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Abstract

In his classical paper [14], Rosa introduced a hierarchical series of labelings called
ρ, σ, β and α labeling as a tool to settle Ringel’s Conjecture [13] which states that if
T is any tree with m edges then the complete graph K2m+1 can be decomposed into
2m+ 1 copies of T . Inspired by the result of Rosa [14] many researchers significantly
contributed to the theory of graph decompositions using graph labelings. In this
direction, in 2004, Blinco et al. [6] introduced γ-labeling as a stronger version of
ρ-labeling. A function g defined on the vertex set of a graph G with n edges is called
a γ-labeling if

(i) g is a ρ-labeling of G,

(ii) G is a tripartite graph with vertex tripartition (A,B,C) with C = {c} and b̄ ∈ B
such that {b̄, c} is the unique edge joining an element of B to c,

(iii) g(a) < g(v) for every edge {a, v} ∈ E(G) where a ∈ A,

(iv) g(c)− g(b̄) = n.

Further, Blinco et al. [6] proved a significant result that the complete graph K2cn+1

can be cyclically decomposed into c(2cn + 1) copies of any γ-labeled graph with n
edges, where c is any positive integer. Recently, in 2013, Anita Pasotti [4] introduced a
generalisation of graceful labeling called d-divisible graceful labeling as a tool to obtain
cyclic G-decompositions in complete multipartite graphs. Let G be a graph of size
e = d . m. A d-divisible graceful labeling of the graph G is an injective function
g : V (G) → {0, 1, 2, . . . , d(m + 1) − 1} such that {|g(u) − g(v)|/{u, v} ∈ E(G)} =
{1, 2, . . . , d(m+ 1)− 1}\{m+ 1, 2(m+ 1), . . . , (d− 1)(m+ 1)}. A d-divisible graceful
labeling of a bipartite graph G is called as a d-divisible α-labeling of G if the maximum
value of one of the two bipartite sets is less than the minimum value of the other one.
Further, Anita Pasotti [4] proved a significant result that the complete multipartite
graph K( e

d
+1)×2dc can be cyclically decomposed into copies of d-divisible α-labeled

graph G, where e is the size of the graph G and c is any positive integer (K( e
d
+1)×2dc

contains e
d
+1 parts each of size 2dc). Motivated by the results of Blinco et al. [6] and

Anita Pasotti [4], in this paper we prove the following results.

i) For t ≥ 2, disjoint union of t copies of the complete bipartite graph Km,n, where
m ≥ 3, n ≥ 4 plus an edge admits γ-labeling.

ii) For t ≥ 2, t-levels shadow graph of the path Pdn+1 admits d-divisible α-labeling
for any admissible d and n ≥ 1.

Further, we discuss related open problems.

1 Introduction

Terms which are not defined here can be found in [15]. In an attempt to settle the Ringel’s
conjecture [13] which states that if T is any tree withm edges then the complete graphK2m+1

can be decomposed into 2m + 1 copies of T , in his classical paper [14], Rosa introduced a
series of labelings called α, β, σ, ρ-labeling.

Let G be a graph with n edges. A one-to-one function g from V (G) to {0, 1, 2, . . . , n} is
called a β-labeling of G if {|g(u)− g(v)|/{u, v} ∈ E(G)} = {1, 2, . . . , n}. A β-labeling g of a
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graph G with n edges is called an α-labeling if there exists an integer k such that for every
edge {u, v} ∈ E(G) either g(u) ≤ k < g(v) or g(v) ≤ k < g(u). Given two vertices u and v
by uv we denote the edge {u, v}.

It is clear that α-labeling is a stronger version of β-labeling. β-labeling was later called
as graceful labeling by Golomb [12] and this term is most widely used now. ρ-labeling is
weaker version of graceful labeling. The precise definition of ρ-labeling is given below. Let G
be a graph with n edges. A one-to-one function g from V (G) to {0, 1, 2, . . . , 2n} is called a
ρ-labeling of G if {min{|g(u)− g(v)|, 2n+1− |g(u)− g(v)|}/{u, v} ∈ E(G)} = {1, 2, . . . , n}.

Further, Rosa [14] proved the following two significant theorems.

Theorem 1.1. Let G be a graph with n edges. Then there exists a cyclic G-decomposition
of the complete graph K2n+1 if and only if G has a ρ-labeling.

Theorem 1.2. If G is a graph with n edges that has an α-labeling, then the complete graph
K2cn+1 can be cyclically decomposed into subgraphs isomorphic to G, where c is an arbitrary
natural number.

The interesting part of α-labeled graphs with n edges is that they not only decompose
complete graphs K2cn+1 but also decompose the complete bipartite graphs Kan,bn. This
interesting result proved by El-Zanati and Vanden Eynden [9] is precisely stated in the
following theorem.

Theorem 1.3. If a graph G with n edges has an α-labeling then there exists a cyclic
decomposition of the complete bipartite graph Kan,bn into subgraphs isomorphic to G, where
a and b are arbitrary positive integers.

