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A dynamically changing road traffic model which occasionally suffers a disaster (traffic collision, wrecked vehicles, conflicting
weather conditions, spilled cargo, and hazardous matter) resulting in loss of all the vehicles (diverted to other routes) has been
discussed. Once the system gets repaired, it undergoes 𝑛 − 1 trial phases and finally reaches its full capacity phase n. We have
obtained the explicit steady state probabilities of the system via Matrix Geometric Method. Probability Generating Function is
used to evaluate the time spent by the system in each phase. Various performance measures like mean traffic, average waiting time
of vehicles, and fraction of vehicles lost are calculated. Some special cases have also been discussed.

1. Introduction

Qualitative behavior of Markovian Arrival Process (MAP)
and its mathematical descriptions are discussed in Gross [1]
and Neuts [2]. Queueing models with disaster are seen in
call center applications, computer networks, or telecommu-
nication applications which depend upon satellites [3–10],
manufacturing process, and all means of transportations. In
this paper, we have considered a system which undergoes
a random disastrous failure, resulting in all vehicles to
be cleared out of the system (directed to other roadways)
and thus lost. The system then undergoes a repair phase
0 having duration which follows exponential distribution.
Being repaired, the system will move to its full capacity after
succeeding all its trial phases. System may fail at any of these
trial phases with probability 1 − 𝑞𝑖 and go to repair phase 0
or succeed with probability 𝑞𝑖 and move to its next phase.
Once it has succeeded all its trial phases and reached its full
capacity, it may continue in that phase until a disaster occurs
and goes to phase 0. In 1973, Yechiali [9] has introduced the
generalization of the abovementioned model but concluded
that analytical solution of such a model is not possible. Paz
and Yechiali [4] have considered a similar type of systemwith

n phases, where the system after repair is allowed to go to
any one of its other phases and stay there itself until a failure
occurs. The transition between the operating phases is not
allowed. But in many practical situations whenever failure
occurs the system is repaired and it undergoes many trial
phases to reach its full capacity. Taking this situation inmind,
the present model has been formulated. Sophia and Praba [5]
introduced one trial phase withmany operating phases. Here,
we take repair phase 0, 𝑛 − 1 trial phases, and only one full
capacity phase n which is more relevant to road traffic and
metro models. Transient solution of the model proposed by
Paz and Yechiali [4] was solved by Udayabaskaran and Dora
Pravina [7].M/G/1 queue inmultiphase randomenvironment
with disasters was analyzed by Jiang et al. [6]. It has been well
studied that it is a new approach of dynamically changing
road traffic problems and metro projects.

The rest of the paper has been organized as follows. The
mathematical model of two-dimensional random processes
is formulated in Section 2. Section 3 gives the probabilities
of the system in steady state which is derived explicitly using
Matrix Geometric Method. The time spent by the system in
each phase is calculated in Section 4 by using Probability
Generating Function method. Various other performance
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measures are described in Section 5. In the mathematical
model discussed above, the vehicles are allowed to arrive
when the system is down. A special case when the vehicles are
not allowed when the system is in repair phase is considered
and the validity of the model is discussed in Section 6. The
results obtained by both the methods are proved to be the
same by using numerical examples in Section 7. Section 8
gives the conclusion and finally the references are listed.

2. The Mathematical Model

2.1. Model. Consider a M/M/1 type queue with repair phase
0, 𝑛 − 1 trial phases, and only one full capacity phase n in
an underlying random environment. This special random
environment is an 𝑛+1-dimensional continuous timeMarkov
chain, with phases 𝑖 = 0, 1, 2, . . . , (𝑛 − 1), 𝑛 governed by the
probability transition matrix given below. A similar type of
continuous time Markov chain with n phases is discussed in
[4, 5, 7]:

𝑄 =((((((
(

0 1 0 0 01 − 𝑞1 0 𝑞1 0 01 − 𝑞2 0 0 𝑞2 ⋅ ⋅ ⋅ 0... ... ... ... d
...1 − 𝑞𝑛−1 0 0 0 ⋅ ⋅ ⋅ 𝑞𝑛−11 0 0 0 0
))))))
)

. (1)

