Header menu link for other important links
X
Demonstration of high responsivity(~2.16 A/W) and detectivity(~10 11 Jones) in the long wavelength (~10.2μm) from InGaAs/GaAs quantum dot infrared photodetector with quaternary InAlGaAs capping
S. Chakrabarti, , N. Halder, Y. Aytac, A.G.U. Perera
Published in SPIE
2012
Volume: 8353
   
Abstract
The Self-assembled InGaAs/GaAs quantum dot infrared detectors (QDIPs) have emerged as a promising technology in many applications such as missile tracking, night vision, medical diagnosis, environmental monitoring etc. On account of the 3-D confinement of carriers in QDs, a number of advantages arise over the QW counterparts. Here we report a quaternary (InAlGaAs) capped In(Ga)As/GaAs QDIP. The samples were grown on a semi-insulating (001) GaAs substrate by solid source molecular beam epitaxy (MBE), and the dots were then capped with a combination of 30A quaternary (In0.21Al0.21Ga 0.58As) and 500Å of GaAs layer. Both the QD layer and the combination capping were repeated for 35 periods. The device was fabricated by conventional photolithography, ICP etching and metal evaporation technique. XTEM image of the sample depicted nice stacking of defect free quantum dot layers. The dark current is symmetric both for positive and negative bias with a low dark current density of 4.32x10-6A/cm2 at 77K and 1.6 x10 -3A/cm2 at 200K at a bias of 2V. The high intense peak response observed at 10.2μm, with a very narrow spectral width (△λ/λ) of 14% (△λ is the FWHM), is probably due to bound-to-bound transition of carriers in the QDs. A very high responsivity of 2.16 A/W was measured at a bias of -0.40 Volt bias. The highest value of detectivity is measured to be ~1011 cm.Hz1/2/W at a bias of 0.3V. © 2012 SPIE.
About the journal
JournalData powered by TypesetProceedings of SPIE - The International Society for Optical Engineering
PublisherData powered by TypesetSPIE
ISSN0277786X