
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(44), DOI: 10.17485/ijst/2016/v9i44/105314, November 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Data Integration - Challenges, Techniques and Future
Directions: A Comprehensive Study

Bazeer Ahamed1* and T. Ramkumar2

1Faculty of Computer Science and Engineering, Sathyabama University, Chennai - 600119, Tamil Nadu, India;
bazeerahamed@gmail.com

2School of Information Technology and Engineering, VIT University, Vellore - 632 014, Tamil Nadu, India;
ramooad@yahoo.com

Keywords: Conflict Identification, Conflict Resolution, Data Integration, Data Conflicts, Inconsistency Resolution

Abstract
Objectives: This paper studies various query reformulation techniques, which are used to convert the intermediate schema
to the targeted schema. The techniques such as Ontology based information integration and data integration languages are
also reviewed. Methods/Statistical Analysis: This paper discusses the techniques used for data integration and also to
resolve inconsistencies from the integrated data. Data integration techniques mainly focusing on integration of data in
several levels and applying independent or unified query over the data available. Findings: Analysis of various techniques
done in the paper has led to the identification of several shortcomings and scope for improvements in the available
techniques. This identified research directions includes vertical enhancement of wrappers by utilizing a single unified
wrapper for all the data sources. Optimizing the queries depending on the data source is also another major requirement to
provide efficient and faster results reducing the data retrieval latencies. The paper also advocates other research directions
that include identifying duplicates from the retrieved data and performing effective elimination strategies to reduce space
consumption. Identifying conflicts and applying strategies to eliminate conflicts is another major area with a huge scope
for improvement. Application/Improvements: The comprehensive survey also recommends further works in the area
of data integration techniques.

1. Introduction
Internet is one of the major technologies used in the

current era, which provides a huge amount of informa-
tion not only in readable format, but also downloadable
and usable formats. It acts as a huge repository drown-
ing the users with the required information. This vast
growth of the internet and the easy access it provides to
the masses has been a huge advantage in collection and
dispersion of information. Since most of this informa-
tion is free, it is also being used in many researches. But
difficulty arises when the user decides to operate on mul-
tiple data sources rather than a single source. If these data
sources contain mutually exclusive information then they
can be combined and worked on efficiently1. But if they

contain common information, then problems arise dur-
ing the process of information retrieval.

Since information fusion is one of the most commonly
occurring activities in today’s scenario, these discrepan-
cies tend to occur frequently. Methods of dealing with
these discrepancies differ in the perspective of the analysis
being performed. Most of the structure relates semantics
can be solved using the metadata information available,
while semantic related conflicts merge as the most diffi-
cult to solve scenario2.

In order to perform effective fusion of the heteroge-
neous data sources, it becomes mandatory to choose a
language that is common to all the data sources3. Since
such a universal language is not available, the data inte-
gration system architecture should be designed with a

mailto:bazeerahamed@gmail.com

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 2

Data Integration - Challenges, Techniques and Future Directions: A Comprehensive Study

custom query language. The efficiency of the query lan-
guage and the efficiency of the processing components
determine the overall efficiency of the system.

This paper describes the architecture of a data inte-
gration system and various components involved. It
describes the challenges faced by a data integration sys-
tem and in a broad sense describes the methods that are
used to integrate data. It also performs a review of the
data integration languages and their association with SQL
and presents the research directions.

2. Data Integration Architecture:
A Comparison with Traditional
DBMS
Data Integration is the process of obtaining and combin-
ing multiple data sources for use in an application. The
concept of data integration has gained wide prominence
after the introduction of the World Wide Web and the
huge amount of information associated with it. Though a
large amount of data is available, their formats differ con-
siderably due to the unavailability of a regulated schema
in the system. Hence data integration becomes manda-
tory4.

