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Abstract. We consider graph-controlled insertion-deletion systems and
prove that the systems with sizes (i) (3; 1, 1, 1; 1, 0, 1), (ii) (3; 1, 1, 1;
1, 1, 0) and (iii) (2; 2, 0, 0; 1, 1, 1) are computationally complete. More-
over, graph-controlled insertion-deletion systems simulate linear lan-
guages with sizes (2; 2, 0, 1, 1, 0, 0), (2; 2, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), or
(3; 1, 1, 0; 1, 0, 0). Simulations of metalinear languages are also studied.
The parameters in the size (k;n, i′, i′′;m, j′, j′′) of a graph-controlled
insertion-deletion system denote (from left to right) the maximum num-
ber of components, the maximal length of the insertion string, the max-
imal length of the left context for insertion, the maximal length of the
right context for insertion; a similar list of three parameters concerning
deletion follows.

Keywords: Insertion-deletion systems · Graph-controlled systems ·
Descriptional complexity measures · Computational completeness

1 Introduction

Insertion and deletion operations frequently occur in DNA processing and RNA
editing. In the theoretical process of mismatched annealing of DNA sequences,
certain segments of the strands are either inserted or deleted [18]. During RNA
editing, some fragments of messenger RNA are inserted or deleted [2,3]. The
motivation for insertion operations can be found in [7], where this operation and
its iterated variant were introduced as a generalization of concatenation and
Kleene’s closure. The deletion operation was introduced in [10]. Insertion and
deletion operations together were introduced into formal language theory in [11].
The corresponding grammatical mechanism is called insertion-deletion system
(abbreviated as ins-del system). Informally, if a string η is inserted between two
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parts w1 and w2 of a string w1w2 to get w1ηw2, we call the operation insertion,
whereas if a substring δ is deleted from a string w1δw2 to get w1w2, we call the
operation deletion. Suffixes of w1 and prefixes of w2 are called contexts.

Several variants of ins-del systems have been considered in literature, like
ins-del P systems [1], tissue P systems with ins-del rules [14], context-free ins-
del systems [16], matrix ins-del systems [13,17], etc. All the mentioned papers
(as well as [19]) attempted to characterize the recursively enumerable languages
(i.e., they show computational completeness) using ins-del systems. We refer to
the survey article [20] for details of variants thereof.

One of the important variants of ins-del systems is graph-controlled ins-del
systems introduced in [5] and further studied in [9]. In such a system, the concept
of a component is introduced and is associated with every insertion or deletion
rule. The transition is performed by choosing any applicable rule from the set of
rules of the current component and by moving the resultant string to the target
component specified in the rule. If the transition of strings from component to
component establishes a tree structure for a given system, then this system can
also be seen as an ins-del P system. The objective is to obtain computationally
completeness results with few components and small descriptional complexity
measures of the ins-del rules.

For an ins-del system, the descriptional complexity measures are based on
the size comprising of (i) the maximal length of the insertion string, denoted by
n, (ii) the maximal length of the left context and right context used in insertion
rules, denoted by i′ and i′′, respectively, (iii) the maximal length of the deletion
string, denoted by m, (iv) the maximal length of the left context and right
context used in deletion rules denoted by j′ and j′′, respectively. The size of an
ins-del system is denoted by (n, i′, i′′;m, j′, j′′).

Initially, computationally completeness results for graph-controlled ins-del
systems were obtained with 5 components [12], then reduced to 4 components
with sizes (1, 1, 0; 2, 0, 0), (2, 0, 0; 1, 1, 0), (1, 1, 0; 1, 1, 0), (1, 1, 0; 1, 0, 1) [5] and
then later reduced to 3 components with sizes (1, 2, 0; 1, 1, 0), (1, 1, 0; 1, 2, 0) [8].
In [9], even graph-controlled ins-del systems with only 2 components and sizes
(1, 1, 0; 1, 2, 0), (1, 2, 0; 1, 1, 0) were shown to be computationally complete. As an
ins-del system without graph-control can be seen as a graph-controlled ins-del
system with just one component, it is remarkable in this context to note that
such system with size (1, 1, 1; 1, 1, 1) are computationally complete; see [19].

