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a b s t r a c t

The purpose of this paper is to establish a coupled coincidence point for a pair of commuting
mappings in partially ordered complete metric spaces. We also present a result on the
existence and uniqueness of coupled common fixed points. An example is given to support
the usability of our results.
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1. Introduction and preliminaries

The well-known Banach contraction theorem [1] plays a major role in solving problems in many branches of pure and
applied mathematics. A number of generalizations of the Banach contraction theorem were obtained in various directions.
Many authors generalized the Banach contraction theorem in orderedmetric spaces. The first result in orderedmetric spaces
was given by Ran and Reurings [2, Theorem 2.1] who presented its applications to the linear and nonlinear metric space.
Subsequently, Nieto and Rodŕiguez–López [3] extended the result of Ran and Reurings [2] for nondecreasing mappings
and applied to obtain a unique solution for a first order ordinary differential equation with periodic boundary conditions.
Agarwal et al. [4] studied generalized contractions in partially ordered metric spaces. Bhaskar and Lakshmikantham [5]
introduced the notion of a coupled fixed point and proved some interesting coupled fixed point theorems for mappings
satisfying amixedmonotone property.While Lakshmikantham and Ćirić [6] introduced the concept of amixed g-monotone
mapping and proved coupled coincidence and coupled common fixed point theorems that extend theorems due to Bhaskar
and Lakshmikantham [5]. Then after, many authors obtained many coupled coincidence and coupled fixed point theorems
in ordered metric spaces (see [4,7–15,3,16–22] as examples).

In this paper we establish coupled coincidence points for a pair of commuting mappings in partially ordered complete
metric spaces. An example is given to support the useability of our results.

Before presenting the main results of the paper, we start by recalling some definitions introduced in [5].
Recall that if (X,≼) is a partially ordered set and F : X → X is such that for x, y ∈ X , x ≼ y implies F(x) ≼ F(y), then a

mapping F is said to be nondecreasing. Similarly, F is defined a nonincreasing mapping.
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Definition 1.1. Let (X,≼) be a partially ordered set and F : X ×X → X . The mapping F is said to have the mixedmonotone
property if F(x, y) is monotone nondecreasing in x and is monotone nonincreasing in y, that is, for any

x, y ∈ X, x1, x2 ∈ X, x1 ≼ x2 ⇒ F(x1, y) ≼ F(x2, y)

and

y1, y2 ∈ X, y1 ≼ y2 ⇒ F(x, y1) ≽ F(x, y2).

This definition coincides with the notion of a mixed monotone function on R
2 and ≤ represents the usual total order in R.

Definition 1.2. We call an element (x, y) ∈ X × X a coupled fixed point of the mapping F : X × X → X if

F(x, y) = x and F(y, x) = y.

The concept of the mixed monotone property is generalized in [6].

Definition 1.3 ([6]). Let (X,≼) be a partially ordered set and F : X × X → X and g : X → X . The mapping F is said to have
the mixed g-monotone property if F is monotone g-nondecreasing in its first argument and is monotone g-nonincreasing
in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, g(x1) ≼ g(x2) ⇒ F(x1, y) ≼ F(x2, y) (1)

and

y1, y2 ∈ X, g(y1) ≼ g(y2) ⇒ F(x, y1) ≽ F(x, y2). (2)

Clearly, if g is the identity mapping, then Definition 1.3 reduces to Definition 1.1.

Definition 1.4. An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings F : X × X → X and
g : X → X if

F(x, y) = g(x), and F(y, x) = g(y).

The main theoretical results of Bhaskar and Lakshmikantham in [5] are the following coupled fixed point theorems.

Theorem 1.1 ([5]). Let (X,≼) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space. Let

F : X × X → X be a continuous mapping having the mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

d(F(x, y), F(u, v)) ≤
k

2
[d(x, u)+ d(y, v)] ∀x ≽ u and y ≼ v.

If there exist two elements x0, y0 ∈ X with

x0 ≼ F(x0, y0) and y0 ≽ F(y0, x0)

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x).

Theorem 1.2 ([5]). Let (X,≼) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space.