In the repair phase 𝑖 = 0, the arrival of the customers is
continuous at the rate of 𝜆0 but service is not rendered.When
in phase 𝑖 ≥ 1, the system behaves as a𝑀(𝜆𝑖)/𝑀(𝜇𝑖)/1 queue,
with arrival rate (𝜆𝑖) and service rate (𝜇𝑖) which follows
Poisson distribution. The time spent by the system in phase i
has mean 1/𝜂𝑖 which is exponentially distributed.The system
moves to trial phase 1 once the repair is completed. After
residing in phase 1 for 1/𝜂1 time, it moves to phase 2 with
probability 𝑞1. In case of any disaster in phase 1, it goes to
phase 0 with probability 1 − 𝑞1. Thus, it travels from phase
1 through phases 2, 3, . . . , (𝑛 − 1) provided no disaster takes
place in any of these phases and finally reaches phase n. In
case a disaster happens in any of these phases, the system goes
to phase 0 and restarts its switch over process. The system
resides in phase n until a disaster happens and sends it to
phase 0. Such disasters are studied in [3, 8].

2.2. Balance Equations. The stochastic process {𝑋(𝑡), 𝑌(𝑡)}
under consideration is two-dimensional and describes the
system at any time t as follows. System state is denoted by𝑋(𝑡)
[0: repair phase; 1, 2, 3, . . . , (𝑛−1): trial phases; n:full capacity
phase] and 𝑌(𝑡) denotes the number of customers in the
system [0, 1, 2, 3, . . .].Thebivariate process {𝑋(𝑡), 𝑌(𝑡); 𝑡 ≥ 0}
is a Markov chain with state space 𝑆 = {0, 1, 2, . . . , 𝑛} × 𝑍+,
where 𝑍+ = {0, 1, 2, . . .}.

Let 𝑃𝑖,𝑗 = lim𝑡→∞𝑃[𝑋(𝑡) = 𝑖, 𝑌(𝑡) = 𝑗] represent the
joint steady state probability of the system in server state 𝑖

and number of customers 𝑗. Then, the differential difference
equation of the system is given by𝑃󸀠00 (𝑡) = − (𝜆0 + 𝜂0) 𝑃00 (𝑡) + 𝑛∑

𝑗=1
𝜂𝑗 (1 − 𝑞𝑗) ∞∑

𝑖=0
𝑃𝑗,𝑖 (𝑡)

when 𝑖 = 0; 𝑚 = 0,𝑃󸀠0𝑚 (𝑡) = − (𝜆0 + 𝜂0) 𝑃0𝑚 (𝑡) + 𝜆0𝑃0,𝑚−1 (𝑡)
when 𝑖 = 0; 𝑚 ≥ 1,𝑃󸀠10 (𝑡) = − (𝜆1 + 𝜂1) 𝑃10 (𝑡) + 𝜂0𝑃00 (𝑡) + 𝜇1𝑃11 (𝑡)
when 𝑖 = 1; 𝑚 = 0,𝑃󸀠1𝑚 (𝑡) = − (𝜆1 + 𝜇1 + 𝜂1) 𝑃1𝑚 (𝑡) + 𝜆1𝑃1,𝑚−1 (𝑡)+ 𝜂0𝑃0𝑚 (𝑡) + 𝜇1𝑃1,𝑚+1 (𝑡)
when 𝑖 = 1; 𝑚 ≥ 1,𝑃󸀠𝑖0 (𝑡) = − (𝜆𝑖 + 𝜂𝑖) 𝑃𝑖0 (𝑡) + 𝜂𝑖−1𝑞𝑖−1𝑃𝑖−1,0 (𝑡)+ 𝜇𝑖𝑃𝑖1 (𝑡) when 1 < 𝑖 ≤ 𝑛; 𝑚 = 0,𝑃󸀠𝑖𝑚 (𝑡) = − (𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) 𝑃𝑖𝑚 (𝑡) + 𝜆𝑖𝑃𝑖,𝑚−1 (𝑡)+ 𝜂𝑖−1𝑞𝑖−1𝑃𝑖−1,𝑚 (𝑡) + 𝜇𝑖𝑃𝑖,𝑚+1 (𝑡)
when 𝑖 = 1; 𝑚 ≥ 1.