These results attracted many researchers to significantly contribute in theory of graph
decompositions using graph labelings. It is clear from the definition of α-labeling that if a
graph G admits α-labeling then it must be necessarily bipartite. This restriction prompted
Blinco et al. [6] to introduce γ-labeling in order to achieve cyclic G-decompositions inK2cn+1,
where G is a non-bipartite graph, c is any positive integer and n is the number of edges of
the graph G. A function g defined on the vertex set of a graph G with n edges is called a
γ-labeling if

(i) g is a ρ-labeling of G,

(ii) G is a tripartite graph with vertex tripartition (A,B,C) with C = {c} and b̄ ∈ B such
that {b̄, c} is the unique edge joining an element of B to c,

(iii) g(a) < g(v) for every edge {a, v} ∈ E(G) where a ∈ A,

(iv) g(c)− g(b̄) = n.

Further, in [6], Blinco et al. have proved the following significant theorem.

Theorem 1.4. The complete graph K2cm+1 can be cyclically decomposed into copies of the
γ-labeled graph G, where m is the number of edges of the graph G and c is any positive
integer.
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Motivated by the above result of Blinco et al. [6], the almost-bipartite graphs Pn + e,
n ≥ 4, Km,n+e, m ≥ 2, n > 2, C2k+1, k ≥ 2, C2m+e, m > 2, C3∪C4m, m > 1, C2k+1∪C4n+2,
k ≥ 1, n ≥ 1 are found to have γ-labeling (refer [5], [6], [7], [8], [10]). (A graph is said to be
almost-bipartite if the removal of a particular edge makes the graph bipartite). For survey
on γ-labeling refer the survey on graph labelings by Gallian [11]. Motivated by the results
of Blinco et al. [6], in this paper we prove that for t ≥ 2, disjoint union of t copies of the
complete bipartite graph Km,n, where m ≥ 3, n ≥ 4 plus an edge admits γ-labeling.

Recently, in 2013, Anita Pasotti [4] introduced a generalisation of graceful labeling
called d-divisible graceful labeling as a tool to obtain cyclic G-decomposition in complete
multipartite graphs. Let G be a graph of size e = d . m. An injective function
g : V (G) → {0, 1, 2, . . . , d(m + 1) − 1} such that {|g(u) − g(v)|/{u, v} ∈ E(G)} =
{1, 2, . . . , d(m + 1) − 1}\{m + 1, 2(m + 1), . . . , (d − 1)(m + 1)} is called as a d-divisible
graceful labeling of the graph G. A d-divisible graceful labeling of a graph G can exist only
if d is a divisor of the size e of G, hence, for this reason, any divisor d of e is said to be
admissible for the existence of a d-divisible graceful labeling of G. A d-divisible graceful
labeling of a bipartite graph G is called as a d-divisible α-labeling of G if the maximum
value of one of the two bipartite sets is less than the minimum value of the other one.

Further, Anita Pasotti [4] has proved the following significant theorems.

Theorem 1.5. (Anita Pasotti [4]) The complete multipartite graph K( e
d
+1)×2d can be

cyclically decomposed into copies of the d-divisible graceful labeled graph G, where e is the
size of the graph G.

Theorem 1.6. (Anita Pasotti [4]) The complete multipartite graph K( e
d
+1)×2dc can be

cyclically decomposed into copies of the d-divisible α-labeled graph G, where e is the size
of the graph G and c is any positive integer.

In the literature survey [11], one can observe that a very few families of graphs are
identified to have d-divisible α-labeling. Anita Pasotti [4] has proved that path and star
admit d-divisible α-labeling for any admissible d. She [3] also proved that for any integer
k ≥ 1 and m ≥ 2, C4k×Pm admits (2m−1)-divisible α-labeling. In [1] and [2], Anna Benini
and Anita Pasotti proved the following results. A hairy cycle of size e admits an e-divisible
α-labeling if and only if it is bipartite. The hairy cycle H(2t, λ) admits d-divisible α-labeling
for any admissible d. The ladder L2k has 2-divisible α-labeling if and only if k is even.

Inspired by the decomposition theorems proved by Anita Pasotti, in this paper we prove
that for t ≥ 2, t-levels shadow graph of the path Pdn+1 admits d-divisible α-labeling for any
admissible d and n ≥ 1. t-levels shadow graph of a graph is defined as follows. t-levels
shadow graph of a graph G, denoted St(G) is obtained by taking t ≥ 2 copies G1, G2, . . . , Gt

of G and joining each vertex vij in Gi to the copies of its adjacent vertices in Gi+1, for
1 ≤ j ≤ n and 1 ≤ i ≤ t− 1, where n = |V (G)|.

2 γ-labeling of disjoint union of complete bipartite

graphs plus an edge

In this section we prove that disjoint union of t copies of the complete bipartite graph Km,n,
where m ≥ 3 and n ≥ 4 plus an edge admits γ-labeling.
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Theorem 2.1. For t ≥ 2, disjoint union of t copies of a complete bipartite graph with one
part containing at least three vertices and another part containing at least four vertices, plus
an edge admits γ-labeling.

