decreased binding affinity between the mutant aspartoacylases and NAA.  
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Canavan’s disease (CD) (OMIM #271900) is an inherited, 
fatal, autosomal recessive form of leukodystrophy [1]. More 
than 50 mutations in the aspartoacylase (ASPA) gene, in-
cluding numerous deletions, missense mutations, and prem-
ature terminations, have been described in patients of di-
verse ethnic origins. The mutations cause ASPA deficiency 
and accumulation of N-acetyl aspartic acid (NAA) in the 
brain [2,3]. ASPA is primarily found in oligodendrocytes of 
the white matter and was originally proposed to be a mem-
ber of the esterase family by the presence of a catalytic 
Ser-His-Glu triad [4,5]. However, subsequent alignment 

studies showed few similarities between ASPA and the es-
terase family [6,7]. The enzyme deficiency in CD interferes 
with the normal hydrolysis of NAA, which results in dis-
ruption of myelin and spongy degeneration of the white 
matter of the brain [8–11]. The clinical features of the dis-
ease are macrocephaly, head lag, progressive- severe mental 
retardation, and hypotonia in early life, which later changes 
to spasticity. Symptoms of CD appear in early infancy and 
typically progress very rapidly [12,13]. Structural analysis 
of ASPA revealed that the N-terminal domain adopted a 
protein fold similar to that of zinc-dependent hydrolases 
related to carboxypeptidase A. The catalytic site of ASPA 
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showed close structural similarity to those of carboxypepti-
dases despite only 10%–13% sequence identity between 
these proteins. About 100 residues in the C-terminal region 
of ASPA form a globular domain with a two-stranded 
β-sheet linker that wraps around the N-terminal domain. It 
was proposed that the deacetylation of NAA follows a car-
boxypeptidase-type mechanism for the hydrolysis of the 
amide bond of the substrate, based on the highly ordered 
binding of a potent inhibitor. However, there has been no 
report on the structure of any Michaelis complexes involv-
ing an ASPA and its substrate. The long channel leading to 
the active site is formed by the interface of the N- and 
C-terminal domains. The C-terminal domain is positioned 
such that it prevents productive binding of polypeptides in 
the active site [14]. Aspartoacylase had been a member of 
the carboxypeptidase-A family. In carboxypeptidase A, the 
active site is accessible to large substrates and a deep cavity 
in the protein accommodates the bulky C-terminal residue 
of polypeptides. In ASPA, the C-domain sterically hinders 
access to the active site from the same direction. This ex-
plains most loss-of-function aspartoacylase mutations asso-
ciated with Canavan’s disease [15]. Canavan’s disease may 
occur in any ethnic group, it had been more frequent among 
Ashkenazi Jews from eastern Poland, Lithuania, and west-
ern Russia, and among Saudi Arabians [16]. Identifying the 
disease-associated missense mutation had been a challeng-
ing task for genetic disorder research. Therefore, we at-
tempted to investigate the mutants of ASPA using a com-
putational protocol that we devised for the analysis of 
BRCA1, CDKN2A and SMAD4 [17–19]. The computa-
tional protocol was used to identify the detrimental mis-
sense mutations in ASPA protein and we proposed a model 
structure for the mutants. The substrate, NAA, was then 
docked with both the native protein and ASPA mutants to 
determine the binding effect and the nature of the flexibility 
in the binding pockets, which explained the decreased 
binding efficiency of these missense mutations. 

1  Materials and methods 

1.1  Datasets 

The protein sequence and variants (single amino acid poly-
morphisms/missense mutations/point mutations) of ASPA 
were obtained from the Swissprot database available at 
http://www.expasy.ch/sprot/. The subsection of each Swis-
sprot entry provides information on polymorphic variants, 
some of which polymorphic variants may be disease(s)- 
associated by causing defects in a given protein; most of 
them were nsSNPs (non-synonymous SNPs) in the gene 
sequence and SAPs (single amino acid polymorphisms) in 
the protein sequence [2022]. The 3D Cartesian coordinates 
of ASPA and its complex were obtained from Protein Data 
Bank with PDB IDs 2I3C and 2O4H [23] for in silico muta-
tion modeling and docking studies based on detrimental 

point mutants. 

1.2  Predicting stability changes caused by SAPs using 
support vector machine (I-Mutant 2.0) 

We used the program I-Mutant2.0 available at http://gpcr. 
biocomp.unibo.it/cgi/predictors/IMutant2.0/ I-Mutant2.0.cgi. 
I-Mutant2.0 is a support vector machine (SMV) based tool 
for the automatic prediction of protein stability changes 
caused by single point mutations. I-Mutant2.0 predictions 
were performed starting either from the protein structure or, 
more importantly, from the protein sequence [24]. This 
program was trained and tested on a dataset derived from 
ProTherm [25], which is the most comprehensive available 
database of thermodynamic experimental data of free ener-
gy changes of protein stability caused by mutations under 
different conditions. The output files show the predicted 
free energy change value or sign (∆∆G), which was calcu-
lated from the unfolding Gibbs free energy value of the 
mutated protein minus the unfolding Gibbs free energy val-
ue of the native protein (kcal mol1). Positive ∆∆G values 
meant that the mutated protein has higher stability and neg-
ative values indicate lower stability. 