(2)

3. Matrix Geometric Method

3.1. Level Dependent QBD Process. The steady state solution
of the abovementioned model can be solved by using Neuts
[2] approach. Matrix Geometric Method is used to calculate
steady state probabilities of Markovian arrivals [11]. The
level dependent QBD bivariate process {𝑋(𝑡), 𝑌(𝑡)} with
infinitesimal generator Q is given as follows:

𝑄 = [[[[[[[[[
𝐵 + 𝐴2 + 𝐴1 𝐴0 𝑂 𝑂 𝑂 ⋅ ⋅ ⋅𝐵 + 𝐴2 𝐴1 𝐴0 𝑂 𝑂 ⋅ ⋅ ⋅𝐵 𝐴2 𝐴1 𝐴0 𝑂 ⋅ ⋅ ⋅𝐵 𝑂 𝐴2 𝐴1 𝐴0 ⋅ ⋅ ⋅... ... ... ... ... d

]]]]]]]]]
, (3)

where𝑂 is the zero matrices with appropriate dimension and𝐴 𝑖 and 𝐵 are square matrices of order𝑁+ 1 given as follows:

𝐵 =
[[[[[[[[[[[[[[[

0 0 0 0 ⋅ ⋅ ⋅ 0𝜂1 (1 − 𝑞1) 0 0 0 ⋅ ⋅ ⋅ 0𝜂2 (1 − 𝑞2) 0 0 0 ⋅ ⋅ ⋅ 0𝜂3 (1 − 𝑞3) 0 0 0 ⋅ ⋅ ⋅ 0... ... ... ... d 0𝜂𝑛−1 (1 − 𝑞𝑛−1) 0 0 0 ⋅ ⋅ ⋅ 0𝜂𝑛 0 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]]]]]
,



Mathematical Problems in Engineering 3𝐴0 = diag (𝜆0, 𝜆1, 𝜆2, . . . , 𝜆𝑛) ,

𝐴1 =
[[[[[[[[[[[[[[[[[[[[

𝑎 𝑏𝜇 𝑐1 𝑑1𝜇 𝑐2 𝑑2𝜇 𝑐3 𝑑3𝜇 𝑐4 𝑑4𝜇 𝑐5
d 𝑐𝑛−1 𝑑𝑛−1𝜇 𝑐𝑛

]]]]]]]]]]]]]]]]]]]]
,

(4)

where 𝑎 = −𝜆0 −𝜂0, 𝑏 = 𝜂0, 𝑐𝑛 = −𝜆𝑛 −𝜇𝑛 −𝜂𝑛, and 𝑑𝑛 = 𝜂𝑛𝑞𝑛:𝐴2 = diag (0, 𝜇1, 𝜇2, . . . , 𝜇𝑛) . (5)

Lemma 1. The necessary and su�cient condition for the
process𝑋(𝑡) to be positive recurrent is 𝜆𝑛/𝜇𝑛 < 1.

The following system of equations has the stationary
distribution solution 𝜋: 𝜋𝑄 = 𝑂,𝜋𝑒 = 1. (6)

Here, vector e represents a column vector with entries as ones
and vector O represents a row vector with an appropriate
dimension whose entries are zeros.

Let 𝜋 = 𝜋0, 𝜋1, 𝜋2, 𝜋3, . . . with𝜋0 = [𝑃00 𝑃10 𝑃20 ⋅ ⋅ ⋅ 𝑃𝑛0] ,𝜋𝑘 = [𝑃0𝑘 𝑃1𝑘 𝑃2𝑘 ⋅ ⋅ ⋅ 𝑃𝑛𝑘] , (7)

where 𝑘 = 1, 2, . . . ,∞. Then, 𝜋𝑚 = 𝜋0𝑅𝑚 𝑚 ≥ 1, (8)𝜋0 [(𝐼 − 𝑅)−1 𝐵 + 𝐴1 + 𝐴2 + 𝑅𝐴2] = 0. (9)

Implying that

∞∑
𝑚=0
𝜋𝑚𝑒 = 𝜋0 ( ∞∑

𝑚=0
𝑅𝑚) 𝑒 = 𝜋0 ((𝐼 − 𝑅)−1) 𝑒 = 1, (10)

here, 𝑅 is a square matrix of order 𝑛 + 1 and is the solution of
the following equation:𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0. (11)

3.2. Evaluation of 𝑅Matrix. As the matrices 𝐴2, 𝐴1, and 𝐴0
have upper diagonal form, it follows from (11) that matrix 𝑅
will also have the upper diagonal structure as follows:

𝑅 = [[[[[[[[[
𝑟00 𝑟01 𝑟02 𝑟0𝑛0 𝑟11 𝑟12 ⋅ ⋅ ⋅ 𝑟1𝑛0 0 𝑟22 𝑟2𝑛... d

...0 0 0 ⋅ ⋅ ⋅ 𝑟𝑛𝑛
]]]]]]]]]
. (12)