In this paper, we prove the computational completeness of the following
graph-controlled ins-del systems: (i) 3 components with size (1, 1, 1; 1, 1, 0) or
(1, 1, 1; 1, 0, 1); (ii) 2 components with size (2, 0, 0; 1, 1, 1). We also simulate linear
grammars by graph-controlled ins-del systems having (i) 3 components with size
(1, 0, 1; 1, 0, 0) or (1, 1, 0; 1, 0, 0); (ii) 2 components with size (2, 0, 1; 1, 0, 0) or
(2, 1, 0; 1, 0, 0). We also extend the simulation technique to metalinear languages.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. However, we now recall a few notations here.
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Let N denote the set of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
Given an alphabet (finite set) Σ, Σ∗ denotes the free monoid generated by Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string.
For a string w ∈ Σ∗, |w| denotes the length of a string w and wR denotes the
reversal (mirror image) of w. Likewise, LR and LR are understood for languages
L and language families L. RE denotes the family of the recursively enumer-
able languages, The family of linear and metalinear languages is denoted by
LIN , MLIN , respectively, where MLIN is the smallest language class contain-
ing LIN and is closed under concatenation. It is known from [15] that LIN is
neither closed under concatenation nor under Kleene closure whereas MLIN is
not closed under Kleene closure but closed under concatenation. Also, both LIN
and MLIN are closed under reversal.

For the computational completeness results, we are using the fact that
type-0 grammars in the special Geffert normal form are known to character-
ize the recursively enumerable languages. According to [5], a type-0 grammar
G = (N,T, P, S) is said to be in special Geffert normal form, SGNF for short, if

– N decomposes as N = N ′ ∪ N ′′, where N ′′ = {A,B,C,D} and N ′ contains
at least the two nonterminals S and S′,

– the only non-context-free rules in P are the two erasing rules AB → λ and
CD → λ,

– the context-free rules are of the following forms:
X → Y b or X → bY where X,Y ∈ N ′, X �= Y , b ∈ T ∪ N ′′, or S′ → λ.

How to construct this normal form is described in [5] and is based on [6]. Also,
the derivation of a string is done in two phases. First, the context-free rules are
applied repeatedly and the phase I is completed by applying the rule S′ → λ in
the derivation. In phase II, only the non-context-free erasing rules are applied
repeatedly and the derivation ends. It is to be noted that as these context-free
rules are more of a linear type, it is easy to see that there can be at most only one
nonterminal from N ′ present in the derivation of G. We exploit this observation
in the proofs of Theorems 2 and 4. Also, note that X �= Y,X, Y ∈ N ′ in the
context-free rules.

2.1 Insertion-Deletion Systems

We now give the basic definition of insertion-deletion systems, following [11,18].

Definition 1. An insertion-deletion system is a construct γ = (V, T,A,R),
where V is an alphabet, T ⊆ V is the terminal alphabet, A is a finite language
over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del, where
(u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. For all contexts of t where
t ∈ {ins, del}, if u = λ (v = λ), then we call the operation t to be right context
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(left context). If both u, v = λ for a rule, then it means, the corresponding
insertion/deletion can be done freely anywhere in the string and is called context-
free insertion/deletion. An insertion rule will be of the form (u, η, v)ins, which
means that the string η is inserted between u and v. A deletion rule will be
of the form (u, δ, v)del, which means that the string δ is deleted between u and
v. In other words, (u, η, v)ins corresponds to the rewriting rule uv → uηv, and
(u, δ, v)del corresponds to the rewriting rule uδv → uv.

Consequently, for x, y ∈ V ∗ we can write x ⇒ y if y can be obtained from x
by using either an insertion rule or a deletion rule which is given as follows:

1. x = x1uvx2, y = x1uηvx2, for some x1, x2 ∈ V ∗ and (u, η, v)ins ∈ R.
2. x = x1uδvx2, y = x1uvx2, for some x1, x2 ∈ V ∗ and (u, δ, v)del ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x ⇒∗ w, for some x ∈ A} ,

where ⇒∗ is the reflexive and transitive closure of the relation ⇒.

2.2 Graph-Controlled Insertion-Deletion Systems

A graph-controlled insertion-deletion system with k components, or (k-)GCID
for short, is a construct Π = (k, V, T,A,H, i0, if , R) where

– k is the number of components,
– V is an alphabet,
– T ⊆ V is the terminal alphabet,
– A ⊆ V is a finite set of axioms,
– H is a set of labels associated (in a one-to-one manner) to the rules in R,
– i0 ∈ [1 . . . k] is the initial component,
– if ∈ [1 . . . k] is the final or target component, and
– R is a finite set of rules of the form (i, r, j) where r is an insertion rule of the

form (u, η, v)ins or deletion rule of the form (u, δ, v)del and i, j ∈ [1 . . . k].

A rule of the form l : (i, r, j), where l ∈ H is the label associated to the rule,
denotes that the string is sent from component i (for short denoted as Ci) to
Cj after the application of the insertion or deletion rule r on the string.