1.3  Analysis of functional consequences of point muta-
tions by a sequence homology-based method (SIFT) 

We used the program SIFT (available at http://blocks.fhcrc. 
org/sift/SIFT.html) [26], specifically to detect deleterious 
single amino acid polymorphisms. SIFT is a sequence ho-
mology-based tool, which presumes that important amino 
acids will be conserved in a protein family; therefore, 
changes at well-conserved positions tend to be predicted as 
deleterious [27]. Queries are submitted in the form of pro-
tein sequences. SIFT takes a query sequence and uses mul-
tiple alignment information to predict tolerated and delete-
rious substitutions for every position of the query sequence. 
SIFT is a multistep procedure that, for given a protein se-
quence, (i) searches for similar sequences, (ii) chooses 
closely related sequences that may share similar function, 
(iii) obtains the multiple alignment of these chosen se-
quences, and (iv) calculates normalized probabilities for all 
possible substitutions at each position from the alignment. 
Substitutions at each position with normalized probabilities 
less than a chosen cutoff are predicted to be deleterious and 
those greater than or equal to the cutoff are predicted to be 
tolerated [26]. The cutoff value in SIFT program was toler-
ance index of 0.05. The higher the tolerance index, the less 
functional impact a particular amino acid substitution would 
be likely to have.  

1.4  Simulation for functional change in a point mutant 
by structure homology-based method (PolyPhen) 

Analyzing the damage caused by point mutations at the 
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structural level is considered very important to understand 
the functional activity of the protein. We used the server 
PolyPhen [28] which is available at http://coot.embl.de/ 
PolyPhen/ for this purpose. Input options for the PolyPhen 
server are protein sequence, SWALL database ID or acces-
sion number, together with the sequence position of two 
amino acid variants. The query is submitted in the form of a 
protein sequence with a mutational position and two amino 
acid variants. Sequence-based characterization of the sub-
stitution site, profile analysis of homologous sequences, and 
mapping of the substitution site to known protein 3D struc-
tures are the parameters taken into account by PolyPhen 
server to calculate the score. It calculates position-specific 
independent counts (PSIC) scores for each of the two vari-
ants and then computes the PSIC scores difference between 
them. The higher the PSIC score difference, the higher the 
functional impact a particular amino acid substitution would 
be likely to have. 

1.5  Modeling SAAP locations on protein structure to 
compute the RMSD 

Structure analysis was performed to evaluate the structural 
deviation between native proteins and mutant proteins by 
means of root mean square deviation (RMSD). We used the 
web resource Protein Data Bank [23] and the single amino 
acid polymorphism database (SAAPdb) [29] to identify the 
3D structure of ASPA (PDB ID: 2I3C). We also confirmed 
the mutation position and the mutation residue in PDB ID 
2I3C. The mutation was performed in silico using the 
SWISSPDB viewer, and NOMAD-Ref server performed the 
energy minimization for 3D structures [30]. This server uses 
Gromacs as the default force field for energy minimization, 
based on the methods of steepest descent, conjugate gradi-
ent, and limited-memory Broyden-Fletcher-Goldfarb- 
Shanno (L-BFGS) methods [31]. We used the conjugate 
gradient method to minimize the energy of the 3D structure 
of ASPA. To optimize the 3D structure of ASPA, we used 
the ifold server [32] for simulated annealing, which is based 
on discrete molecular dynamics and is one of the fastest 
strategies for simulating protein dynamics. This server effi-
ciently samples the vast conformational space of biomole-
cules in both length and time scales. Divergence of the mu-
tant structure from the native structure could be caused by 
substitutions, deletions and insertions [33] and the deviation 
between the two structures could alter the functional activity 
[34] with respect to binding efficiency of the inhibitors, 
which was evaluated by their RMSD values.  

1.6  Computation of total energy and stabilizing resi-
dues 

Total energy is one of the parameter that can indicate the 
stability between native and mutant modeled structures, and 
could be computed by the GROMOS96 force field that is 

embedded in the SWISSPDB viewer. Note that molecular 
mechanics or force field methods use classical type models 
to predict the energy of the molecule as a function of its 
conformation. This allows prediction of equilibrium geome-
tries, transition states and relative energies between con-
formers or between different molecules. Molecular me-
chanics expresses the total energy as a sum of Taylor series 
expansions for the stretches for every pair of bonded atoms, 
and adds additional potential energy terms contributed by 
bending, torsional energy, van der Walls energy, and elec-
trostatics [35]. Thus the total energy calculation could be 
considered as reliable parameter for understanding the sta-
bility of protein molecules with the aid of Force field 
(Gromos96 and Gromacs). Performing energy minimization 
and simulated annealing removes steric clashes and to ob-
tains the best stable conformation [36]. Finally, the total 
energy was computed for native and mutant ASPAs by the 
GROMOS force field. Moreover, the total energy of the 
native structure was considered as a reference point for 
comparing the total energy of mutant structures for stability 
analysis. In addition, identifying the stabilizing residues for 
both the native and mutant structures represented a signifi-
cant parameter for understanding their stability. Hence, we 
used the server SRide [37] to identify the stabilizing resi-
dues in the native and mutant protein models. Stabilizing 
residues were computed using parameters such as sur-
rounding hydrophobicity, long-range order, stabilization 
center, and conservation score [37]. 