Assume that X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n.

Let F : X × X → X be a mapping having the mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

d(F(x, y), F(u, v)) ≤
k

2
[d(x, u)+ d(y, v)] ∀x ≽ u and y ≼ v.

If there exist two elements x0, y0 ∈ X with

x0 ≼ F(x0, y0) and y0 ≽ F(y0, x0)

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x).

Definition 1.5. Let (X, d) be a metric space and F : X × X → X and g : X → X be mappings. We say F and g commute if

F(g(x), g(y)) = g(F(x, y))

for all x, y ∈ X .
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2. Main theorems

Theorem 2.1. Let (X, d,≼) be an ordered metric space. Let F : X × X → X and g : X → X be mappings such that F has the

mixed g-monotone property on X such that there exist two elements x0, y0 ∈ X with g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0).
Suppose there exist non-negative real numbers α, β , L with α + β < 1 such that

d(F(x, y), F(u, v)) ≤ αmin{d(F(x, y), g(x)), d(F(u, v), g(x))} + βmin{d(F(x, y), g(u)), d(F(u, v), g(u))}

+ Lmin{d(F(x, y), g(u)), d(F(u, v), g(x))} (3)

for all (x, y), (u, v) ∈ X × X with g(x) ≼ g(u) and g(y) ≽ g(v). Further suppose F(X × X) ⊆ g(X) and g(X) is a complete

subspace of X. Also, suppose that X satisfies the following properties:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y, x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X × X.

Proof. Let x0, y0 ∈ X be such that g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0). Since F(X×X) ⊆ g(X),we can choose x1, y1 ∈ X

such that g(x1) = F(x0, y0) and g(y1) = F(y0, x0).
In the same way we construct, g(x2) = F(x1, y1) and g(y2) = F(y1, x1).
Continuing in this way we construct two sequences {xn} and {yn} in X such that,

g(xn+1) = F(xn, yn) and g(yn+1) = F(yn, xn) ∀n ≥ 0. (4)

Now we prove that for all n ≥ 0,

g(xn) ≼ g(xn+1) (5)

and

g(yn) ≽ g(yn+1). (6)

We shall use the mathematical induction. Let n = 0. Since g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0), in view of g(x1) =

F(x0, y0) and g(y1) = F(y0, x0), we have g(x0) ≼ g(x1) and g(y0) ≽ g(y1), that is, (5) and (6) hold for n = 0. We presume
that (5) and (6) hold for some n > 0. As F has the mixed g-monotone property and g(xn) ≼ g(xn+1), g(yn) ≽ g(yn+1), from
(4), we get

g(xn+1) = F(xn, yn) ≼ F(xn+1, yn) (7)

and

F(yn+1, xn) ≼ F(yn, xn) = g(yn+1). (8)

Also for the same reason we have

g(xn+2) = F(xn+1, yn+1) ≽ F(xn+1, yn) and F(yn+1, xn) ≽ F(yn+1, xn+1) = g(yn+2).

Then from (4) and (5), we obtain

g(xn+1) ≼ g(xn+2) and g(yn+1) ≽ g(yn+2).

Thus by the mathematical induction, we conclude that (5) and (6) hold for all n ≥ 0.
We check easily that

g(x0) ≼ g(x1) ≼ g(x2) ≼ · · · ≼ g(xn+1) ≼ · · ·

and

g(y0) ≽ g(y1) ≽ g(y2) ≽ · · · ≽ g(yn+1) ≽ · · · .

Since g(xn) ≽ g(xn−1) and g(yn) ≼ g(yn−1), from (3) and (4), we have

d(g(xn+1), g(xn)) = d(F(xn, yn), F(xn−1, yn−1))

≤ αmin{d(F(xn, yn), g(xn)), d(F(xn−1, yn−1), g(xn))}

+βmin{d(F(xn, yn), g(xn−1)), d(F(xn−1, yn−1), g(xn−1))}

+ Lmin{d(F(xn, yn), g(xn−1)), d(F(xn−1, yn−1), g(xn))}
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or

d(g(xn+1), g(xn)) ≤ βd(g(xn), g(xn−1)). (9)