Proof. Consider the complete bipartite graph Km,n, where m ≥ 3, n ≥ 4.
Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} be the two parts of Km,n.
For any i = 1, 2, . . . , t, let Ui = {ui1, ui2, . . . , uim} and Vi = {vi1, vi2, . . . , vin} be the two
parts of the i-th copy Ki

m,n of the complete bipartite graph Km,n.

Set U =
t
⋃

i=1

Ui and V =
t
⋃

i=1

Vi.

Clearly, U and V are the two parts of the disjoint union of the t copies of Km,n, denoted by
t
⋃

i=1

Ki
m,n.

Join the vertices v11 and v12 by an edge ê.

Denote the new graph thus obtained by (
t
⋃

i=1

Ki
m,n) + ê.

Observe that |V ((
t
⋃

i=1

Ki
m,n) + ê)| = t(m+ n) and |E((

t
⋃

i=1

Ki
m,n) + ê)| = tmn+ 1.

Define g : V ((
t
⋃

i=1

Ki
m,n) + ê) → {0, 1, 2, . . . , 2N}, where N = tmn+ 1 in the following way.

First we define the labels of the vertices in the set U in the following way.
For 1 ≤ j ≤ m, define g(u1j) = 2(j − 1) and g(u2j) = 2j + 1.
For each i, 3 ≤ i ≤ t, define
g(ui1) = g(u(i−1)m) +m,
g(uij) = g(ui(j−1)) + 1, for each j, 2 ≤ j ≤ m.
Now we define the labels of the vertices in the set V in the following manner.
Define g(v11) = 2N − 1, g(v12) = N − 1, g(v13) = 2N , g(v14) = N − 2.
For 5 ≤ k ≤ n, define

g(v1k) =

{

g(v1(k−1))− 2m+ 1, if k is odd

g(v1(k−1))− 1, if k is even.

Define g(v21) =











g(v1n)− 4(r − 1), if m = 2r, r ≥ 2 and n is even

g(v1n)− (4r − 2), if m = 2r + 1, r ≥ 1 and n is even

g(v1n) + 2, if n is odd.

We define the labels of the vertices v2k, for k, 2 ≤ k ≤ n in two cases depending on n is even
or odd.

Case 1. n is even
For 2 ≤ k ≤ n, define

g(v2k) =

{

g(v2(k−1))− 1, if k is even

g(v2(k−1))− 2m+ 1, if k is odd.
.
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Case 2. n is odd
For 2 ≤ k ≤ n, define

g(v2k) =

{

g(v2(k−1))− 2m+ 1, if k is even

g(v2(k−1))− 1, if k is odd.
.

For each i, 3 ≤ i ≤ t, define the labels of the vertices vik, for each k, 2 ≤ k ≤ n in the
following way.
For each i, 3 ≤ i ≤ t, define
g(vi1) = g(v(i−1)n) +m− 1,
g(vik) = g(vi(k−1))−m, for each k, 2 ≤ k ≤ n.

Observation 1. Vertex labels of (
t
⋃

i=1

Ki
m,n) + ê are distinct.

We prove that the vertex labels of the graph (
t
⋃

i=1

Ki
m,n) + ê are distinct depending on n

is even or odd.

Case 1. n is even

If the labels of the vertices of the graph (
t
⋃

i=1

Ki
m,n) + ê are arranged as,

g(u11), g(u12), g(u21), g(u13), g(u22), g(u14), . . . , g(u1m), g(u2(m−1)), g(u2m), (g(uij))
i=t,j=m
i=3,j=1 ,

g(vtn), g(vt(n−1)), g(vt(n−2)), . . . , g(vt2), g(v(t−1)n), g(vt1), g(v(t−1)(n−1)), g(v(t−1)(n−2)),
. . . , g(v(t−1)2), g(v(t−2)n), g(v(t−2)(n−1)), g(v(t−1)1), g(v(t−2)(n−2)), . . . , g(v(t−2)2), g(v(t−2)1),
g(v(t−3)n), . . . , g(v3n), g(v41), g(v3(n−1)), g(v3(n−2)), . . . , g(v33), g(v32), g(v2n), g(v2(n−1)),
g(v31), g(v2(n−2)), g(v2(n−3)), . . . , g(v22), g(v21), g(v1n), g(v1(n−1)), g(v1(n−2)), g(v1(n−3)), . . . ,
g(v14), g(v12), g(v11), g(v13),
then it forms a monotonically increasing sequence.

Case 2. n is odd

If the labels of the vertices of the graph (
t
⋃

i=1

Ki
m,n) + ê are arranged as,

g(u11), g(u12), g(u21), g(u13), g(u22), g(u14), . . . , g(u1m), g(u2(m−1)), g(u2m), (g(uij))
i=t,j=m
i=3,j=1 ,

g(vtn), g(vt(n−1)), g(vt(n−2)), . . . , g(vt2), g(v(t−1)n), g(vt1), g(v(t−1)(n−1)), g(v(t−1)(n−2)),
. . . , g(v(t−1)2), g(v(t−2)n), g(v(t−2)(n−1)), g(v(t−1)1), g(v(t−2)(n−2)), . . . , g(v(t−2)2), g(v(t−2)1),
g(v(t−3)n), . . . , g(v3n), g(v41), g(v3(n−1)), g(v3(n−2)), . . . , g(v33), g(v32), g(v2n), g(v2(n−1)),
g(v31), g(v2(n−2)), g(v2(n−3)), . . . , g(v22), g(v1n), g(v21), g(v1(n−1)), g(v1(n−2)), g(v1(n−3)), . . . ,
g(v14), g(v12), g(v11), g(v13),
then it forms a monotonically increasing sequence.