1.7  Identification of binding sites and computation of 
atomic contact energy (ACE) between ASPA and its 
substrate 

To compute the ACE between ASPA and its substrate, we 
submitted the PDB ID: 2O4H, a complex of ASPA with 
N-phosphonomethyl-L-aspartate, into the ligand contact 
tool (LCT) program available at http://firedb.bioinfo.cnio. 
es/Php/Contact.php [39]. This server calculates contacts 
between the binding amino acid residues (active site) of 
ASPA with N-phosphonomethyl-L-aspartate with default 
parameters. N-phosphonomethyl-L-aspartate is a stable tet-
rahedral intermediate analog of NAA. Hence, the SMILES 
string was collected for the NAA molecule from PubChem, 
a database maintained at NCBI [38] and submitted it to 
CORINA (www.molecular-networks.com/online_demos/ 
corina_demo.html) to construct the 3D structure of the sub-
strate (NAA).  

We unbound the N-phosphonomethyl-L-aspartate from 
the ASPA of the PDB ID: 2O4H to perform point mutations 
on ASPA using the SWISSPDB viewer to perform energy 
minimization by NOMAD-Ref and simulated annealing by 
ifold. Finally, we used the program PatchDock for docking 
the native and mutant ASPA with NAA to compute the 
ACE by using additional option of binding residue parame-
ter. The underlying principle of this server is based on mo-
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lecular shape representation, surface patch matching plus 
filtering and scoring [40]. It finds docking transformations 
that yield good molecular shape complementarity. Such 
transformations, when applied, induce both wide interface 
areas and small amounts of steric clashes. A wide interface 
ensured that include several matched local features of the 
docked molecules that have complementary characteristics 
were included. The PatchDock algorithm divides the Con-
nolly dot surface representation [41] of the molecules into 
concave, convex and flat patches. Then, complementary 
patches are matched to generate candidate transformations. 
Each candidate transformation is further evaluated by a 
scoring function that considers both geometric fit and 
atomic desolvation energy [42,43]. Finally, an RMSD clus-
tering was applied to the candidate solutions to discard re-
dundant solutions. The main reason behind Patch Dock’s 
high efficiency is its fast transformational search, which is 
driven by local feature matching rather than by brute force 
searching of the six-dimensional transformation spaces. It 
further speeds up the computational processing time using 
advanced data structures and spatial pattern detection tech-
niques, such as geometric hashing and pose clustering. 

1.8  Exploring the flexibility of binding pocket by nor-
mal mode analysis 

A quantitative measure of the atomic motions in proteins 
could be obtained from the mean square fluctuations of the 
atoms relative to their average positions. These could be 
related to the B-factor [44,45]. Analysis of B-factors, there-
fore, could provide fresh insights into protein dynamics, the 
flexibility of amino acids, and protein stability [46]. Protein 
flexibility is important for protein function and for rational 
drug design [47]. In addition, the flexibility of certain amino 
acids in a protein is useful for various types of interactions. 
Moreover, the flexibility of amino acids in the binding 
pocket is considered a significant parameter for under-
standing the binding efficiency. In fact, loss of flexibility 
impairs the binding effect [48] and vice versa [18]. Hence, 
this can be analyzed by the B-factor, which is computed 
from the mean-square displacement R2 of the low-
est-frequency normal mode using the ElNémo server [49]. 

2  Results and discussion 

2.1  The SAP data set from Swissprot 

The ASPA protein and 30 variants, namely, I16T, H21P, 
E24G, G27R, A57T, D68A, D114E, D114Y, G123E, I143T, 
C152R, C152W, C152Y, R168C, R168H, P181T, P183H, 
V186F, M195R, Y231C, H244R, D249V, G274R, P280L, 
P280S, E285A, A287T, F295S, A305E and C310G investi-
gated in this work were retrieved from the Swissprot data-
base [20–22]. 

2.2  Identification of functional variants by I-mutant 
2.0  

Of the 30 variants, 28 variants were found to be less stable 
using the I-Mutant 2.0 server (Table 1) [24]. Among these 
28 variants, four variants showed a ∆∆G value <2.0. Fif-
teen variants showed a ∆∆G value <1.0 and nine variants 
showed a ∆∆G value >1.0 as depicted in Table 1. 