Query is the basic component of a data integration
system. Query is the process of providing constraints
to the data integration system to obtain results from it.
Though this appears to be a simple process, the inconsis-
tency and heterogeneity of the data in the web makes it
a complex process. The choice of query entirely depends
upon the innate data integration system that is in place.
There is no fixed rule for developing such a language.
It depends entirely on the functionality of the base sys-
tem that is being used. Results of the queries are usually
represented as views in the data integration framework.
Various broad categories of the data integration system
are discussed in section 4. Figure 1 shows the general
architecture of a data integration system5,6.

The query provided by the user is passed to the Query
Reformulation phase. The data integration system pro-
vides a unified view of various data structures present in
the lower level, hence the query being used corresponds to
the projected view of data, rather than the specific source
format. The Query Reformulation phase enables the con-
version of the query into specific formats defined by the
base level data sources. A balance is to be maintained in
correspondence with the base data stored, when formu-

lating the query. The tradeoff balances the complexity of
the query provided to the user and the complexity of the
data integration system in place. As the query language
becomes more expressive, the design of the data integra-
tion system becomes more complex. A traditional DBMS
does not have this phase, as all the queries are written for
the specific data model being used.

QueryQuery ReformulationQuery OptimizationQuery Execution EngineDBWrapperWrapperDB

Figure 1. Data integration architecture.

Query optimization is performed as the next process
in a data integration system. Though the user presents
the query to the system in the defined format, the query
might not always be efficient. In other words, the style of
querying depends totally on the expertise of the user. The
user might add unnecessary complexities to the query
which might tend to reduce the efficiency of the query
to a large extent. Hence it is mandatory for the system
developer to incorporate an optimization engine that can
perform effective translations of the query provided by
the user. Difference between the traditional optimization
engine and the optimization engine used in the data inte-
gration system comes from the fact that the data sources
being used in the later are heterogeneous, hence the query
being optimized should exploit the advantages specific to
the data source that it is meant to operate on. Depending
on the heterogeneity of the data sources, the complex-
ity of optimization engine varies. Delays also happen to
be the most common and unexpected in such scenarios,
which is mostly constant in case of DBMS systems.

The Query Execution Engine builds the execution
plan for the query. This component is rather considered

Indian Journal of Science and Technology 3Vol 9 (44) | November 2016 | www.indjst.org

Bazeer Ahamed and T. Ramkumar

as an extension of the query optimization engine rather
than a separate component in a traditional DBMS setup.
But due to the heterogeneity in the data sources, this com-
ponent contains different functionalities when compared
to the traditional setup.

In general context, all these phases can be considered
as a single block that inputs the query and returns the pro-
cessed query that is eligible for operating on the specific
data sources being used. Wrappers form the next layer of
the data integration system that is absent in its traditional
counterpart. Wrappers are the direct intermediaries to
the source data. The preprocessed query, though efficient,
corresponds to the format available in the data integra-
tion engine rather than the actual data source. Wrappers
perform the job of converting the source data to the form
that can be used by the query processor7. They are source
specific, hence the number of wrappers to be used in an
integration system depends directly on the number of
data sources being used.

3. Data Integration: Challenges
This section presents the major challenges encountered
while designing a data integration system. Most of these
challenges have been addressed and the corresponding
suggestions are presented in sections 9 and 10.

3.1 Inconsistencies due to Heterogeneity in
Data Sources
The most important challenge facing a data integration
system is to incorporate the heterogeneity associated with
the data. Since the data to be used is from various sources,
their formats vary extensively and the ability to recognize
similar data or similar schemas or data itself becomes a
challenging task. Further, this also leads to inconsisten-
cies during the process of fusion, as data in one source
can have a different data model when compared to other
sources.

3.2 Conflicts
Conflicts refer to inconsistency in information when deal-
ing with multiple data sources. Conflicts can take various
forms such as semantic conflict, data representation con-
flict and data conflict8. Semantic based conflicts9,10 refer to
the process of identifying inconsistencies in the meanings
corresponding to the data. Data representation conflicts
refer to discrepancies in the data models representing

similar data, and data conflicts refers to the differences
within the data itself11. Conflicts can also arise due to
inconsistent naming conventions and inconsistent data
modeling used for creating the data sources. Due to the
human involvement in all these operations, facing con-
flicts becomes an unavoidable scenario.