Similarly, since g(yn−1) ≽ g(yn) and g(xn−1) ≼ g(xn), from (3) and (4), we have

d(g(yn), g(yn+1)) ≤ αd(g(yn), g(yn−1)). (10)

From (9) and (10), we have

d(g(xn+1), g(xn))+ d(g(yn), g(yn+1)) ≤ βd(g(xn), g(xn−1))+ αd(g(yn), g(yn−1))

≤ (α + β)d(g(xn), g(xn−1))+ (α + β)d(g(yn), g(yn−1))

= (α + β)[d(g(xn), g(xn−1))+ d(g(yn), g(yn−1))].

Set ρn = d(g(xn+1), g(xn))+ d(g(yn+1), g(yn)) and δ = α + β , then sequence {ρn} is decreasing as

0 ≤ ρn ≤ δρn−1 ≤ δ2ρn−2 ≤ · · · ≤ δnρ0

which implies

lim
n→∞

ρn = lim
n→∞

[d(g(xn+1), g(xn))+ d(g(yn+1), g(yn))] = 0. (11)

Thus,

lim
n→∞

d(g(xn+1), g(xn)) = 0 and lim
n→∞

d(g(yn+1), g(yn)) = 0.

In what follows, we shall prove that {g(xn)} and {g(yn)} are Cauchy sequences.
For each m ≥ n, we have

d(g(xm), g(xn)) ≤ d(g(xm), g(xm−1))+ d(g(xm−1), g(xm−2))+ · · · + d(g(xn+1), g(xn))

and

d(g(ym), g(yn)) ≤ d(g(ym), g(ym−1))+ d(g(ym1), g(ym−2))+ · · · + d(g(yn+1), g(yn)).

Therefore

d(g(xm), g(xn))+ d(g(ym), g(yn)) ≤ ρm−1 + ρm−2 + · · · + ρn

≤ (δm−1 + δm−2 + · · · + δn)ρ0

≤
δn

1 − δ
ρ0 (12)

which implies that

lim
n,m→∞

[d(g(xm), g(xn))+ d(g(ym), g(yn))] = 0.

This imply that {g(xn)} and {g(yn)} are Cauchy sequences in g(X). Since g(X) is a complete subspace of X , there exists
(x, y) ∈ X × X such that g(xn) → g(x) and g(yn) → g(y). Since {g(xn)} is a nondecreasing sequence and g(xn) → g(x) and
as {g(yn)} is a nonincreasing sequence and g(yn) → g(y), by assumption we have g(xn) ≼ g(x) and g(yn) ≽ g(y) for all n.
Since

d(g(xn+1), F(x, y)) = d(F(xn, yn), F(x, y))

≤ αmin{d(g(xn+1), g(xn)), d(F(x, y), g(xn))} + βmin{d(g(xn+1), g(x)), d(F(x, y), g(x))}

+ Lmin{d(g(xn+1), g(x)), d(F(x, y), g(xn))}

Taking the limit as n → ∞ in the above inequality, we get d(g(x), F(x, y)) = 0. Hence g(x) = F(x, y). Similarly, one can
show that g(y) = F(y, x). Thus we proved that F and g have a coupled coincidence point. This concludes the proof. �

Theorem 2.2. Let (X,≼) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric

space. Let F : X × X → X and g : X → X be mappings such that F has the mixed g-monotone property on X such that there

exist two elements x0, y0 ∈ X with g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0). Suppose there exist non-negative real numbers α,
β , L with α + β < 1 such that

d(F(x, y), F(u, v)) ≤ αmin{d(F(x, y), g(x)), d(F(u, v), g(x))} + βmin{d(F(x, y), g(u)), d(F(u, v), g(u))}

+ Lmin{d(F(x, y), g(u)), d(F(u, v), g(x))} (13)

for all (x, y), (u, v) ∈ X×X with g(x) ≼ g(u) and g(y) ≽ g(v). Further suppose F(X×X) ⊆ g(X), g is continuous nondecreasing

and commutes with F , and also suppose either
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(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y, x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X × X.