A configuration of Π is represented by (w)i where i is the number of the
current component (initially i0) and w is the current string. A transition (w)i ⇒
(w′)j is performed if there exists a rule l : (i, r, j) in R such that w ⇒ w′ on
applying the insertion or deletion rule r; in this case, we also write (w)i ⇒l (w′)j
or (w′)j ⇐l (w)i. By (w)i

⇒l

⇐l′
(w′)j , we mean that (w′)j is derivable from (w)i

using rule l and (w)i is derivable from (w′)j using rule l′. The language of a
graph-controlled insertion-deletion system is the set of all terminal strings in
the target component if reachable from an axiom and the initial component i0.
Formally,

L(Π) = {w ∈ T ∗ | (x)i0 ⇒∗ (w)if for some x ∈ A}.
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Next, we discuss about the size of a graph-controlled ins-del system. A graph-
controlled ins-del system Π is of size (k;n, i′, i′′;m, j′, j′′) (with the correspond-
ing language classes denoted by GCID(k;n, i′, i′′;m, j′, j′′)) if

k = the number of components
n = max{|η| : (i, (u, η, v)ins, j) ∈ R} (max. length of the inserted string)
i′ = max{|u| : (i, (u, η, v)ins, j) ∈ R} (max. length of the left context)
i′′ = max{|v| : (i, (u, η, v)ins, j) ∈ R} (max. length of the right context)
m = max{|δ| : (i, (u, δ, v)del, j) ∈ R} (max. length of the deleted string)
j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R} (max. length of the left context)
j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R} (max. length of the right context)

Let us give some examples for GCID systems.

Example 1. The following GCID system Π1 of size (2; 1, 0, 0; 0, 0, 0) generates
the language L1 = {w ∈ {a, b}∗ : |w|a = |w|b}.

Π1 = (2, {a, b}, {a, b}, {λ}, {r1, r2}, 1, 1, R) ,

where the rules of R are: r1 : (1, (λ, a, λ)ins , 2), r2 : (2, (λ, b, λ)ins , 1). 
�
Example 2. With axiom A = {ab, λ}, two rules grouped in singleton compo-
nents C1 = {(1, (a, a, b)ins, 2)}, C2 = {(2, (a, b, b)ins, 1)}, initial and target
component C1, the GCID system Π2 can describe L2 = {anbn : n ≥ 0}, i.e.,
L2 ∈ GCID(2; 1, 1, 1; 0, 0, 0). 
�
Example 3. Consider the GCID system Π3 of size (3; 1, 0, 1; 1, 0, 0) as follows:

Π3 = (3, {S, S′, a, b}, {a, b}, {SS′},H, 1, 1, R) ,

where the rules of R are the following ones:

r1.1 : (1, (λ, a, S)ins , 2) r1.2 : (1, (λ, S, λ)del , 3)
r2.1 : (2, (λ, b, S′)ins , 1)
r3.1 : (3, (λ, S, S′)ins , 1) r3.2 : (3, (λ, S′, λ)del , 1)

We claim that Π3 generates L3 = {anbn : n ≥ 1}∗. We prove our claim by
discussing the working of the rules of Π3 here. Starting with the axiom SS′ in
C1, a is inserted before S and then b is inserted before S′ in order, repeatedly,
and this leads to (anSbnS′) in C1. After n(≥ 0) cycles of repetitions, rule r1.2
is applied and this deletes S and we move to C3 with the string anbnS′. We now
have a choice of applying rule r3.1 or r3.2. In the latter case, S′ is deleted and
the process terminates at the target component C1. In the former case, we are
back to the starting point in order to generate anbnambmSS′. On repeating this
process several times as desired, the process can be terminated by applying the
rule r3.2. With these arguments, one can see that this system generates L3. 
�

Observe the similarities between the examples: L1 is the iterated shuffle clo-
sure of (L2 ∪ LR

2 ), while L3 is the Kleene closure of L2. Notice that L1 /∈ LIN
and L3 /∈ MLIN , and the latter can be proved in the same way as argued in [4,
p. 137] for the �Lukasiewicz language.
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3 Auxiliary Results

In order to simplify the proofs of some of our main results, the following obser-
vations are helpful.

Theorem 1. For all non-negative integers k, n, i′, i′′,m, j, j′′, we have that

GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R .