Mechanisms used for maintaining consistency in a sin-
gle RDBMS will not be applicable in the data integration
architecture. There is also no hard and fast rule provid-
ing the schematics of the conflict resolution mechanisms
when it comes to the data integration framework, since
the heterogeneity associated with it cannot be accurately
defined. The number or type of the data sources cannot
be brought into the architecture; hence conflict resolution
is to be hardcoded depending upon specific applications.

Though conflict resolution appears to be a loosely
bound framework, this is one of the major functional-
ities to be carried out in a data integration framework.
The accuracy of any data integration framework depends
largely on the accuracy of the conflict resolution mecha-
nism in place.

Depending on the nature of the problem and the
type of the data sources involved, the conflict resolution
mechanism is identified. Hence the basic necessity for a
data integration system is to be in a static state from the
perspective of heterogeneity in order to resolve conflicts
effectively.

3.3 Delays in Obtaining Data and Giving
Results
Another major challenge facing the data integration sys-
tem is the implicit and unavoidable delay associated with
retrieving data from the data sources. Due to the het-
erogeneity, delay due to data retrieval from various data
sources differs considerably. Hence the data source with
highest latency acts as a bottleneck for the entire system.

4. Integrating Data: The Methods
In this study, data integration is divided into three cat-
egories, depending on the level when the integration is
performed and depending on the data source where the
query is applied.

4.1 Integrate Data Sources and Query
Integration of data sources can be performed initially
and then querying on the integrated data source can be

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 4

Data Integration - Challenges, Techniques and Future Directions: A Comprehensive Study

performed shown in Figure 2. This method tends to pro-
vide a common interface for the queries by removing the
heterogeneity associated with the data sources. Querying
could be performed using a specialized query language or
using a single accepted standard query language.

DataSourceDataSourceDataSourceWrapperWrapperWrapperUnified SchemaQuery

Figure 2. Integrating data sources and then query.

The process of integrating data is performed initially,
which is a onetime process. Hence this mechanism will
result in faster processing of the remaining queries. It
tends to provide faster and more accurate results. Sizes of
the data stores play a major role in determining the time
taken for the integration step.

This method of processing is mostly not recom-
mended for processing involving huge data sources.
This mechanism does not blend well with dynamic data
sources. In case of necessity, specialized mechanisms to
detect the new data and performing necessary integra-
tion processing for combining it with the integrated data
is mandatory. The process of updating information in the
integrated data source is more complex when compared
to the process of integration.

The major advantage of this approach is that it works
best on data sources that are moderate and static but
handle large amount of queries. Major structures that
can benefit from this method are the static web sites with
major hits. This process can also work with dynamic
data sources, but it is a tradeoff that has to be balanced
between frequent updating of the integrated data source
and number of queries to be handled.

4.2 Depending on Query Obtain Data and
Merge and then Perform Query
This process involves obtaining the data from the respec-
tive discrete sources depending on the query and then

performing the integrating process with the filtered data
shown in Figure 3. This method can be performed using
partial data from the data source, or by retrieving the com-
plete data from the corresponding source12. Obtaining
partial data from the data source is a more complex pro-
cess, since it involves identifying the required elements
from the query and fetching it from the data sources. The
process of identification of the required information is a
trivial problem, hence this method requires specialized
filtering methodologies. But it proves to be very useful if
the data sources contained are large. The second method
of retrieving the complete data source can be performed
if the system operates on a large number of small data
sources. This method works well with dynamic data and
does not show any performance lag when compared with
the static data source.

DSDSDSWrapperWrapperWrapperDataSourceDSWrapperWrapperWrapperUnified SchemaQueryDS

Figure 3. Query and merge data sources.