Using (11) and (12), the nonzero entries of 𝑅 are given by

𝑟00 = 𝜆0𝜆0 + 𝜂0 ,
𝑟𝑖𝑖 = (𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) − √(𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖)2 − 4𝜇𝑖𝜆𝑖2𝜇𝑖

for 𝑖 = 1, 2, 3, . . . , 𝑛,𝑟01 = 𝜂0𝑟00(𝜆1 + 𝜇1 + 𝜂1) − 𝜇1𝑟00 − 𝜇1𝑟11 ,𝑟𝑖,𝑖+1 = 𝜂𝑖𝑞𝑖𝑟𝑖𝑖(𝜆𝑖+1 + 𝜇𝑖+1 + 𝜂𝑖+1) − 𝜇𝑖+1 (𝑟𝑖𝑖 + 𝑟𝑖+1,𝑖+1)𝑖 = 1, 2, 3, . . . , 𝑛 − 1,
𝑟𝑖,𝑖+𝑗 = 𝜂𝑖+𝑗−1𝑞𝑖+𝑗−1𝑟𝑖,𝑖+𝑗−1 + 𝜇𝑖+𝑗 {∑𝑖+𝑗−1𝑘=𝑖+1 𝑟𝑖𝑘𝑟𝑘,𝑖+𝑗}(𝜆𝑖+𝑗 + 𝜇𝑖+𝑗 + 𝜂𝑖+𝑗) − 𝜇𝑖+𝑗 (𝑟𝑖𝑖 + 𝑟𝑖+𝑗,𝑖+𝑗)𝑗 = 2, 3, 4, . . . , 𝑛, 𝑖 = 0, 1, 2, . . . , 𝑛 − 𝑗.

(13)

3.3. Calculation of 𝜋𝑖. Using matrix 𝑅 in (9) and normalizing

the obtained vector 𝑔0 with 𝑔0((𝐼 − 𝑅)−1)𝑒 = 𝛼, we get 𝜋0.
Using (8), the remaining 𝜋𝑖 𝑖 ≥ 1 can be calculated. Thus, the
entire system is defined.

4. Probability Generating Function

Under steady state conditions, (2) becomes

(𝜆0 + 𝜂0) 𝑃00 = 𝑛∑
𝑗=1
𝜂𝑗 (1 − 𝑞𝑗) ∞∑

𝑖=0
𝑃𝑗,𝑖

= 𝑛∑
𝑗=1
𝜂𝑗 (1 − 𝑞𝑗) 𝑃𝑗⋅

when 𝑖 = 0; 𝑚 = 0,
(14)

(𝜆0 + 𝜂0) 𝑃0𝑚 = 𝜆0𝑃0,𝑚−1 when 𝑖 = 0; 𝑚 ≥ 1, (15)(𝜆1 + 𝜂1) 𝑃10 = 𝜂0𝑃00 (𝑡) + 𝜇1𝑃11
when 𝑖 = 1; 𝑚 = 0, (16)(𝜆1 + 𝜇1 + 𝜂1) 𝑃1𝑚 = 𝜆1𝑃1,𝑚−1 + 𝜂0𝑃0𝑚 (𝑡) + 𝜇1𝑃1,𝑚+1
when 𝑖 = 1; 𝑚 ≥ 1, (17)(𝜆𝑖 + 𝜂𝑖) 𝑃𝑖0 = 𝜂𝑖−1𝑞𝑖−1𝑃𝑖−1,0 + 𝜇𝑖𝑃𝑖1

when 1 < 𝑖 ≤ 𝑛; 𝑚 = 0, (18)(𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) 𝑃𝑖𝑚 = 𝜆𝑖𝑃𝑖,𝑚−1 + 𝜂𝑖−1𝑞𝑖−1𝑃𝑖−1,𝑚+ 𝜇𝑖𝑃𝑖,𝑚+1
when 𝑖 = 1; 𝑚 ≥ 1. (19)
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SubstitutingQ of this model into 𝑞𝑖𝑗 of Yechiali [9], the above
mentioned steady state equations coincide with steady state
equations of Yechiali [9].