Hence the vertex labels of the graph (
t
⋃

i=1

Ki
m,n) + ê are distinct.

Observation 2. Edge labels of (
t
⋃

i=1

Ki
m,n) + ê are distinct.

The edge v11v12 has the label N .
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We prove that the edge labels of
t
⋃

i=1

Ki
m,n are distinct in two cases depending on n is even

or odd.

Case i. n is even
The labels of the edges in the first copy K1

m,n can be arranged as a sequence,
S11 : ((N − 1, N − 2, N − 3, . . . , N + 2m+ 1−mn,N + 2m−mn), (2m, 2m− 1, . . . , 2, 1)).
For each i, 2 ≤ i ≤ t, the labels of the edges in the ith copy Ki

m,n can be arranged as a
sequence,
S1i : (N + 2m− (i− 1)mn− 1, N + 2m− (i− 1)mn− 2, . . . , N + 2m− imn+ 2,
N + 2m− imn+ 1, N + 2m− imn).
The labels of the edges in the above sequences together with the label of the edge v11v12,
|g(v11)− g(v12)| = N can be rearranged as a monotonic decreasing sequence
S : (N,N − 1, N − 2, . . . , 3, 2, 1).
Thus the edge labels are distinct when n is even.

Case ii. n is odd
The labels of the edges in the first copy K1

m,n can be arranged as a sequence,
S21 : ((N − 1, N − 2, N − 3, . . . , N + 3m−mn+ 2, N + 3m−mn+ 1, N + 3m−mn),
(N + 3m−mn− 1, N + 3m−mn− 3, N + 3m−mn− 5, . . . , N +m−mn+ 3,
N +m−mn+ 1), (2m, 2m− 1, . . . , 2, 1)).
The labels of the edges in the second copy K2

m,n can be arranged as a sequence,
S22 : (N + 3m−mn− 2, N + 3m−mn− 4, N + 3m−mn− 6, . . . , N +m−mn+ 2,
N +m−mn,N +m−mn− 1, N +m−mn− 2, N +m−mn− 3, . . . ,
N + 2m− 2mn+ 2, N + 2m− 2mn+ 1, N + 2m− 2mn).
For each i, 3 ≤ i ≤ t, the labels of the edges in the ith copy Ki

m,n can be arranged as a
sequence,
S2i : (N + 2m− (i− 1)mn− 1, N + 2m− (i− 1)mn− 2, . . . , N + 2m− imn+ 2,
N + 2m− imn+ 1, N + 2m− imn).
The labels of the edges in the above sequences together with the label of the edge v11v12,
|g(v11)− g(v12)| = N can be rearranged as a monotonic decreasing sequence
S : (N,N − 1, N − 2, . . . , 3, 2, 1).
Thus the edge labels are distinct when n is odd.

Hence the edge labels of the graph (
t
⋃

i=1

Ki
m,n) + ê are distinct.
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Observation 3. g is a γ-labeling.

In order to prove that g is a γ-labeling, we partition the vertex set V ((
t
⋃

i=1

Ki
m,n) + ê)

as (A,B,C), where A = U,B = V \ {v11} and C = {v11}. Then, by the above labeling
we have g(uij) < g(vik) for any uij ∈ A and for any vik ∈ B

⋃

C. The label of the edge

v11v12 = N = (2N − 1− (N − 1)). Hence, the graph (
t
⋃

i=1

Ki
m,n) + ê admits γ-labeling.

Illustration

γ-labeling that is defined as in the proof of Theorem 2.1 for the disjoint union of three

copies of the complete bipartite graph K4,5 plus an edge, (
3
⋃

i=1

Ki
4,5)+ ê and the disjoint union

of two copies of the complete bipartite graph K3,4 plus an edge, (
2
⋃

i=1

Ki
3,4) + ê are given in

Figure 1 and Figure 2 respectively.
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Figure 1: γ-labeling of (
3
⋃

i=1

Ki
4,5) + ê
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Figure 2: γ-labeling of (
2
⋃

i=1

Ki
3,4) + ê

The following corollary is an immediate implication of Blinco et al.’s theorem, Theorem
1.4.

Corollary 2.2. The complete graph K2cr+1 can be cyclically decomposed into copies of

the graph (
t
⋃

i=1

Ki
m,n) + ê, where c is any positive integer, m ≥ 3, n ≥ 4, t ≥ 2 and

r = |E((
t
⋃

i=1

Ki
m,n) + ê)|.

3 d-divisible α-labeling of t-levels shadow graph of path

In this section we prove that for t ≥ 2, t-levels shadow graph of the path Pdn+1, St(Pdn+1)
with d ≥ 1, n ≥ 1 admits d-divisible α-labeling for all d ≥ 1.