One downside of this approach is that it involves many
intermediate steps for performing filtering and then inte-
grating, which acts as additional overheads apart from the
conflict resolution techniques. Further, the filtered results
cannot be reused, unless a similar query is passed to the
system again. Hence it is mostly discarded.

This approach can be actually improved by accumu-
lating the results for each query to build an integrated
data source, which can act as a cached system containing
results for queries that have been previously processed.
Similar queries can get hits if they are similar to the
already posed queries, which can save considerable pro-
cessing cycles and time.

4.3 Query Different Data Sources and Merge
the Results
If there are too many data sources to be considered and
if the data sources are large, then it becomes feasible only

Indian Journal of Science and Technology 5Vol 9 (44) | November 2016 | www.indjst.org

Bazeer Ahamed and T. Ramkumar

to query the appropriate sources and merge the results
shown in Figure 4. This is the mostly used methodology
for performing data integration13. The efficiency of query
retrieval lies entirely on the processing efficiency of the
wrappers. Size of the data source and the number of data
sources is oblivious to the integration engine. Due to
this property, this method can operate on dynamic data
sources effectively. The query is processed and the cor-
responding data sources are queried.

DataSourceDataSourceDataSourceWrapperWrapperWrapperQueryResults

Figure 4. Query discrete data sources and merge results.

Queries are then merged and processed and the results
are obtained. View based architecture is followed in this
method. Hence an intermediary algorithm to convert
the specialized query to the query corresponding to the
native data source format is required. The data integra-
tion system can be logically projected as a database, and
the results can be visualized as views corresponding to the
query being posed. Since only a part of each of the related
data sources is considered, this mapping is justifiable. The
following algorithms describe mechanisms to perform
effective projections of the results.

4.3.1 Bucket Algorithm
The Bucket algorithm14 reformulates a user query posed
on a mediated or specialized into the native format accept-
able by the data source to obtain appropriate results. Here,
both query and the sources are described by select-proj-
ect-join queries. Every query is divided into its smallest
possible sub query. Each sub query is executed and the

results (views) obtained are placed in buckets. Hence for
every query there exists many buckets, each containing
views corresponding to its sub query. These views are
finally unified and the final bucket that is formed con-
tains the head of the view V. The algorithm then considers
query rewritings, called conjunctive queries. A union of
these conjunctive rewritings is finally performed to pro-
vide the results.

The bucket algorithm works by considering the con-
text in which the sub query is presented in the system.
It uses a stringent pruning mechanism that returns only
the relevant results. Reusing of the query is not an option;
hence a separate query is created for every process. It
provides opportunities for interleaving optimization and
execution in a data integration system.

5. Inverse-Rules Algorithm
The inverse-rules algorithm14 was also formulated in the
context of data integration. The major strategy followed
in this algorithm is to invert the view definitions. The
rules provided here aids in the computation of tuples of
databases from the tuples of views.

The major advantage of the inverse rules algorithm is
that it is reusable; hence the rules can be computed ahead
of time. Once the inverse rules are computed, it can be
applied to any query. This method does not handle arith-
metic comparison predicates. The results returned by this
algorithm is more general, hence should be pruned before
usage. The results have high probability of containing
irrelevant data. The results from the inverse rules algo-
rithm should pass through the constraint propagation
phase prior to usage.

Though both the algorithm looks similar from the
aspect of computing the final results by using the divide
and conquer paradigm. They have their own pros and
cons which should be evaluated before shortlisting on
one of them.

6. Query Reformulation
Techniques
Efficiency in a data integration system can be directly
mapped between the descriptions of relationships
between the source relations and the mediated schema.
The query process should be able to reformulate the query

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 6

Data Integration - Challenges, Techniques and Future Directions: A Comprehensive Study

presented in the intermediate schema to the query on
the source schema. The following are the reformulation
approaches associated with a data integration system10.