Of the 28 variants that showed a negative ∆∆G, four 
variants (E24G, D68A, D249V and E285A) changed their 
negatively charged amino acid to non-polar amino acid, 
four variants (I16T, A57T, I143T and A287T) changed 
from non-polar to polar and two variants (P280L and 
C310G) changed from polar to non-polar. Two variants 
(G27R and G274R) changed from non-polar to positively 
charged, two variants (G123E and A305E) changed from 
non-polar to negatively charged and two variants (C152R 
and P183H) changed from polar to positively charged. Two 
variants (H21P and R168C) changed from positive to polar, 
two variants, C152W and C152Y changed from polar to 
aromatic and two variants (P181T and P280S) retained its 
polar property. Two variants H244R and R168H retained its 
positively charged property followed by variants viz., 
V186F, F295S and D114Y which changed amino acids 
from non-polar to aromatic, aromatic to polar and aromatic 
to negative charged amino acid respectively. One more var-
iant D114E retained its negatively charged amino acid. In-
deed, by considering only amino acid substitution based on 
physico-chemical properties, we could not be able to iden-
tify the detrimental effect. Rather, by considering the se-
quence conservation along with the above said properties 
could have more advantages and reliable to find out the det-
rimental effect of missense mutations [48]. 

2.3  Deleterious single point mutants identified by the 
SIFT program  

The degree of conservation of a particular position in a pro-
tein was determined using sequence homology based tool 
SIFT [26]. The protein sequences of the 30 variants were 
submitted to SIFT to determine their tolerance indices. As 
the tolerance level increases, the functional influence of the 
amino acid substitution decreases and vice versa. 

Among the 30 variants, 27 variants were found to be del-
eterious, having tolerance index scores of 0.05 (Table 1). 
Among these 27 variants, 15 variants showed a very high 
deleterious tolerance index score of 0.00. Eight variants had 
a tolerance index score of 0.01, one variant G274R had a 
tolerance index score of 0.02, two variants had tolerance 
index scores of 0.03, and one had a tolerance index score of 
0.05 (Table 1). Interestingly, 25 deleterious variants identi-
fied by SIFT also were seen to be less stable by the 
I-Mutant 2.0 server.   
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Table 1  List of functionally significant mutants predicted to be by I-Mutant 2.0, SIFT and PolyPhena) 

AA change ∆∆G Tolerance index PSIC SD 
Population prevalence 

references 
I16T 1.8 0.01 2.062 [12,49] 

H21P 0.89 0 3.869 [51] 

E24G 1.29 0 2.931 [3] 

G27R 1.04 0 2.409 [12,49] 

A57T 0.65 0 2.147 [51] 

D68A 1.58 0 3.014 [3] 

D114E 1.1 0.06 2.12 [12] 

D114Y 0.97 0.01 3.128 [52] 

G123E 0.62 0 2.79 [12] 

I143T 3.26 0.01 1.788 [8] 

C152R 1.04 0.01 2.599 [6] 

C152W 1.1 0 2.842 [12,49] 

C152Y 0.44 0.01 2.575 [12] 

R168C 1.46 0.01 0.101 [12] 

R168H 1.42 0.05 1.869 [51] 

P181T 1.96 0 2.589 [51] 

P183H 1.94 0.06 1.104 [12] 

V186F 1.52 0.01 0.818 [49] 

M195R 0.00 0.03 0.999 [49] 

Y231C 0.53 0 2.61 [53,55] 

H244R 0.26 0 3.286 [3] 

D249V 0.07 0 2.363 [3,52] 

G274R 2.23 0.02 2.278 [50] 

P280L 3.64 0 3.321 [12] 

P280S 3.64 0 2.798 [12] 

E285A 1.07 0 2.43 [12,5355] 
A287T 1.33 0.01 1.000 [49] 

F295S 1.94 0 2.412 [5,49] 

A305E 0.2 0.03 1.246 [5,12,49,56] 

C310G 0.42 0.54 2.808 [12] 

a) Letters in bold indicate mutants predicted to be less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen respectively. 

 
2.4  Damaging single point mutations identified by the 
PolyPhen server  

Structural level alterations were determined by PolyPhen 
program. Protein sequence with mutational position and 
amino acid variants associated with the 30 single point mu-
tants were submitted to the PolyPhen server [28]. A PSIC 
score difference of 1.1 and above was considered to be 
damaging. It could be seen from Table 1 that, out of 30 var-
iants, 25 were considered to be damaging by PolyPhen. 
These variants also exhibited a PSIC score difference from 
1.246 to 3.869. It was to be noted that all the variants that 
were considered to be damaging by PolyPhen except for 
D114E and C310G were also identified as deleterious ac-
cording to the SIFT server. Variant Y231C, which was 
found to be deleterious by SIFT and damaging by PolyPhen, 
was found to be stable by I-Mutant2.0. More specifically, 
this particular mutant position (231) was considered delete-
rious for causing Canavan’s disease [55]. In Y231C, we 
have analyzed the mutation from Tyrosine to Cysteine at 
position 231; however, the Y231X mutant was considered 
to be detrimental by experimental studies [7], where X de-

notes termination (truncation or stop codon) [57]. As this 
mutant was not identified as deleterious by all three pro-
grams (SIFT, Polyphen and I-Mutant2.0), it was not con-
sidered for subsequent structural analysis.   