Proof. To an ins-del rule (x, y, z)µ with μ ∈ {ins, del}, we associate the reversed
rule ρ(r) = (zR, yR, xR)µ. Let Π = (k, V, T,A,H, i0, if , R) be a graph-controlled
insertion-deletion system with k components. Map a rule l : (i, r, j) ∈ Π to
l : (i, ρ(r), j) in ρ(R). Define ΠR = (k, V, T,AR,H, i0, if , ρ(R)). Then, an easy
inductive argument shows that L(ΠR) = (L(Π))R. Observing the sizes of the
system now shows the claim. 
�
Corollary 1. Let L be a language class that is closed under reversal. Then, for
all non-negative integers k, n, i′, i′′,m, j′, j′′, we conclude that

1. L = GCID(k;n, i′, i′′;m, j′, j′′) if and only if
L = GCID(k;n, i′′, i′;m, j′′, j′);

2. L ⊆ GCID(k;n, i′, i′′;m, j′, j′′) if and only if
L ⊆ GCID(k;n, i′′, i′;m, j′′, j′).

4 Computational Completeness Results

In this section, we prove the computational completeness results for GCID sys-
tems of sizes (i) (3; 1, 1, 1; 1, 1, 0) (ii) (3; 1, 1, 1; 1, 0, 1) and (iii) (2; 2, 0, 0; 1, 1, 1).
One may note that, in the first (second) system, the deletion is left context (right
context) and in the third system, the insertions are performed in a context-free
manner.

Theorem 2. GCID(3; 1, 1, 1; 1, 1, 0) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. We build a GCID
system Π such that L(Π) = L(G). Let Π = (3, V, T, {S},H, 1, 1, R). The rules
in P are labelled injectively with labels from [1 . . . |P |]. Let V = N ∪T ∪{p : p ∈
[1 . . . |P |]}. R is defined as follows. The rules are classified into components C1,
C2 and C3 as indicated by the first character following the rule label.
We simulate the rule p: X → bY by the following ins-del rules:

p1.1 : (1, (λ, p,X)ins , 2)
p2.1 : (2, (λ, b, p)ins , 3), p2.2 : (2, (Y,X, λ)del , 1)
p3.1 : (3, (b, Y, p)ins , 3), p3.2 : (3, (Y, p, λ)del , 2)

We simulate the rule q: X → Y b by the following ins-del rules:

q1.1 : (1, (λ, q,X)ins , 2)
q2.1 : (2, (λ, Y, q)ins , 3), q2.2 : (2, (λ, q, λ)del , 1)
q3.1 : (3, (q, b,X)ins , 3), q3.2 : (3, (b,X, λ)del , 2)
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We simulate the rule f : AB → λ by the following ins-del rules:

f1.1 : (1, (λ, f,A)ins , 2)
f2.1 : (2, (λ, f, λ)del , 1), f2.2 : (2, (f,A, λ)del , 3)
f3.1 : (3, (f,B, λ)del , 2)

We simulate the rule g: CD → λ by the following ins-del rules:

g1.1 : (1, (λ, g, C)ins , 2)
g2.1 : (2, (λ, g, λ)del , 1), g2.2 : (2, (g, C, λ)del , 3)
g3.1 : (3, (g,D, λ)del , 2)

We simulate the rule h : S′ → λ by the ins-del rule h1.1 : (1, (λ, S′, λ)del, 1).
We now proceed to prove that L(Π) = L(G). We do this by explaining

how the simulation of the rules of G should work and why no other malicious
derivations are possible in Π.

Working of p : X → bY : Consider the string αXβ in C1. Then there is a unique
sequence of rule applications in Π as follows.

(αXβ)1 ⇒p1.1 (αpXβ)2 ⇒p2.1 (αbpXβ)3 ⇒p3.1 (αbY pXβ)3
⇒p3.2 (αbY Xβ)2 ⇒p2.2 (αbY β)1.

Note that though applying the rule p3.1 leaves the string in C3 itself, rule
p3.1 cannot be applied again (the benefit of using double-sided context). Also,
only one X of N ′ is present in the derivation until a Y ∈ N ′ is introduced, thus,
p2.2 cannot be used before the rule p2.1 is applied.

Working of q : X → Y b: Consider the string αXβ in C1. On applying rule q1.1,
we insert q before X and we get αqXβ in C2. Now, we can apply either q2.1 or
q2.2. In the latter case, we delete the just inserted marker q and end up with
αXβ in C1 (back to the starting point). Hence, we choose rule q2.1 eventually to
move on. In this case, consider the following sequence of rule applications in Π.