6.1 Global As View (GAV)
The GAV approach involves the definition of the schema
in a global view over the local schemas. Several local views
are combined to provide a global view. A query is written
for every relation R in the mediated schema specifying
how to obtain R’s tuples from the source.

Eg:

DB1(id,title,actor,year)=>MOVIEACTOR(title,actor) (1)

DB2(it,title,actor,year)=>MOVIEACTOR(title,actor) (2)

If a third data source arrives, containing reviews, then
MOVIEREVIEW relation can be represented as:
DB1(id,title,actor,year)˄DB3(id,review)=>MOVIEREVI
EW(title,review) (3)

The GAV descriptions are Horn Rules with relation-
ship between the mediated schema and the source. Query
reformulation is direct and simple when dealing with
GAV. This is due to the fact that relations in the mediated
schema correspond directly in terms of source relations.
It reduces rule unfolding, hence it is easier when it comes
to query reformulation. The downside of GAV is that
new data source insertion is very complex. In order to
add a data source, it becomes mandatory to check for all
the possible relations it can have with the existing data
sources. It lacks in terms of scalability, hence it is suitable
for systems operating on constant data sources. The global
schema needs to be rebuilt every time a source is added.
TSIMMIS15 and GARLIC16 follows the GAV approach.

6.2 Local As View (LAV)
The LAV approach involves defining local schemas over
the mediated schemas. In this method contents of the
data sources are described as a query over the relations
in the mediated schema. Each data source is described in
isolation and their relationships are considered only in
the next level.

Eg:

S1:V1 (title,year,director)⟹MOVIE (title,year,director,
genre)⋀AMERICAN(director)⋀year≥1960⋀genre=com
edy (4)
S2:V2 (title,review) ⟹MOVIE(title,year,director,genre)

⋀year≥1990⋀MOVIEREVIEW(title,review) (5)

In LAV, Query reformulations are more complex due
to the absence of direct mapping of the mediated schema
over the source relations. The integration system operates
to identify how the data can be combined and how they
should interact with other sources. Due to this property,
query reformulation becomes harder, and sometimes it
requires performing recursive queries over the sources.
The user has flexibility to specify rich constraints on the
sources that is almost impossible in the GAV approach.
This becomes mandatory when dealing with closely
related and overlapping data. Hence the LAV approach
is more preferred when dealing with complex and highly
cohesive data sources. There is no need to remodify the
global schema for every updation of the data sources.
AGORA17 follows the LAV approach. Some approaches
such as PIAZZA18 follows a combination of both GAV
and LAV.

7. Ontology based Information
Integration
Conflict resolution forms one of the major functional-
ities of any data integration system, since such a system
is prone to conflicts due to the usage of a variety of het-
erogeneous data sources. Heterogeneity in this context is
classified as structural and semantic heterogeneity. While
structural heterogeneity can be sorted out by using the
meta data, semantic heterogeneity poses a more serious
challenge, since it deals with the meaning of the data
being used. Under this context, conflicts are classified as
confounding, scaling and naming conflicts.

Ontology used in a conflict resolution system is used
for explicit description of the information source seman-
tics. Three directions can be identified for employing
ontology, namely single, multiple and hybrid ontology
approaches19.

The single ontology approach employs a single global
ontology for specifying the semantics20. An independent
model is built for each of the data source and they are
connected to obtain the global ontology. In the multiple
ontology approach, each data source uses its own special-
ized ontology. The hybrid approach uses a single global
ontology, but it contains the description of the semantics
of each source.

In addition to this, ontology also provides the query
model that can function as the global query schema. It
can also be used as a verification mechanism that can

Indian Journal of Science and Technology 7Vol 9 (44) | November 2016 | www.indjst.org

Bazeer Ahamed and T. Ramkumar

automatically check the correctness of the mappings
from the global schema to the local schema. Some major
examples of ontology based integration methods include
TSIMMIS15, Info sleuth, KRAFT and SIMS.