Consider Probability Generating Functions defined as
follows [see [1]]:𝐺𝑖 (𝑧) = ∞∑

𝑚=0
𝑃𝑖𝑚𝑧𝑚 for 𝑖 = 0, 1, 2, . . . , 𝑛. (20)

Then, 𝐺𝑖 (1) = ∞∑
𝑚=0
𝑃𝑖𝑚 = 𝑃𝑖⋅. (21)

Also,

𝑛∑
𝑖=1
𝐺𝑖 (1) = 1. (22)

4.1. Proposition. The probability of zero customers in phase 0
is given by𝑃00 = (𝜆0 + 𝜂0)−1 [ 1𝜂0 + 1𝜂1 + 𝑛∑𝑖=2∏𝑖−1𝑚=1𝑞𝑚𝜂𝑖 ]−1 . (23)

Proof. Using (20) in (15), we prove that(𝜆0 + 𝜂0 − 𝑧𝜆0) 𝐺0 (𝑧) = (𝜆0 + 𝜂0) 𝑃00. (24)

Putting 𝑧 = 1 in (24), we get 𝑃0⋅ = ((𝜆0 + 𝜂0)/𝜂0)𝑃00.
Using (20) in (17), we prove that(𝜆1 + 𝜇1 + 𝜂1 − 𝑧𝜆1 − 𝜇1𝑧 )𝐺1 (𝑧)= 𝜂0𝐺0 (𝑧) − 𝜇1𝑃10 [1𝑧 − 1] . (25)

Putting 𝑧 = 1 in (25), we get 𝑃1⋅ = ((𝜆0 + 𝜂0)/𝜂1)𝑃00.
Using (20) in (19), we prove that(𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖 − 𝑧𝜆𝑖 − 𝜇𝑖𝑧 )𝐺𝑖 (𝑧)= 𝜂𝑖−1𝑞𝑖−1𝐺𝑖−1 (𝑧) − 𝜇𝑖𝑃𝑖0 [1𝑧 − 1] 𝑖 = 2, 3, . . . , 𝑛. (26)

Putting 𝑧 = 1 in (26), we get𝑃𝑖⋅ = 𝜂𝑖−1𝑞𝑖−1𝜂𝑖 𝑃(𝑖−1)⋅, 𝑖 = 2, 3, . . . , 𝑛. (27)

Using recursively the abovementioned equations, we
prove that 𝑃𝑖⋅ = 𝜆0 + 𝜂0𝜂𝑖 𝑖−1∏𝑚=1𝑞𝑚𝑃00. (28)

Using these results in (22), we prove that𝑃00 = (𝜆0 + 𝜂0)−1 [ 1𝜂0 + 1𝜂1 + 𝑛∑𝑖=2(∏𝑖−1𝑚=1𝑞𝑚𝜂𝑖 )]−1 . (29)

4.2. To Find the Probability That the System Resides in Phase0. With the direct usage of (15) recursively, we get𝑃0𝑚 = ( 𝜆0𝜆0 + 𝜂0)𝑚 𝑃00 𝑚 ≥ 1. (30)

Hence, 𝑃0𝑖 is found for 𝑖 = 1, 2, . . . ,∞.
Thus, the proportion of time in which the system resides

in phase 0 is = 𝑃0⋅ = ((𝜆0 + 𝜂0)/𝜂0)𝑃00.
These probabilities coincide with Yechiali [9].

4.3. To Find the ProbabilityThat the System Resides in Phase 𝑖.
From (24), we get 𝐺0(𝑧) = ((𝜆0 + 𝜂0)/(𝜆0 + 𝜂0 − 𝑧𝜆0))𝑃00.

Rearranging (25) and (26), we get𝐺1 (𝑧) [−𝜆1𝑧2 + (𝜆1 + 𝜇1 + 𝜂1) 𝑧 − 𝜇1]= (𝑧 − 1) 𝜇1𝑃10 + 𝜂0𝑧𝐺0 (𝑧) ,𝐺𝑖 (𝑧) [−𝜆𝑖𝑧2 + (𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) 𝑧 − 𝜇𝑖]= (𝑧 − 1) 𝜇𝑖𝑃𝑖0 + 𝜂𝑖−1𝑞𝑖−1𝑧𝐺𝑖−1 (𝑧) .
(31)

Define 𝜙0 (𝑧) = 𝜆0 (1 − 𝑧) + 𝜂0,𝜙𝑖 (𝑧) = −𝜆𝑖𝑧2 + (𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) 𝑧 − 𝜇𝑖 𝑖 ≥ 1. (32)