2.5  Rational consideration of detrimental point muta-
tions 

We rationally considered the 22 most potential detrimental 
point mutations (I16T, H21P, E24G, G27R, A57T, D68A, 
D114Y, G123E, I143T, C152R, C152W, C152Y, R168H, 
P181T, H244R, D249V, G274R, P280L, P280S, E285A, 
F295S and A305E) for further course of investigations be-
cause they were commonly found to be less stable, delete-
rious, and damaging by the I-Mutant2.0, SIFT and Poly-
Phen servers respectively [24,26,29]. We considered the 
statistical accuracy of these three programs, I-Mutant im-
proves the quality of the prediction of the free energy 
change caused by single point protein mutations by adopt-
ing a hypothesis of thermodynamic reversibility of the ex-
isting experimental data. The accuracy of prediction for 
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sequence and structure based values were 78% and 84% 
with correlation coefficient of 0.56 and 0.69, respectively 
[59]. SIFT correctly predicted 69% of the substitutions as-
sociated with the disease that affect protein function. Poly-
Phen-2 evaluates rare alleles at loci potentially involved in 
complex phenotypes, densely mapped regions identified by 
genome-wide association studies, and analyses natural se-
lection from sequence data, where even mildly deleterious 
alleles must be treated as damaging. PolyPhen-2 was re-
ported to achieve a rate of true positive predictions of 92% 
[5860]. To obtain precise and accurate measures of the 
detrimental effect of our variants, comprehensive parame-
ters of all these three programs could be more significant 
than individual tool parameters. Hence, we further investi-
gated these detrimental missense mutations by structural 
analysis.  

2.6  Computing the RMSD by modeling of mutant 
structures 

The available structure of ASPA is PDB ID 2I3C. The mu-
tational position and amino acid variants were mapped onto 
2I3C native structure. Mutations at a specified position were 
performed in silico by SWISSPDB viewer independently to 
obtain a modeled structure. NOMAD-Ref server [30] and 
ifold server [32] performed the energy minimizations and 
stimulated annealing respectively, for both native structure 
and the 22 mutant modeled structures.  

To determine the deviation between the native structure 
and the mutants, we superimposed the native structures with 
all 22 mutant modeled structures and calculated the RMSD. 
The higher the RMSD value, the more deviation there is 
between the native and mutant structure, which in turn 
changes the binding efficiency with the substrate because of 
deviation in the 3D space of the binding residues of ASPA. 
Table 2 shows the RMSD values for native structure with 
each mutant modeled structure. Table 2 shows that, two 
mutants, P280L and D249V exhibited a high RMSD >2.00 
Å, 16 mutants exhibited an RMSD >1.00 Å and four mu-

tants (C152Y, P181T, E285S and F295S) exhibited a low 
RMSD value <1.00 Å. Figure 1A shows the superimposed 
structure of the native protein with mutant P280L, which 
has an RMSD of 2.13 Å as an illustrative example.  

2.7  Application of GROMOS 96 and SRIDE for native 
structure and mutant modeled structures 

The total energy was calculated for both native and mutant 
structures. Table 2 shows that total energy of native struc-
ture was 18195.142 kcal mol1. whereas the 22 mutant 
structures all had slightly higher total energies compared 
with the native structure. Note that the higher the total en-
ergy, the lesser the stability and vice versa. We then used 
the SRide server [37] to identify the stabilizing residues of 
both the native structure and the mutant modeled structures 
(Table 2). The native structure has 20 stabilizing residues 
whereas on the other hand, the mutant structures have be-
tween 14 and 19 stabilizing residues. This clearly indicates 
that all 22 mutant structures were less stable than the native 
structure. We further evaluated the effect of these detri-
mental missense mutations by performing binding analysis 
between ASPA and NAA using docking studies. 

2.8  Binding efficiency of native and mutant ASPA with 
its substrate 

To determine the binding efficiency of ASPA with its sub-
strate we selected the PDB ID 2O4H model structure. The 
LCT program was used to calculate contacts between the 
binding residues of ASPA and N-phosphonomethyl-L-  
aspartate. Thirteen amino acids (Arg (63), Asp (68), Asn 
(70), Arg (71), Lys (103), Asp (104), Asn (117), Ile (127), 
Tyr (164), Arg (168), Glu (178), Lys (228) and Tyr (288)) 
act as binding residues in aspartoacylase with N-phospho- 
nomethyl-L-aspartate (Table 3). To determine the binding 
efficiency of NAA with both the native and mutants of 
ASPA, we unbound N-phosphonomethyl-L- aspartate from 
ASPA in PDB ID 2O4H. We again performed in silico   

 

 

Figure 1  A, Superimposed structure of the native protein (green) with mutant P280L (blue). B, Superimposed structure of the binding region of the native 
complex (native aspartoacylase (green) and NAA (pink)) with the mutant I143T complex (mutant I143T (blue) and NAA (red)). 
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Table 2  RMSD, total energy, stabilizing residues and ACE for the native protein and mutantsa) 