8. Data Integration Languages: A
Review
Traditional database queries require data transfer between
a database and work area, while in a data integration sys-
tem data transfer occurs between multiple databases, each
having their own processing formats. Accessing the multi
databases usually require a common language decipher-
able by the involved databases. Due to the nativity and the
high usage involved with SQL, the languages designed for
multi databases also have major similarities with SQL for
ease of use. The following are some of the data integration
languages being used.

8.1 MSQL, MDSL and SchemaSQL: A
Comparison
MSQL21, also called Multidatabase SQL, is a multi database
language that expresses queries over multiple databases in
a single statement. It is an extension of SQL that is for-
mulated by adding new functions for non-procedural
manipulation of data in heterogeneous and related data-
bases. The general form of a MSQL statement is

<USE statement>
<SELECT statement>
Any function in SQL is a function in MSQL. New

functions in MSQL are designed for interoperating
with non-integrated SQL databases. The overall design
of MSQL is based on MDSL with similarities to SQL.
STORE, REPLACE and COPY statements replace the
INSERT AND UPDATE statements of SQL.

MDSL22,23 is a manipulation language of the MRDSM
system. It extends the classical DML of the MRDS.
Though MDSL is specific to the MRDS system, its syntax
resembles QUEL and SQL. The general form of an MDSL
query is

OPEN name1 [mode 1] name2 [mode2]…
RANGE (tuple_variable relation)…..
SELECT<target list>
WHERE <predicates>
The above mentioned languages use a single statement

for creation or alteration in the concerned databases.
Retrieval and modification are performed using join oper-

ations from the different database schemas. Broadcasting
of the retrieval or modification operations to identify
schematically related content helps in interoperability.
They can be used to create inter-database queries for com-
munication between databases. They help in creation of
multi-database views and helps in dynamic aggregation
of data. They also support triggers, stored procedures and
transactions. Stored procedures usually consist of queries,
hence they are called stored queries.

Query is framed by providing database name as a part
of the OPEN command in MDSL, while MSQL uses the
USE statement. Relation name is expressed as a part of the
RANGE statement in MDSL. MSQL and SchemaSQL24,25
represents it as a part of the FROM clause. In case of
conflicts in the relation name, then it is preceded by the
database name. The attributes are mentioned as a part of
the SELECT and the WHERE clauses. The previous solu-
tion of appending the relation name and the database
name is used in case of conflicts.

In all the above mentioned languages, the user must
be aware of the database names, relation names and the
attribute names in order to construct the query. Since each
of these databases are designed independently, naming
conflicts might occur, which will lead to problems during
integration. The query languages contain built in seman-
tics that can be used to resolve them. But this is expected
to be performed manually during query construction.
The semantic variables can be added as a part of the query
in MDSL and MSQL. MDSL uses the RANGE_S state-
ment, while MSQL uses LET<>BE<> statement to specify
the semantic variables. In Schema SQL, in addition to the
values, the context information is associated to the rela-
tion name and the attribute names.

Query processing is then performed by passing the
queries represented in the intermediate languages to their
corresponding data stores and converting them to their
native formats for execution (as describes in Section 4).

9. Research Directions
The comprised components of a data integration system
is large, hence the research directions in this area are vast
and varied. Some effective research directions have been
identified by us and are discussed below.

The wrapper being used for query/data conversions
can be enhanced by eliminating the multiple wrappers
(each for a data source) and providing an integrated
wrapper for all the data sources used for integration.

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 8

Data Integration - Challenges, Techniques and Future Directions: A Comprehensive Study

Since most of the databases follow SQL based syntaxes,
this will eliminate the need to write recursive mappings
for most of the query structures.

In case of dynamic data stores, a wrapper generator
can be created to dynamically generate wrapper clauses
depending on the data store being used. This will create
a generic system that can be utilized in data integration
systems involving any kind of data stores. This generator
can be created as a language processing engine which can
be directly integrated with the query processing system
of the data store for further efficiency. Classification rules
can be used to identify language dependencies and the
system could be programmed to function accordingly.