Theorem 3.1. For t ≥ 2, the t-levels shadow graph of the path Pdn+1, St(Pdn+1) with d ≥ 1
and n ≥ 1 admits d-divisible α-labeling for all d ≥ 1.

Proof. Consider the path Pdn+1, where d ≥ 1, n ≥ 1.
For the convenience, we let Pdn+1 : v1, v2, . . . , vdn, vdn+1, n ≥ 1, d ≥ 1.
Suppose G1, G2, . . . , Gt are the t copies of Pdn+1.
Let Vi = {vi1, vi2, . . . , vi(dn+1)} be the vertex set of the ith copy Gi of Pdn+1.

Then the t-levels shadow graph of the path Pdn+1, St(Pdn+1) has the vertex set W =
t
⋃

i=1

Vi.

Therefore, |V (St(Pdn+1))| = t|V (Pdn+1)| = t(dn+ 1).
By the definition of the t-levels shadow graph of the path Pdn+1, the graph St(Pdn+1) can be
visualised as t copies of the path Pdn+1 and a pair of t− 1 copies of Pdn+1 which connect the
vertices of the copies Gi and Gi+1 of the path Pdn+1, 1 ≤ i ≤ t− 1.
Therefore, |E(St(Pdn+1))| = tdn+ 2(t− 1)dn = (3t− 2)dn.
Since the path Pdn+1 is bipartite, the ith copy of Pdn+1, Gi is also bipartite having the
bipartition (Vi1, Vi2), where
Vi1 = {vij/1 ≤ j ≤ dn+ 1 and j odd} and

8
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Vi2 = {vij/1 ≤ j ≤ dn+ 1 and j even}, for 1 ≤ i ≤ t.
Let N = d((3t− 2)n+ 1)− 1.

Define g : V (St(Pdn+1)) → {0, 1, 2, . . . , N} in the following way.

g(v12) = N .
For 1 ≤ i ≤ t, g(vi1) = i− 1.
For 2 ≤ i ≤ t, g(vi2) = g(v(i−1)2)− 2.
For all the remaining vertices of St(Pdn+1) we define g depending on d = 1 and d > 1.

When d = 1 define g as follows.

For 1 ≤ j ≤ ℓ, g(v1(2j+1)) = g(v1(2j−1)) + 3t− 2, where

ℓ =

{

n
2
, if n is even,

n−1
2
, if n is odd.

For 2 ≤ j ≤ k, g(v1(2j)) = g(v1(2j−2))− (3t− 2), where

k =

{

n
2
, if n is even,

n+1
2
, if n is odd.

For 3 ≤ j ≤ dn+ 1, g(vij) =

{

g(v(i−1)j) + 1, for j odd and 2 ≤ i ≤ t,

g(v(i−1)j)− 2, for j even and 2 ≤ i ≤ t.

When d > 1 then define g in two cases depending on n is even or n is odd.

Case a. n is even

g(v1(2j+1)) = g(v1(2j−1)) + 3t− 2, 1 ≤ j ≤ dn
2
,

g(v1(2j)) =















g(v1(2j−2))− (3t− 2), 2 ≤ j ≤ dn
2

and

j 6= kn+2
2

, k = 1, 2, . . . , d− 1

g(v1(kn))− (3t− 1), for j = kn+2
2

, k = 1, 2, . . . , d− 1.

Case b. n is odd

g(v1(2j+1)) =



















g(v1(2j−1)) + 3t− 2, 1 ≤ j ≤ ℓ, ℓ = dn
2

if d is even,

ℓ = dn−1
2

if d is odd and

j 6= kn+1
2

, 1 ≤ k ≤ d− 1 and k odd,

g(v1(kn)) + 3t− 1, for j = kn+1
2

, 1 ≤ k ≤ d− 1 and k odd

g(v1(2j)) =



















g(v1(2j−2))− (3t− 2), 2 ≤ j ≤ ℓ, ℓ = dn+1
2

if d is odd,

ℓ = dn
2

if d is even and

j 6= kn+2
2

, 2 ≤ k ≤ d− 1 and k even,

g(v1(kn))− (3t− 1), for j = kn+2
2

, 2 ≤ k ≤ d− 1 and k even

For both the cases, for 3 ≤ j ≤ dn+ 1, define

g(vij) =

{

g(v(i−1)j) + 1, for j odd and 2 ≤ i ≤ t,

g(v(i−1)j)− 2, for j even and 2 ≤ i ≤ t
.
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From the definition of g if the labels of the vertices of St(Pdn+1) are arranged as,
g(v11), g(v21), . . . , g(vt1),
g(v13), g(v23), . . . , g(vt3),
g(v15), g(v25), . . . , g(vt5),

...
g(v1(s−2)), g(v2(s−2)), . . . , g(vt(s−2)),
g(v1s), g(v2s), . . . , g(vts),
g(vtk), g(v(t−1)k), . . . , g(v1k),
g(vt(k−2)), g(v(t−1)(k−2)), . . . , g(v1(k−2)),

...
g(vt4), g(v(t−1)4), . . . , g(v14),
g(vt2), g(v(t−1)2), . . . , g(v12),

where s =

{

dn, if dn+ 1 is even

dn+ 1, if dn+ 1 is odd,

k =

{

dn+ 1, if dn+ 1 is even

dn, if dn+ 1 is odd,

then the above sequence forms a strictly increasing sequence. Hence the vertex labels of
St(Pdn+1) are distinct.