Variants 
RMSD 

(Å) 
Total energy 
(kcal mol1) 

No. of 
SR 

Stabilizing residues 
ACE 

(kcal mol1) 

Native 0 18595.142 
 

20 
Val14, Ala15, Ile16, Gly18, Gly19, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, 

Leu156, Gly176, Val222, Tyr223, Asp251, Pro280, Val281, Ala296, Thr298 
 

117.39 

I16T 1.61 17567.387 
 

18 
Val14, Ala15, Ile16, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, Gly176, 

Val222, Tyr223, Phe262, Pro280, Val281, Phe295, Ala296, Thr298 
 

52.24 

H21P 1.71 16806.029 
 

18 
Val14, Ala15, Ile16, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, 

Gly176, Val222, Tyr223, Phe262, Pro280, Val281, Ala296, Thr298 
 

142.78 

E24G 1.46 16841.162 
 

17 
Val14, Ala15, Ile16, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, Gly176, 

Val222, Tyr223, Phe262, Pro280, Val281, Ala296, Thr298 
 

38.61 

G27R 1.7 17043.043 
 

19 
Val14, Ala15, Ile16, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, 

Gly176, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

76.28 

A57T 1.49 16774.873 
 

19 
Val14, Ala15, Ile16, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, 

Gly176, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 141.41 

D68A 1.84 16824.373 
 

19 
Val14, Ala15, Ile16, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, 

Gly176, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 52.47 

D114Y 1.59 16710.324 
 

15 
Val14, Ala15, Asp110, Thr125, Leu126, Ile127, Leu156, Gly176, Val222, Tyr223, 

Phe262, Pro280, Val281, Ala296, Thr298 
 

36.2 

G123E 1.92 16968.52 
 

18 
Val14, Ala15, Ile16, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, Gly176, 

Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

48.2 

I143T 1.67 16930.9 
 

19 
Val14, Ala15, Ile16, Gly22, Glu80, Asp110, Thr125, Leu126, Ile127, Leu156, 
Gly176, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 

 
47.32 

C152R 1.55 17020.063 
 

17 
Val14, Ala15, Ile16, Gly22, Glu89, Asp110, Phe113, Gly193, Thr125, Leu126, 

Gly176, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

130.68 

C152W 1.74 16922.334 
 

17 
Val14, Ala15, Ile16, Glu89, Asp110, Phe113, Ile127, Leu156, Leu156, Gly176, 

Val222, Tyr223, Phe262, Pro280, Val281, Ala296, Thr298 
 

19.06 

C152Y 0.24 16922.334 17 
Val14, Ala15, Ile16, Glu89, Asp110, Phe113, Ile127, Leu156, Leu156, Gly176, 

Val222, Tyr223, Phe262, Pro280, Val281, Ala296, Thr298 
 

-68.28 

R168H 1.67 16333.039 
 

18 
Val14, Ala15, Ile16, Gly22, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, 

Gly176, Gly212, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

120.25 

P181T 0.24 12294.522 
 

18 
Val14, Ala15, Ile16, Gly22, Thr125, Leu126, Ile127, Leu156, Gly176, Gly212, 

Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 62.08 

H244R 1.53 16938.777 
 

17 
Val14, Ala15, Ile16, Asp110, Phe113, Thr125, Leu156, Leu156, Gly176, Val222, 

Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 26.92 

D249V 2.03 16709.76 
 

19 
Val14, Ala15, Ile16, Gly22, Glu89, Asp110, Phe113, Thr125, Leu126, Gly176, 

Gly212, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

19.89 

G274R 1.55 17226.846 
 

16 
Val14, Ala15, Asp110, Thr125, Leu126, Ile127, Leu156, Gly176, Val222, Tyr223, 

Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

83.8 

P280L 2.13 16871.318 
 

17 
Val14, Ala15, Ile16, Asp110, Phe113, Thr125, Leu126, Ile127, Leu156, Gly212, 

Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

141.78 

P280S 1.48 16926.385 
 

19 
Val14, Ala15, Ile16, Gly22, Glu89, Asp110, Phe113,  Ile127, Leu156, Gly176, 

Gly212, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 
 

128.88 

E285A 0.25 16713.943 
 

19 
Val14, Ala15, Ile16, Gly22, Glu89, Asp110, Phe113, Thr125, Leu126, Ile127, 
Gly212, Val222, Tyr223, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 

 
44.58 

F295S 0.23 12187.107 
 

19 
Val14, Ala15, Ile16, Gly22, Glu89, Asp110, Phe113, Thr125, Leu126, Ile127, 
Leu156, Gly176, Gly212, Asp251, Phe262, Pro280, Val281, Ala296, Thr298 

 
27.53 

A305E 1.55 16949.135 
 

14 
Val14, Ala15, Ile16, Asp110, Thr125, Leu126, Ile127, Val222, Tyr223, Phe262, 

Pro280, Val281, Ala296, Thr298 24.5 

a) RMSD, root mean square deviation; SR, stabilizing residues; the common stabilizing residues are shown in bold; ACE, atomic contact energy. 
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Table 3  Comparison of normalized mean square displacement of substrate binding amino acids of the native protein and mutantsa) 