Optimization of the Query Optimization engine
would provide effective and faster results. A mechanism
that can reduce latency is to directly convert the queries
directly to the required data source format and to let the
native optimizer perform the optimization process. This
will reduce the intermediate processing involved for opti-
mizing the results.

When dealing with the queries as described in section
IV, the process can involve detecting duplicates and stor-
ing the appropriate content by eliminating the duplicates.
Semantically correlated contents can be analyzed and
can be appropriately stored. This process involves deal-
ing with conflicts in the initial stages itself. But once this
process is performed, results can be provided to the users
in more accurate manner with less processing latencies.
Since the initial process does not involve the user’s query
time, it can enhance the system’s performance to a large
extent.

Conflict identification26,27 is another area with a huge
scope for enhancement. The process of identifying con-
flicting attributes when a query is presented is the basis
for working with multiple databases28. Though this pro-
cess seems simple, it has a semantic dimension to it,
which increases its complexity manifold. In order to iden-
tify such attributes, machine learning methods29,30 can be
used. Further, user input can also be incorporated using
standard mechanisms such as AHP to identify the best or
the most important data from the set of conflicting attri-
butes retrieved by the query.

10. Conclusion
This paper presents a detailed study of the data inte-
gration system by describing the various components
involved in the system. The available query languages

have been discussed in detail and their differences when
compared to each other have been highlighted, which
portrays the major functionalities of an intermediate
query language designed for a data integration system.
The research directions which act as additional add-on or
improvements to the existing system have been discussed
in detail. Our future research contributions will be based
on these directions mentioned above.

11. References
1. Nachouki G, Quafafou M. Multi-data source fusion. Special

Issue on Web Information Fusion. 2008; 9(4):523–37.
2. Ivan R, Dodero JM, Stoitsis J. Non-functional aspects of

information integration and research for the web science.
Procedia Computer Science. 2011; 4(1):1631-9.

3. Huimin Z, Ram S. Combining schema and instance infor-
mation for integrating heterogeneous data sources. Data
and Knowledge Engineering. 2007; 61(2):281-303.

4. Tao YJ, Raghavan VV, Zu Z. Web information fusion: A
review of the state of the art. Information Fusion. 2008;
9(4):446-9.

5. Yu L, Huang W, Wang S, Lai KK. Web warehouse – A new
web information fusion tool for web mining. Information
Fusion. 2008; 9(4):501-11.

6. Wolfgang M, Lausen G. A uniform framework for integra-
tion of information from the web. Information Systems.
2004; 29(1):59-91.

7. Calvanese D, Giacomo GD, Lenzerini M, Nardi D, Rosati
R. A principled approach to data integration and reconcili-
ation in data warehousing. Proceedings of the International
Workshop on Design and Management of Data Warehouses;
1999. p. 16-1-11.

8. Philipp A, Motro A. Data integration: Inconsistency detec-
tion and resolution based on source properties. Proceedings
of FMII-01, International Workshop on Foundations of
Models for Information Integration; 2001. p. 1-15.

9. Faraz F, Noessner J, Kiss E, Stuckenschmidt H. Mapping
assistant: Interactive conflict-resolution for data integra-
tion. Poster at the 8th Extended Semantic Web Conference
(ESWC); 2011.

10. Channah NF, Ouksel AM. A classification of semantic
conflicts in heterogeneous database systems. Journal of
Organizational Computing and Electronic Commerce.
1995; 5(2):167-93.

11. Xin Y, Zhang L, Zhong Q, Hui P. A novel method for data
conflict resolution using multiple rules. ComSIS. 2013;
10(1):215-35.

12. Jens B. Data Fusion and Conflict Resolution in Integrated
Information Systems. Hasso-Plattner-Institute for Software
System Techniqu; 2010. p. 1-184.