Each quadratic polynomial 𝜙𝑖(𝑧) 𝑖 ≥ 1 has two roots that are
real. The only root of 𝜙𝑖(𝑧) which lies in the interval (0, 1) is
denoted by 𝑧𝑖. This result holds because𝜙𝑖 (0) = −𝜇𝑖 < 0,𝜙𝑖 (1) = 𝜂𝑖 > 0,𝜙𝑖 (±∞) < 0. (33)

The root 𝑧𝑖 ∈ (0, 1) is given by

𝑧𝑖 = (𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖) − √(𝜆𝑖 + 𝜇𝑖 + 𝜂𝑖)2 − 4𝜆𝑖𝜇𝑖2𝜆𝑖 . (34)

Here, 𝑧𝑖 represents the LST (Laplace Stieltjes Transform),
evaluated at point 𝜂𝑖, of the busy period in a M/M/1 queue
with arrival rate 𝜆𝑖 and service rate 𝜇𝑖.

Substituting 𝑧 = 𝑧1 into (31), we can easily prove that𝑃10 = 𝜂0𝜇1 (𝜆0 + 𝜂0) 𝑧1(1 − 𝑧1)2 𝜆0 + (1 − 𝑧1) 𝜂0𝑃00. (35)

Thus, each PGF𝐺𝑖(𝑧) is completely determined by the above-
mentioned equations. Any probability 𝑃𝑖𝑚 can be calculated
by differentiating 𝐺𝑖(𝑧) and substituting 𝑧 = 0.

The probability that the system resides in phase 1 is𝑃1⋅ = (𝜂0𝜂1)𝑃0⋅. (36)

The probability that the system resides in phase 𝑖 is𝑃𝑖⋅ = (𝜂𝑖−1𝑞𝑖−1𝜂𝑖 )𝑃(𝑖−1)⋅, 2 ≤ 𝑖 ≤ 𝑛. (37)
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5. Performance Measures

As 𝐺𝑖(𝑧) = ∑∞𝑚=0 𝑃𝑖𝑚𝑧𝑚, 𝐺󸀠𝑖 (𝑧) = ∑∞𝑚=1𝑚𝑃𝑖𝑚𝑧𝑚−1.
The number of customers in 𝑖th phase = 𝐿 𝑖 = 𝐺󸀠𝑖 (1) =∑∞𝑚=1𝑚𝑃𝑖𝑚.
Thus,𝐿0 = 𝜆0𝜆0 + 𝜂0𝑃00,𝐿1 = 𝜂0𝜂1 𝐿0 + 𝜂0 [𝜆1 − 𝜇1]𝜂12 𝑃0⋅ + 𝜇1𝜂1 𝑃10,𝐿 𝑖 = 𝜂𝑖−1𝑞𝑖−1𝜂𝑖 𝐿 𝑖−1 + 𝜂𝑖−1𝑞𝑖−1 [𝜆𝑖 − 𝜇𝑖]𝜂𝑖2 𝑃𝑖⋅ + 𝜇𝑖𝜂𝑖 𝑃𝑖0𝑖 = 2, 3, 4, . . . , 𝑛.

(38)

The number of customers in the system at any time is =∑𝑛𝑖=0 𝐿 𝑖.
LetC be the number of customers cleared from the system

per unit time. Then, 𝐸(𝐶) = ∑𝑛𝑖=1 𝜂𝑖𝐿 𝑖.
The fraction of customers receiving full service is there-

fore 1 − 𝐸(𝐶)/𝜆.
6. Special Cases

6.1. Validation of the Model [No Trial Phase]. When there
are no trials in between (ie) after repair phase 0, the system
directly moves to the full capacity phase; the general model
introduced here coincides with Yechiali [10] with 𝜉 = 0.
Assuming 𝑛 = 1, the system goes to full capacity phase 𝑞1 = 1
directly. Also all the results obtained become𝑃00 = 1(𝜆0 + 𝜂0) 𝜂0𝜂1(𝜂1 + 𝜂0) ,𝑃0⋅ = 𝜂1𝜂1 + 𝜂0 ,𝑃1⋅ = 𝜂0𝜂1 + 𝜂0 ,𝑃10 = 𝜂02𝜇1 𝑧1[(1 − 𝑧1)2 𝜆0 + (1 − 𝑧1) 𝜂0]𝑃0⋅,

(39)

where 𝑧1 is the root of 𝜙1(𝑧) as discussed earlier.