Proof. Following the proof of Theorem 2.1, we will get two Cauchy sequences (gxn) and (gyn) in X such that (gxn) is a
nondecreasing sequence in X and (gyn) is a nonincreasing sequence in X . Since X is a complete metric space, there is
(x, y) ∈ X × X such that gxn → x and gyn → y. Since g is continuous, we have g(gxn) → gx and g(gyn) → gy.
First, suppose that F is continuous. Then F(gxn, gyn) → F(x, y) and F(gyn, gxn) → F(y, x). On other hand, we have
F(gxn, gyn) = gF(xn, yn) = g(gxn+1) → gx and F(gyn, gxn) = gF(yn, xn) = g(gyn+1) → gy. By uniqueness of limit, we
get gx = F(x, y) and gy = F(y, x).

Second, suppose that (b) holds. Since g(xn) is a nondecreasing sequence such that g(xn) → x, g(yn) is a nonincreasing
sequence such that g(yn) → y, and g is a nondecreasing function, we get that g(gxn) ≼ gx and g(gyn) ≽ g(y) holds for all
n ∈ N. By (13), we have

d(g(gxn+1), F(x, y)) = d(F(gxn, gyn), F(x, y))

≤ αmin{d(ggxn+1, ggxn), d(F(x, y), ggxn)} + βmin{d(ggxn+1, gx), d(F(x, y), gx)}

+ Lmin{d(ggxn+1, gx), d(F(x, y), ggxn)}.

Letting n → +∞, we get d(g(x), F(x, y)) = 0 and hence g(x) = F(x, y). Similarly, one can show that g(y) = F(y, x). Thus
we proved that F and g have a coupled coincidence point. �

Corollary 2.1. Let (X,≼) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric

space. Let F : X × X → X be a mapping such that F has the mixed monotone property on X such that there exist two elements

x0, y0 ∈ X with x0 ≼ F(x0, y0) and y0 ≽ F(y0, x0). Suppose there exist non-negative real numbers α, β and L with α + β < 1
such that

d(F(x, y), F(u, v)) ≤ αmin{d(F(x, y), x), d(F(u, v), x)} + βmin{d(F(x, y), u), d(F(u, v), u)}

+ Lmin{d(F(x, y), u), d(F(u, v), x)} (14)

for all (x, y), (u, v) ∈ X × X with x ≽ u and y ≼ v and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n,

then there exist x, y ∈ X such that

F(x, y) = x and F(y, x) = y,

that is, F has a coupled fixed point (x, y) ∈ X × X.

Proof. In Theorem 2.2, if g = I , the identity mapping, then we have the result. �

Corollary 2.2. Let (X,≼) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric

space. Let F : X ×X → X and g : X → X be mappings such that F has the mixed g-monotone property on X such that there exist

two elements x0, y0 ∈ X with g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0). Suppose that there exist a non-negative real number L

such that

d(F(x, y), F(u, v)) ≤ Lmin{d(F(x, y), g(u)), d(F(u, v), g(x))} (15)

for all (x, y), (u, v) ∈ X×X with g(x) ≼ g(u) and g(y) ≽ g(v). Further suppose F(X×X) ⊆ g(X), g is continuous nondecreasing

and commutes with F , and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n,
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then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y, x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X × X.

Proof. In Theorem 2.2, if α = 0 = β , then we have the result. �

Corollary 2.3. Let (X,≼) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric

space. Let F : X × X → X and g : X → X be mappings such that F has the mixed g-monotone property on X such that there

exist two elements x0, y0 ∈ X with g(x0) ≼ F(x0, y0) and g(y0) ≽ F(y0, x0). Suppose there exist non-negative real numbers α,
β and L with α + β < 1 such that

d(F(x, y), F(u, v)) ≤ (α + β)min



d(F(x, y), g(x)), d(F(u, v), g(x)),
d(F(x, y), g(u)), d(F(u, v), g(u))



+ Lmin{d(F(x, y), g(u)), d(F(u, v), g(x))}

for all (x, y), (u, v) ∈ X×X with g(x) ≼ g(u) and g(y) ≽ g(v). Further suppose F(X×X) ⊆ g(X), g is continuous nondecreasing

and commutes with F , and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn ≼ x for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn ≽ y for all n,

then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y, x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X × X.