Indian Journal of Science and Technology 9Vol 9 (44) | November 2016 | www.indjst.org

Bazeer Ahamed and T. Ramkumar

13. Luna DX, Naumann F. Data fusion: Resolving data conflicts
for integration. Proceedings of the Very Large Database
Endowment; 2009. p. 1654-5.

14. Alon YL. Logic-based techniques in data integration. Logic-
Based Artificial Intelligence. US: Springer; 2000. p. 575-95.

15. Molina G, Hammer HJ, Ireland K, Papakonstantinou Y,
Ullman J, Widom J. Integrating and accessing heteroge-
neous information sources in TSIMMIS. Proceedings of the
AAAI Symposium on Information Gathering; 1995. p. 1-4.

16. Carey MJ, Haas LM, Schwarz PM, Arya M, Cody WF,
Fagin R, Flickner M, Luniewski AW, Niblack W, Petkovic
D, Thomas J, Williams JH, Wimmers EL. Towards het-
erogeneous multimedia information systems: the Garlic
approach. Proceedings of the 5th International Workshop
on Research Issues in Data Engineering-Distributed Object
Management (RIDE-DOM’95); 1995. p. 161–73.

17. Manolescu I, Florescu D, Kossmann D, Olteanu D, Xhumari
F. Agora: Living with XML and relational. Proceedings
of the International Conference on Very Large Databases
(VLDB); 2000. p. 623–6.

18. Halvey AY, Ives ZG, Mork P, Tartarinov I. Piazza: Data
management infrastructure for semantic web applications.
Proceedings of the 12th International Conference on World
Wide Web; 2003. p. 556–67.

19. Wache H, Vogele T, Visser U, Stuckenschmidt H, Schuster
G, Neumann H, Hubner S. Ontology-based integration of
information. A Survey of Existing Approaches. 2001. p.
1-10.

20. Heeseok J, Jeong H. Ontology-based Integration and refine-
ment of evaluation-committee data from heterogeneous
data sources. Indian Journal of Science and Technology.
2015; 8(23):1-7.

21. Witold L, Abdellatif A, Zeroual A, Nicolas B, Vigier P.
MSQL: A multi-database language. Information Sciences.
1989; 49(1):59-101.

22. Markus T, Scholl MH. A classification of multi-database
languages. IEEE Proceedings of the 3rd International
Conference on Parallel and Distributed Information
Systems; Austin, Texas. 1994. p. 1-20.

23. Litwin W, Abdellatif A. An overview of the multi-database
manipulation language MDSL. Proceedings of the IEEE;
1987; 75(5):621-32.

24. Lakshmanan VS, Sadri F, Subramanian SN. Schema SQL:
An extension to SQL for multi-database interoperability.
ACM Transactions on Database Systems (TODS); 2001
Dec; 26(4):476-519.

25. Lakshmanan L, Sadri F, Subramanian IN. Schema SQL - A
language for interoperability in relational multi-database
systems. Proceedings of the 22nd Conference Mumbai
(Bombay), India, Very Large Data Base; 1996. p. 239-50.

26. Carol I, Kumar SBR. Conflict resolution and duplicate
elimination in heterogeneous datasets using unified
data retrieval techniques. Indian Journal of Science and
Technology. 2015; 8(22):1-6.

27. Khazalah F, Malik Z, Rezgui A. Automated conflict resolu-
tion in collaborative data sharing systems using community
feedbacks. Information Sciences. 2015; 298:407-24.

28. Weiguo F, Lu H, Madnick SE, Cheung D. Discovering and
reconciling value conflicts for numerical data integration.
Information Systems. 2001; 26(8):635-56.

29. Ramkumar T, Hariharan S, Selvamuthukumaran S. A survey
on mining multiple data sources. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery. 2013;
3(1):1-11.

30. Ramkumar T, Srinivasan R, Hariharan S. Synthesizing
global association rules from different data sources based
on desired interestingness metrics. The International
Journal of Information Technology and Decision Making.
2014; 13(3):473-95.