6.2. Arrival StopsWhen System IsDown. When customers are
not allowed during repair phase 0, we have𝜆0 = 0,𝐿0 = 0,𝑃0⋅ = 𝑃00,𝑃10 = 𝜂0𝜇1 𝑧1(1 − 𝑧1)𝑃00,𝐿1 = [𝜂0 [𝜆1 − 𝜇1]𝜂12 + 𝜇1𝜂1 𝜂0𝜇1 𝑧1(1 − 𝑧1)] 𝑃00.

(40)

7. Numerical Example

Consider a traffic model which on completion possesses one
repair phase 0, two trial phases 1, 2, and one full capacity
phase 3 with the following data.

Case 1. Consider𝜆0 = 2,𝜆1 = 2,𝜆2 = 2,𝜆3 = 2,𝜇0 = 0,𝜇1 = 5,𝜇2 = 7,𝜇3 = 9,𝜂0 = 2,𝜂1 = 4,𝜂2 = 4,𝜂3 = 4,
𝑄 =( 0 1 0 00.75 0 0.25 00.5 0 0 0.51 0 0 0 ).

(41)

Case 2 (sensitivity when 𝜆0 = 0).𝜆0 = 0,𝜆1 = 2,𝜆2 = 2,𝜆3 = 2,𝜇0 = 0,𝜇1 = 5,𝜇2 = 7,𝜇3 = 9,𝜂0 = 2,𝜂1 = 4,𝜂2 = 4,𝜂3 = 4,
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Table 1: Steady state probabilities.

Case 1 Case 2 [sensitivity analysis]𝜋0 0.296 0.123 0.027 0.010 0.592 0.190 0.033 0.012𝜋1 0.148 0.078 0.020 0.009 0.000 0.068 0.020 0.009𝜋2 0.074 0.045 0.013 0.006 0.000 0.024 0.011 0.006𝜋3 0.037 0.024 0.008 0.004 0.000 0.009 0.005 0.004𝜋4 0.018 0.013 0.005 0.003 0.000 0.003 0.003 0.002𝜋5 0.009 0.007 0.003 0.002 0.000 0.001 0.001 0.001𝜋6 0.005 0.003 0.001 0.001 0.000 0.000 0.001 0.001𝜋7 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000𝜋8 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000𝜋9 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000𝜋10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2: The probability that the system resides in phase 𝑖.
Case 1 Case 2 [sensitivity analysis]

Matrix Geometric Method
Probability Generating

Function method
Matrix Geometric Method

Probability Generating
Function method𝑃00 0.295605 0.296296 0.591879 0.592593𝑃0⋅ 0.590921 0.592593 0.591879 0.592593𝑃1⋅ 0.29603 0.296296 0.295917 0.296296𝑃2⋅ 0.078151 0.074074 0.073983 0.074074𝑃3⋅ 0.037353 0.037037 0.036704 0.037037

Note. We see that probabilities calculated by both methods remain the same for both the cases and 𝑃0⋅ = 𝑃00 for Case 2.

𝑄 =( 0 1 0 00.75 0 0.25 00.5 0 0 0.51 0 0 0 ).
(42)

The various steady state probabilities of both the cases are
listed in Table 1 and the corresponding graph showing their
comparison is given as Figure 1.

The probability that the system resides in each phase is
calculated by bothMatrix GeometricMethod and Probability
Generating Function method and listed in Table 2. It is
observed that the probabilities coincide by both the methods
proving the validity of our analytical results.

8. Conclusions

We have modeled a dynamically changing traffic model
which undergoes disaster as aM/M/1 queuewith repair phase
0, trial phases 1, 2, 3, . . . , (𝑛 − 1), and full capacity phase n.
Steady state probabilities and other performance measures
are calculated by two methods: Matrix Geometric Method
and Probability Generating Function method. Numerical
illustrations prove that the results obtained by both methods
are one and the same. Also, validity of the model and
sensitivity analysis are discussed as special cases.

Since the abovementioned model is more suitable for
metro trains, traffic networks, and so forth, the transient

0

0.2

0.4

0.6

Case 1

Case 2

Case 1

Figure 1: Comparison of steady state probabilities of two cases.

solution will be more suitable and hence it can be considered
for future research. The abovementioned model can be
treated as M/G/1 queue and its steady state solution can be
found.
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