Binding 
residues 
(active 
site) 

Normalized mean square displacement R2 

 Native I16T E24G G27R D68A D114Y G123E I143T C152W P181T H244R D249V G274R E285A F295S A305E 

Arg63 0.0158 *0.0119 *0.012 *0.0111 *0.0114 *0.0124 *0.0104 *0.0112 *0.0116 *0.0129 *0.0119 *0.0119 *0.0109 *0.0124 *0.0131 *0.0124 

Asp68 0.0149 *0.0118 *0.012 *0.0111 *0.0112 *0.012 *0.0109 *0.0111 *0.0115 *0.0122 *0.0117 *0.0116 *0.0107 *0.0123 0.0163 *0.0121 

Asn70 0.0114 *0.009 *0.0092 *0.0082 *0.0088 *0.0094 *0.0083 *0.0084 *0.0092 *0.0092 *0.009 *0.0088 *0.0084 *0.0094 *0.0093 *0.0092 

Arg71 0.0135 *0.0098 *0.0098 *0.0092 *0.0095 *0.0102 *0.009 *0.0092 *0.0098 *0.0104 *0.0098 *0.0097 *0.0093 *0.0102 *0.0105 *0.0092 

Lys103 0.0143 *0.0102 *0.011 *0.0088 *0.0105 *0.0091 *0.0086 *0.0091 *0.0103 *0.0118 *0.0095 *0.0097 *0.0086 *0.0103 *0.0118 *0.0109 

Asp104 0.0117 0.0121 0.013 *0.0104 0.0124 *0.0102 *0.01 *0.0112 0.0138 0.0156 *0.0116 *0.0116 *0.0102 0.0122 0.0156 0.0144 

Asn117 0.0091 *0.0088 *0.0088 *0.0077 *0.0088 *0.0086 *0.0078 *0.0083 *0.0086 *0.008 *0.0086 0.0091 *0.0081 *0.009 *0.0082 *0.009 

Ile127 0.0080 0.0082 0.0080 *0.0067 *0.0078 *0.0077 *0.0066 *0.0075 *0.007 *0.0069 *0.0076 *0.0079 *0.007 0.0082 *0.0007 *0.0078 

Tyr164 0.0146 *0.011 *0.0116 *0.0094 *0.0109 *0.011 *0.0097 *0.0101 *0.0108 *0.0121 *0.0107 *0.0107 *0.0094 *0.011 0.0152 *0.0109 

Arg168 0.0066 *0.0051 *0.0053 *0.004 *0.0052 *0.0051 *0.0043 *0.0044 *0.0051 *0.0053 *0.0048 *0.0047 *0.0043 *0.0049 0.0072 *0.0047 

Glu178 0.0083 *0.0079 *0.0078 *0.007 *0.0078 *0.0074 *0.0068 *0.0073 *0.0077 *0.0071 *0.0075 *0.0077 *0.0072 0.0083 *0.0072 *0.0078 

Lys228 0.0127 *0.0108 *0.0112 *0.0093 *0.0108 *0.0094 *0.0088 *0.0102 *0.0099 0.0131 *0.0102 *0.0108 *0.0089 *0.0108 0.0129 *0.0106 

Tyr288 0.0078 *0.0039 *0.0042 *0.0043 *0.0048 *0.0038 *0.0052 *0.0039 *0.0047 *0.0052 *0.0032 *0.0035 *0.0051 *0.004 *0.0050 *0.0042 

a) Bold numbers indicate amino acids with increased flexibility in the mutant compared with the native protein; * indicates amino acids with decreased 
flexibility in the mutants compared with the native protein. 
 
point mutation using the SWISSPDB viewer for the 22 var-
iants. Energy minimization was performed by NOMAD-Ref 
[30], followed by stimulated annealing by ifold [32] server 
to obtain optimized structures for both the native and mu-
tant proteins.  

Docking was performed using the PatchDock server be-
tween NAA and the native and mutant modeled structures 
of ASPA to determine the binding efficiency in the form of 
the ACE. The ACE between NAA and native ASPA was 
117.39 kcal mol1, whereas the ACE values of the mutants 
were between 19.06 and 142.78 kcal mol1. Six mutants 
(H21P, A57T, C152R, R168H, P280L and P280S) had 
higher binding affinity with NAA than the native ASPA, 
The remaining 15 mutants were found less binding affinity 
with NAA than native Aspartoacylase in terms of ACE. 
These data indicate that the increased binding effect of 
NAA with the six mutants (H21P, A57T, C152R, R168H, 
P280L and P280S) might be a result of the 3D conformation 
of NAA, which had a comfortable fit into the 3D space of 
the binding residues of these mutants as compared with the 
native. Table 2 shows that the most detrimental 15 point 
mutants, namely, I16T, E24G, G27R, D68A, D114Y, 
G123E, I143T, C152W, P181T, H244R, D249V, G274R, 
E285A, F295S and A305E had less binding affinity with 
NAA in terms of ACE and also had RMSD between ≥0.23 
Å and ≤2.13 Å. The mutant C152Y has a very low RMSD 
value and lower binding affinity compared to other mutants. 
Only mutants with higher binding affinity based on the 
ACE score was chosen for the further work. Thus this mu-
tant was not taken for further studies. Moreover, they were 
also commonly found to be less stable, deleterious and 
damaging by the I-mutant 2.0, SIFT and PolyPhen servers, 
respectively. Figure 1B shows the docked complex of both 