From the above arrangement of vertex labels observe that
max{g(u)/u ∈ Vi1, 1 ≤ i ≤ t} = g(vt(dn))
< min{g(v)/v ∈ Vi2, 1 ≤ i ≤ t} = g(vt(dn+1)), when dn+ 1 is even;
while when dn+ 1 is odd, max{g(u)/u ∈ Vi1, 1 ≤ i ≤ t} = g(vt(dn+1))
< min{g(v)/v ∈ Vi2, 1 ≤ i ≤ t} = g(vt(dn)).

We prove that the edge labels of St(Pdn+1) are distinct depending on d = 1 and d > 1.
Case 1. d = 1
When n is even, the edges of the graph St(Pdn+1) can be arranged as the following sequence,
(v12v11, v12v21, v11v22, v21v22, v31v22, . . . , v(i−1)1vi2, vi1vi2, v(i+1)1vi2, . . . , v(t−1)(n+1)vtn,
vtnvt(n+1)).
When n is odd, the edges of St(Pdn+1) can be arranged as the following sequence,
(v12v11, v12v21, v11v22, v21v22, . . . , v(i−1)1vi2, vi1vi2, v(i+1)1vi2, . . . , v(t−1)nvt(n+1), vtnvt(n+1)).
Then from the definition of g for both the cases we have the corresponding edge label
sequence,
(N,N − 1, N − 2, . . . , 3, 2, 1).
Hence, it is clear that the edge labels are distinct.
Therefore, when d = 1, g is a 1-divisible α-labeling of St(Pdn+1). That is, g is an α-labeling
of the graph St(Pdn+1).
Case 2. d > 1
In order to show that the edge labels of the edges of St(Pdn+1) are distinct, we partition the
edge set of St(Pdn+1) into d subsets of the edge set of St(Pdn+1) and they are arranged as d
sequences. Consequently, their corresponding edge labels are also arranged as d sequences.
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When n is even then we consider the first edge sequence to be the following sequence
(v12v11, v12v21, v11v22, v21v22, v31v22, . . . , v(i−1)1vi2, vi1vi2, v(i+1)1vi2, . . . , v(t−1)(n+1)vtn,
vtnvt(n+1)).
When n is odd then we consider the first edge sequence to be the following sequence
(v12v11, v12v21, v11v22, v21v22, v31v22, . . . , v(i−1)1vi2, vi1vi2, v(i+1)1vi2, . . . , v(t−1)nvt(n+1),
vtnvt(n+1)).
Then from the definition of g for both the cases we have the corresponding edge label
sequence,
S1 : (N,N − 1, N − 2, . . . , (d− 1)(3t− 2)n+ d− 1, (d− 1)(3t− 2)n+ d).
When n is even then we consider the second edge sequence to be the following sequence
(v1(n+2)v1(n+1), v1(n+2)v2(n+1), v1(n+1)v2(n+2), v2(n+1)v2(n+2), v3(n+1)v2(n+2), . . . , v(i−1)(n+1)vi(n+2),
vi(n+1)vi(n+2), v(i+1)(n+1)vi(n+2), . . . , v(t−1)(2n+1)vt(2n), vt(2n)vt(2n+1)).
When n is odd then we consider the second edge sequence to be the following sequence
(v1(n+1)v1(n+2), v1(n+1)v2(n+2), v1(n+2)v2(n+1), v2(n+2)v2(n+1), v3(n+2)v2(n+1), . . . , v(i−1)(n+2)vi(n+1),
vi(n+2)vi(n+1), v(i+1)(n+2)vi(n+1), . . . , v(t−1)(2n+1)vt(2n), vt(2n)vt(2n+1)).
Then from the definition of g for both the cases we have the corresponding edge label
sequence,
S2 : ((d−1)(3t−2)n+d−2, (d−1)(3t−2)n+d−3, . . . , (d−2)(3t−2)n+d, (d−2)(3t−2)n+d−1).
When n is even then we consider the third edge sequence to be the following sequence
(v1(2n+2)v1(2n+1), v1(2n+2)v2(2n+1), v1(2n+1)v2(2n+2), v2(2n+1)v2(2n+2), v3(2n+1)v2(2n+2), . . . ,
v(i−1)(2n+1)vi(2n+2), vi(2n+1)vi(2n+2), v(i+1)(2n+1)vi(2n+2), . . . , v(t−1)(3n+1)vt(3n), vt(3n)vt(3n+1)).
When n is odd then we consider the third edge sequence to be the following sequence
(v1(2n+2)v1(2n+1), v1(2n+2)v2(2n+1), v1(2n+1)v2(2n+2), v2(2n+1)v2(2n+2), v3(2n+1)v2(2n+2), . . . ,
v(i−1)(2n+1)vi(2n+2), vi(2n+1)vi(2n+2), v(i+1)(2n+1)vi(2n+2), . . . , v(t−1)(3n)vt(3n+1), vt(3n)vt(3n+1)).
Then from the definition of g for both the cases we have the corresponding edge label
sequence,
S3 : ((d − 2)(3t − 2)n + d − 3, (d − 2)(3t − 2)n + d − 4, . . . , (d − 3)(3t − 2)n + d − 1,
(d− 3)(3t− 2)n+ d− 2).
In general, we consider the jth edge sequence, for 4 ≤ j ≤ d− 2 depending on n and j.
Case i. n is even or n is odd and j is even
Then we consider the jth edge sequence to be the following sequence
