Header menu link for other important links
CPW fed circularly polarized wideband pie-shaped monopole antenna for multi-antenna techniques
, M. Gulam Nabi Alsath
Published in Emerald Group Holdings Ltd.
Volume: 37
Issue: 6
Pages: 2109 - 2121
Purpose: This paper aims to present the design and implementation of a circularly polarized co-planar waveguide (CPW) fed wideband pie-shaped monopole antenna for multi-antenna techniques. Multi-antenna techniques are promising solutions for higher data rate and enhanced reliability of wireless applications. They find numerous applications in 4G/5G networks and in most wireless standards such as wireless local area networks (WLAN), wireless fidelity and worldwide interoperability for microwave access systems to enhance the channel capacity without additional spectrum by means of multi-path propagation techniques. Design/methodology/approach: The antenna is designed to operate at three WLAN frequency bands of 4.8, 5.2 and 5.8 GHz. The measured 10 dB impedance bandwidth of the proposed antenna element is 1.2 GHz (24.23 per cent). The proposed CPW fed, pie-shaped monopole antenna has a gain of 5.4 dB and an efficiency of 72.8 per cent at 4.8 GHz. Findings: To use the proposed antenna in a multi-antenna environment, the antennas have to be placed in a close proximity to each other. The close proximity introduces strong mutual coupling between the antennas, which in turn degrades the performance of multi-antenna systems. A multi-antenna system with two antenna elements has been constructed with an edge to edge spacing of 0.24 λ0 (15 mm), and the mutual coupling level is −17 dB. To enhance the isolation between the antenna elements, a shorting pin-based interconnected semicircles enclosed decoupling structure is proposed, which improves the isolation by a factor of 12.67 dB at 4.8 GHz. Originality/value: To validate the performance of the proposed multi-antenna in working environment, the performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG) and total active reflection coefficient (TARC) are computed for the proposed multiple-input multiple-output (MIMO) antenna. The ECC value is 0.000366 at center frequency and below 0.09 for the entire operating bandwidth, which is well below the acceptable level of 0.5 as per 3GPP standard. The DG value lies above 9.5 dB for the entire operating bandwidths and it is well above the minimum value of 3 dB. The TARC values are calculated based on S parameters, and it proves that the proposed antenna a good candidate for the multi-antenna systems. © 2018, Emerald Publishing Limited.
About the journal
JournalCOMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
PublisherEmerald Group Holdings Ltd.