Proof. Follows from Theorem 2.2, by noting that if α and β are non-negative real numbers, we have

(α + β)min



d(F(x, y), g(x)), d(F(u, v), g(x)),
d(F(x, y), g(u)), d(F(u, v), g(u))



≤ αmin{d(F(x, y), g(x)), d(F(u, v), g(x))}

+βmin{d(F(x, y), g(u)), d(F(u, v), g(u))}. �

Nowwe shall prove the existence and uniqueness theoremof a coupled common fixed point. Note that, if (X,≼) is a partially
ordered set, then we endow the product space X × X with the following partial order:

for (x, y), (u, v) ∈ X × X, (u, v) ≼ (x, y) ⇔ x ≽ u, y ≼ v.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1, suppose that L = 0 and for every (x, y), (y∗, x∗) ∈ X × X there

exists a (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then F and g

have a unique coupled common fixed point, that is, there exists a unique (x, y) ∈ X × X such that

x = g(x) = F(x, y) and y = g(y) = F(y, x).

Proof. From Theorem 2.1, the set of coupled coincidence points of F and g is non-empty. Suppose (x, y) and (x∗, y∗) are
coupled coincidence points of F , that is, g(x) = F(x, y), g(y) = F(y, x), g(x∗) = F(x∗, y∗) and g(y∗) = F(y∗, x∗), then

g(x) = g(x∗) and g(y) = g(y∗). (16)

By assumption, there exists (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable with (F(x, y), F(y, x)) and
(F(x∗, y∗), F(y∗, x∗)). Put u0 = u, v0 = v, and choose u1, v1 ∈ X so that g(u1) = F(u0, v0) and g(v1) = F(v0, u0). Then,
similarly as in the proof of Theorem 2.1, we can inductively define sequences {g(un)}, {g(vn)}

g(un+1) = F(un, vn) and g(vn+1) = F(vn, un) ∀n.

Further, set x0 = x, y0 = y, x∗
0 = x∗, y∗

0 = y∗ and, on the same way, define the sequences {g(xn)}, {g(yn)} and {g(x∗
n)},

{g(y∗
n)}. Then it is easy to show that

g(xn) → F(x, y)

g(yn) → F(y, x)

g(x∗
n) → F(x∗, y∗),
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and

g(y∗
n) → F(y∗, x∗)

∀ n ≥ 1. Since

(F(x, y), F(y, x)) = (g(x1), g(y1)) = (g(x), g(y))

and

(F(u, v), F(v, u)) = (g(u1), g(v1))

are comparable, then g(x) ≼ g(u1) and g(y) ≽ g(v1). It is easy to show that (g(x), g(y)) and (g(un), g(vn)) are comparable,
that is, g(x) ≼ g(un) and g(y) ≽ g(vn) for all n ≥ 1. Thus from (3), we have

d(g(x), g(un+1)) = d(F(x, y), F(un, vn))

≤ αmin{d(F(x, y), g(x)), d(F(un, vn), g(x))} + βmin{d(F(x, y), g(un)), d(F(un, vn), g(un))}.

Since F(x, y) = g(x), we have

d(g(x), g(un+1)) ≤ βmin{d(g(x), g(un)), d(F(un, vn), g(un))}.

Hence

d(g(x), g(un+1)) ≤ βd(g(x), g(un)). (17)

Again from (3), we have

d(g(vn+1), g(y)) = d(F(vn, un), F(y, x))

≤ αmin{d(F(vn, un), g(vn)), d(F(y, x), g(vn))} + βmin{d(F(vn, un), g(y)), d(F(y, x), g(y))}.

Since F(y, x) = g(y), we have

d(g(vn+1), g(y)) ≤ αmin{d(F(vn, un), g(vn)), d(g(y), g(vn))}.