(v1(jn+2)v1(jn+1), v1(jn+2)v2(jn+1), v1(jn+1)v2(jn+2), v2(jn+1)v2(jn+2), v3(jn+1)v2(jn+2), . . . ,
v(i−1)(jn+1)vi(jn+2), vi(jn+1)vi(jn+2), v(i+1)(jn+1)vi(jn+2), . . . , v(t−1)((j+1)n)vt((j+1)n+1),
vt((j+1)n)vt((j+1)n+1)).
Case ii. n and j are odd
Then we consider the jth edge sequence to be the following sequence
(v1(jn+1)v1(jn+2), v1(jn+1)v2(jn+2), v1(jn+2)v2(jn+1), v2(jn+2)v2(jn+1), v3(jn+2)v2(jn+1), . . . ,
v(i−1)(jn+2)vi(jn+1), vi(jn+2)vi(jn+1), v(i+1)(jn+2)vi(jn+1), . . . , v(t−1)((j+1)n+1)vt((j+1)n),
vt((j+1)n)vt((j+1)n+1)).
Then from the definition of g for all the above cases we have the corresponding edge label
sequence,
Sj : ((d−j)(3t−2)n+d−(j+1), (d−j)(3t−2)n+d−(j+2), (d−j)(3t−2)n+d−(j+3), . . . ,
(d−(j+1))(3t−2)n+d−(j+2), (d−(j+1))(3t−2)n+d−(j−1), (d−(j+1))(3t−2)n+d−j).
Now we consider the (d− 1)th edge sequence depending on n is even or odd.
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Case I. n is even
Then we consider the (d− 1)th edge sequence to be the following sequence
(v1((d−2)n+2)v1((d−2)n+1), v1((d−2)n+2)v2((d−2)n+1), v1((d−2)n+1)v2((d−2)n+2), v2((d−2)n+1)v2((d−2)n+2),
v3((d−2)n+1)v2((d−2)n+2), . . . , v(i−1)((d−2)n+1)vi((d−2)n+2), vi((d−2)n+1)vi((d−2)n+2),
v(i+1)((d−2)n+1)vi((d−2)n+2), . . . , v(t−1)((d−1)n+1)vt((d−1)n), vt((d−1)n)vt((d−1)n+1)).
Case II. n is odd
Then we consider the (d− 1)th edge sequence in the following subcases depending on d− 1
is even or odd.
Case IIa. d− 1 is even
Then we consider the (d− 1)th edge sequence to be the following sequence
(v1((d−2)n+1)v1((d−2)n+2), v1((d−2)n+1)v2((d−2)n+2), v1((d−2)n+2)v2((d−2)n+1), v2((d−2)n+2)v2((d−2)n+1),
v3((d−2)n+2)v2((d−2)n+1), . . . , v(i−1)((d−2)n+2)vi((d−2)n+1), vi((d−2)n+2)vi((d−2)n+1),
v(i+1)((d−2)n+2)vi((d−2)n+1),. . . , v(t−1)((d−1)n+1)vt((d−1)n), vt((d−1)n+1)vt((d−1)n)).
Case IIb. d− 1 is odd
Then we consider the (d− 1)th edge sequence to be the following sequence
(v1((d−2)n+2)v1((d−2)n+1), v1((d−2)n+2)v2((d−2)n+1), v1((d−2)n+1)v2((d−2)n+2), v2((d−2)n+1)v2((d−2)n+2),
v3((d−2)n+1)v2((d−2)n+2), . . . , v(i−1)((d−2)n+1)vi((d−2)n+2), vi((d−2)n+1)vi((d−2)n+2),
v(i+1)((d−2)n+1)vi((d−2)n+2), . . . , v(t−1)((d−1)n)vt((d−1)n+1), vt((d−1)n)vt((d−1)n+1)).
Then from the definition of g for all the above cases we have the corresponding edge label
sequence,
Sd−1 : (2(3t− 2)n+ 1, 2(3t− 2)n, 2(3t− 2)n− 1, . . . , (3t− 2)n+ 3, (3t− 2)n+ 2).
Finally, we consider the dth edge sequence depending on n is even or odd.
Case 1. n is even
Then we consider the dth edge sequence to be the following sequence
(v1((d−1)n+2)v1((d−1)n+1), v1((d−1)n+2)v2((d−1)n+1), v1((d−1)n+1)v2((d−1)n+2), v2((d−1)n+1)v2((d−1)n+2),
v3((d−1)n+1)v2((d−1)n+2), . . . , v(i−1)((d−1)n+1)vi((d−1)n+2), vi((d−1)n+1)vi((d−1)n+2),
v(i+1)((d−1)n+1)vi((d−1)n+2), . . . , v(t−1)(dn+1)vt(dn), vt(dn)vt(dn+1)).
Case 2. n is odd
Then we consider the dth edge sequence in the following subcases depending on d is even or
odd.
Case 2a. d is even
Then we consider the dth edge sequence to be the following sequence
(v1((d−1)n+1)v1((d−1)n+2), v1((d−1)n+1)v2((d−1)n+2), v1((d−1)n+2)v2((d−1)n+1), v2((d−1)n+2)v2((d−1)n+1),
v2((d−1)n+1)v3((d−1)n+2), . . . , v(i−1)((d−1)n+2)vi((d−1)n+1), vi((d−1)n+2)vi((d−1)n+1),
v(i+1)((d−1)n+2)vi((d−1)n+1), . . . , v(t−1)(dn+1)vt(dn), vt(dn)vt(dn+1)).
Case 2b. d is odd
Then we consider the dth edge sequence to be the following sequence
(v1((d−1)n+2)v1((d−1)n+1), v1((d−1)n+2)v2((d−1)n+1), v1((d−1)n+1)v2((d−1)n+2), v2((d−1)n+1)v2((d−1)n+2),
v3((d−1)n+1)v2((d−1)n+2), . . . , v(i−1)((d−1)n+2)vi((d−1)n+1), vi((d−1)n+2)vi((d−1)n+1),
v(i+1)((d−1)n+2)vi((d−1)n+1), . . . , v(t−1)(dn)vt(dn+1), vt(dn)vt(dn+1)).
Then from the definition of g for all the above cases we have the corresponding edge label
sequence,
Sd : ((3t− 2)n, (3t− 2)n− 1, (3t− 2)n− 2, . . . , 3, 2, 1).