the native protein and the I143T mutant modeled structure 
with the substrate NAA as an illustrative example. These 15 
mutants were also confirmed as detrimental by experimental 
and clinical observations performed elsewhere. These stud-
ies did not use structural and binding analysis but rather 
used molecular genetic analysis, population prevalence and 
epidemiology survey. [6,7,51,52]. By contrast, we have 
reported 15 mutants were shown to be deleterious by struc-
tural analysis (total energy calculation, RMSD and Patch-
dock score). Hence, we submitted these 15 potential detri-
mental point mutations for normal mode analysis to under-
stand the flexibility of the active site region for the native 
and mutant structures.  

2.9  The majority of amino acids in active site show loss 
of flexibility 

To understand the cause of the lower substrate binding effi-
ciency of the 15 detrimental missense mutations, we used 
the program ElNémo [49] to compare the flexibility of 
amino acids that are involved in binding with NAA of both 
the native protein and the mutants. Table 3 depicts the flex-
ibility of the amino acids in the substrate binding pocket 
(active site) of both the native and mutant proteins by means 
of the normalized mean square displacement R2. These 
data were further sorted into three different categories of 
flexibility. One is where the R2 of the amino acids in the 
substrate binding pocket of the mutant was the same as that 
of the native protein (termed identical flexibility). The se-
cond category was where the R2 of the amino acids in the 
substrate binding pocket of the mutant was higher than that 
of the native protein (termed increased flexibility). The last 
category was where the R2 of the amino acids in the sub 
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Table 4  Substrate binding amino acids of mutants with different ranges of flexibility based on R2a) 

Mutants 
A B C 

R2 

I16T 11 2 0 

E24G 11 1 1 

G27R 13 0 0 

D68A 12 1 0 

D114Y 13 0 0 

G123E 13 0 0 

I143T 13 0 0 

C152W 12 1 0 

P181T 11 2 0 

H244R 13 0 0 

D249V 12 0 1 

G274R 13 0 0 

E285A 10 2 1 

F295S 8 5 0 

A305E 12 1 0 

a) ‘A’ denotes amino acids with decreased flexibility in the mutants compared with the native protein; ‘B’ denotes amino acids with increased flexibility 
in both the native protein and mutants; ‘C’ denotes amino acids with identical flexibility in both the native protein and the mutants. 

 
strate binding pocket of a mutant was lower than that of the 
native protein (termed decreased flexibility). From this 
analysis, we found that fewer substrate binding amino acids 
of these 15 mutants have identical flexibility than have in-
creased and decreased flexibility (Table 4). However, fewer 
substrate binding amino acids have increased flexibility 
than have decreased flexibility (Table 4). Thus the majority 
of the amino acids participating in substrate binding of these 
mutants lost their flexibility, leading to a loss of binding 
efficiency with the substrate.  

3  Conclusion  

Of the 30 variants that were retrieved from Swissprot, 28 
variants were found less stable by I-Mutant2.0, 27 variants 
were found to be deleterious by SIFT and 25 variants were 
considered damaging by PolyPhen. Twenty-two variants 
were selected as potentially detrimental point mutations 
because they were commonly found to be less stable, dele-
terious and damaging by the I-Mutant 2.0, SIFT and Poly-
Phen servers, respectively. The structures of these 22 vari-
ants were modeled and the RMSD between the mutants and 
native structures ranged from 0.23Å to 2.13Å. Docking 
analysis between NAA and the native and mutant modeled 
structures generated ACE scores between 142.78 and 
19.06. Finally, we concluded that the lower binding affin-
ity of 15 mutants (I16T, E24G, G27R, D68A, D114Y, 
G123E, I143T, C152W, P181T, H244R, D249V, G274R, 
E285A, F295S and A305E) with NAA compared with 
ASPA in terms of their ACE and RMSD scores identified 
them as deleterious mutations. Normalized mean square 

displacement R2 by normal mode analysis allows us to 
conclude that the majority of amino acids in the mutants 
bind to NAA (i.e., are in the active site) had decreased flex-
ibility which could be the cause for their decreased substrate 
binding affinity. Thus the results indicate that our approach 
successfully allowed us to (i) consider computationally a 
suitable protocol for missense mutation (point mutation/ 
single amino acid polymorphism) analysis before wet lab 
experimentation and (ii) provided an optimal path for fur-
ther clinical and experimental studies to characterize ASPA 
mutants in depth. 

The authors thank the management of Vellore Institute of Technology for 
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