Hence

d(g(vn+1), g(y)) ≤ αd(g(vn), g(y)). (18)

From (17) and (18), we have

d(g(x), g(un+1))+ d(g(y), g(vn+1)) ≤ βd(g(x), g(un))+ αd(g(vn), g(y))

≤ (α + β)[d(g(x), g(un))+ d(g(y), g(vn))]

≤ (α + β)2[d(g(x), g(un−1))+ d(g(y), g(vn−1))]

· · ·

≤ (α + β)n+1[d(g(x), g(u0))+ d(g(y), g(v0))].

Taking the limit as n → ∞, we get

lim
n→∞

[d(g(x), g(un))+ d(g(y), g(vn))] = 0.

It implies that

lim
n→∞

d(g(x), g(un)) = lim
n→∞

d(g(y), g(vn)) = 0. (19)

Similarly, we show that

lim
n→∞

d(g(x∗), g(un)) = lim
n→∞

d(g(y∗), g(vn)) = 0. (20)

By the triangle inequality, (19) and (20),

d(g(x), g(x∗)) ≤ d(g(x), g(un+1))+ d(g(x∗), g(un+1)) → 0 as n → ∞,

d(g(y), g(y∗)) ≤ d(g(y), g(vn+1))+ d(g(y∗), g(vn+1)) → 0 as n → ∞,

we have g(x) = g(x∗) and g(y) = g(y∗). Thus we have (16). This implies that (g(x), g(y)) = (g(x∗), g(y∗)).
Since g(x) = F(x, y) and g(y) = F(y, x), by commutativity of F and g , we have

g(g(x)) = g(F(x, y)) = F(g(x), g(y)) and g(g(y)) = g(F(y, x)) = F(g(y), g(x)). (21)

Denote g(x) = z, g(y) = w. Then from (21),

g(z) = F(z, w) and g(w) = F(w, z). (22)



H.K. Nashine, W. Shatanawi / Computers and Mathematics with Applications 62 (2011) 1984–1993 1991

Thus (z, w) is a coupled coincidence point. Then from (21) with x∗ = z and y∗ = w it follows g(z) = g(x) and g(w) = g(y),
that is,

g(z) = z and g(w) = w. (23)

From (22) and (23),

z = g(z) = F(z, w) and w = g(w) = F(w, z).

Therefore, (z, w) is a coupled common fixed point of F and g . To prove the uniqueness, assume that (p, q) is another coupled
common fixed point. Then by (21) we have p = g(p) = g(z) = z and q = g(q) = g(w) = w. �

Corollary 2.4. In addition to hypotheses of Corollary 2.1, suppose that L = 0 and for every (x, y), (y∗, x∗) ∈ X × X there exists

a (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then F has a unique

coupled fixed point, that is, there exist a unique (x, y) ∈ X × X such that

x = F(x, y) and y = F(y, x).

Proof. In Theorem 2.3, if g = I , the identity mapping, then we have the result. �

Theorem 2.4. In addition to hypotheses of Theorem 2.1, if gx0 and gy0 are comparable and L = 0, then F and g have a coupled

coincidence point (x, y) such that gx = F(x, y) = F(y, x) = gy.

Proof. By Theorem 2.1 we construct two sequences {xn} and {yn} in X such that gxn → gx and gyn → gy, where (x, y) is a
coincidence point of F and g . Suppose gx0 ≼ gy0, then it is an easy matter to show that

gxn ≼ gyn and ∀n ∈ N ∪ {0}.

Thus, by (3) we have

d(gxn, gyn) = d(F(xn−1, yn−1), F(yn−1, xn−1))

≤ αmin{d(F(xn−1, yn−1), gxn−1), d(F(yn−1, xn−1), gxn−1)}

+βmin{d(F(xn−1, yn−1), gyn−1), d(F(yn−1, xn−1), gyn−1)}

= αmin{d(gxn, gxn−1), d(gyn, gxn−1)} + βmin{d(gxn, gyn−1), d(gyn, gyn−1)}.

By taking the limit as n → +∞, we get d(gx, gy) = 0. Hence

F(x, y) = gx = gy = F(y, x).

A similar argument can be used if gy0 ≼ gx0. �

Corollary 2.5. In addition to hypotheses of Theorem 2.1, if x0 and y0 are comparable and L = 0, then F has a coupled fixed point

of the form (x, x).