Using all the above defined edge label sequences S1, S2, S3, . . . , Sj, . . . , Sd−1, Sd, we
form a combined edge label sequence in the order as S : (S1, S2, S3, . . . , Sj, . . . , Sd−1,
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Sd). Then we observe that S forms a monotonically decreasing sequence. Also observe that
none of the terms (d − 1)((3t − 2)n + 1), (d − 2)((3t − 2)n + 1), . . . , 3((3t − 2)n + 1),
2((3t− 2)n + 1), (3t− 2)n + 1 appear in the combined sequence S. Thus, g is a d-divisible
α-labeling of St(Pdn+1) for any admissible d > 1. Therefore the graph St(Pdn+1) admits
d-divisible α-labeling for any admissible d.

Illustration

The 4-divisible α-labeling, 3-divisible α-labeling and 2-divisible α-labeling that are
defined as in the proof of Theorem 3.1 for the graphs S4(P5), S4(P10), S4(P9) are given
in Figures 3, 4, 5 respectively.

0

1

43 11 32 22

41 12 30
23

2

3

39 13 28
24

25
37 2614

Figure 3: 4-divisible α-labeling of S4(P5)

0 92 10 82 21 72 31 61 5141

90 11 80 22 70 32 59 42
491

88 12 78 23 68 33 57 43
472

3 86 13 76 24 66 34 55 44 45

Figure 4: 3-divisible α-labeling of S4(P10)
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0 57 7 50 14 42 21 35 28

55 8 48 15 40 22 33 29
1

53 9 46 16 38 23 31 30
2

Figure 5: 2-divisible α-labeling of S3(P9)

The following corollary is an immediate implication of Anita Pasotti’s theorem, Theorem
1.6.

Corollary 3.2. The multipartite graph K( e
d
+1)×2dm can be cyclically decomposed into copies

of the t-levels shadow graph of the path Pdn+1, St(Pdn+1), where e = |E(St(Pdn+1))|, t ≥ 2,
d ≥ 1, n ≥ 1 and m is any positive integer.

4 Discussion

In this section we pose two open problems for further research.

In Theorem 2.1 we have proved that for t ≥ 2, disjoint union of t copies of the complete

bipartite graph Km,n plus an edge, (
t
⋃

i=1

Ki
m,n) + ê admits γ-labeling. In this direction

investigating the following question will be useful for achieving a generalised result.

Is it true that disjoint union of t copies of an α-labeled graph G plus an edge,

t ≥ 2, admits γ-labeling?

In Theorem 3.1 we have proved that for t ≥ 2, the t-levels shadow graph of the path
Pdn+1 with d ≥ 1, n ≥ 1 admits d divisible α-labeling for all d ≥ 1. It is evident that the
path Pdn+1 admits α-labeling for all d ≥ 1, n ≥ 1. This observation tempts us to ask the
following question to understand d-divisible α-labeled graphs.

What are the α-labeled graphs whose t-levels shadow graph admits d divisible

α-labeling for all values of d?
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