Proof. In Theorem 2.4, if g = I , the identity mapping, then we have the result. �

We demonstrate Theorem 2.1 with the help of the following example.

Example 2.1. Let X = [0, 1]. Then (X,≤) is a partially ordered set with the natural ordering of real numbers. Let

d(x, y) = |x − y|

for x, y ∈ X . Define g : X → X by

g(x) = x2

and F : X × X → X by

F(x, y) =







x2 − y2

8
, x ≥ y;

0, x < y.

Then

(1) (X, d) is a complete metric space.
(2) g(X) is complete.
(3) F(X × X) ⊆ g(X) = X .
(4) X satisfies (i) and (ii) of Theorem 2.1.
(5) F has the mixed g-monotone property.
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(6) For any L ∈ [0,+∞), F and g satisfy

d(F(x, y), F(u, v)) ≤
1

4
min{d(F(x, y), g(x)), d(F(u, v), g(x))} +

1

4
min{d(F(x, y), g(u)), d(F(u, v), g(u))}

+ Lmin{d(F(x, y), g(u)), d(F(u, v), g(x))}

for all gx ≼ gu and gy ≽ gv.

Thus by Theorem 2.1, F and g have a coupled coincidence point. Moreover (0, 0) is a coupled fixed point of F .

Proof. The proofs of (1)–(5) are clear. The proof of (6) is divided into the following cases:
Case 1. If x ≤ y and u ≤ v, then

d(F(x, y), F(u, v)) = d(0, 0) = 0 ≤
1

4
d(0, x2)+

1

4
d(0, u2)+ Lmin{d(0, u2), d(0, x2)}.

Case 2. If x < y and u ≥ v, then

d(F(x, y), F(u, v)) = d



0,
u2 − v2

8



=
u2 − v2

8
≤

u2

8
≤

7u2

32

≤
1

4



7u2 + v2

8



=
1

4
d



u2 − v2

8
, u2



=
1

4
min



d(0, u2), d



u2 − v2

8
, u2



≤
1

4
min



d(0, x2), d



u2 − v2

8
, x2



+
1

4
min



d(0, u2), d



u2 − v2

8
, u2



+ Lmin



d(0, u2), d



u2 − v2

8
, x2



.

Case 3. If x ≥ y and u < v, then we have

d(F(x, y), F(u, v)) = d



x2 − y2

8
, 0



=
x2 − y2

8
≤

x2

8
≤

7x2

32

≤
1

4



7x2 + y2

8



=
1

4
d



x2 − y2

8
, x2



≤
1

4
min



d



x2 − y2

8
, x2



, d(0, x2)



≤
1

4
min



d



x2 − y2

8
, x2



, d(0, x2)



+
1

4
min



d



x2 − y2

8
, u2



, d(0, u2)



+ Lmin



d



x2 − y2

8
, u2



, d(0, x2)



.

Case 4. If x ≥ y and u ≥ v, then v ≤ y ≤ x ≤ u. Hence

d(F(x, y), F(u, v)) = d



x2 − y2

8
,
u2 − v2

8



=
1

8
|u2 − v2 − x2 + y2|

=
1

8
(u2 − x2 + y2 − v2)

≤
1

8
u2

≤
1

4
min



d



x2 − y2

8
, u2



, d



u2 − v2

8
, u2



≤
1

4
min



d



x2 − y2

8
, x2



, d



u2 − v2

8
, x2



+
1

4
min



d



x2 − y2

8
, u2



, d



u2 − v2

8
, u2



+ Lmin



d



x2 − y2

8
, u2



, d



u2 − v2

8
, x2



.
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In all the above cases, inequality (3) of Theorem 2.1 is satisfied for α = β = 1
4 and any L ≥ 0. Hence by Theorem 2.1, (0, 0)

is a unique coupled coincidence point. Indeed for x > y we have F(y, x) = 0 and since F(y, x) = g(y)we have y = 0. Then
F(x, 0) = g(x) implies x = 0. The cases x = y or x < y are similar. �
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