(αXβ)1
⇒q1.1
⇐q2.2

(αqXβ)2 ⇒q2.1 (αY qXβ)3 ⇒q3.1 (αY qbXβ)3 ⇒q3.2 (αY qbβ)2

At this point, we again have a choice of applying rule q2.1 or q2.2. In the
former case, we will again insert a Y before q yielding αY Y qbβ in C3. As Y ∈ N ′

is the only nonterminal in the string, the first symbol of β cannot be X. Thus,
we cannot apply any rule in C3 and the derivation stops with nonterminals in a
non-target component. In the latter case, by applying q2.2 we delete q and get
αY bβ in C1, which is the target component.

We next proceed to discuss the simulation of the non context-free erasing
rules AB → λ and CD → λ.

Working of f : AB → λ: The working of the rule is shown by the following
sequence of rule applications.

(αABβ)1
⇒f1.1
⇐f2.1

(αfABβ)2 ⇒f2.2 (αfBβ)3 ⇒f3.1 (αfβ)2 ⇒f2.1 (αλβ)1
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Working of g : CD → λ: Similar to the working of the rule f : AB → λ.
The rule (1, (λ, S′, λ)del , 1) directly erases S′. We start at S in C1 and by

repeatedly applying the rules p, q, f, g, h, we eventually get (S)1 ⇒∗ (w)1. This
proves that L(G) ⊆ L(Π).

To prove the reverse relation (L(Π) ⊆ L(G)), we observe that the rules of Π
are applied in groups and each group of rules corresponds to one of p, q, f, g, h.
Also, it is not possible to switch between the simulation of some p, say, to that
of f , as we always use unique marker symbols to prevent this from happening.
This observation completes the proof. 
�
As RE is known to be closed under reversal, we conclude with Corollary 1:

Theorem 3. GCID(3; 1, 1, 1; 1, 0, 1) = RE.

Theorem 4. GCID(2; 2, 0, 0; 1, 1, 1) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. We construct
a GCID system Π such that L(Π) = L(G). Let Π = (2, V, T, {S},H, 1, 1, R).
The rules from P in G are labelled injectively with labels from [1 . . . |P |]. The
alphabet of Π is V = N ∪ T ∪ {p, p′ : p ∈ [1 . . . |P |]}. R is defined as follows.
We simulate the rule p: X → bY , with X,Y ∈ N ′, by the following ins-del rules:

p1.1 : (1, (λ, bY, λ)ins , 2)
p2.1 : (2, (Y,X, λ)del , 1)

We simulate the rule q: X → Y b, with X,Y ∈ N ′, by the following ins-del rules:

q1.1 : (1, (λ, Y b, λ)ins , 2)
q2.1 : (2, (λ,X, Y )del , 1)

We simulate the rule f : AB → λ, with A,B ∈ N ′′, by the following ins-del rules:

f1.1 : (1, (λ, ff ′, λ)ins , 2), f1.2 : (1, (A, f, f ′)del , 1), f1.3 : (1, (λ,A, f ′)del , 2)
f2.1 : (2, (f ′, B, λ)del , 1), f2.2 : (2, (λ, f ′, λ)del , 1)

We simulate the rule g: CD → λ by the following ins-del rules:

g1.1 : (1, (λ, gg′, λ)ins , 2), g1.2 : (1, (C, g, g′)del , 1), g1.3 : (1, (λ,C, g′)del , 2)
g2.1 : (2, (g′,D, λ)del , 1), g2.2 : (2, (λ, g′, λ)del , 1)

We simulate the rule h : S′ → λ by the ins-del rule h1.1 : (1, (λ, S′, λ)del, 1).
We now proceed to reason why L(Π) = L(G).

Working of p : X → bY : Consider a string αXβ in C1. The string bY is free to be
inserted anywhere in the string using rule p1.1 and the derivation moves to C2.
Rule p2.1 can be applied only if bY is inserted before X. Recall that X,Y ∈ N ′

and these types of nonterminals only occur once in valid sentential forms of G
(SGNF property). In this case, the X is deleted yielding bY and the derivation
ends at the target component C1. If bY has been inserted elsewhere, then no
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rule of C2 can be applied and we are trapped in a non-target component with
nonterminals in the string.

Working of q : X → Y b: Similar to the working of the rule p as explained above.

Working of f : AB → λ: Consider the string αABβ in C1. We introduce two
markers f, f ′ together anywhere in the string using the rule f1.1 and move to
C2. Suppose that ff ′ has been inserted between A and B. Now, there is a choice
of applying rule f2.1 or f2.2. In the latter case, we will delete the marker f ′

and come to the target component C1 with αAfBβ. If we introduce ff ′ again,
this will eventually lead to a string having the nonterminals f and A in it, thus
not deriving any terminal string. This observation forces one to choose rule f2.1
before applying f2.2. In this case, there is a unique sequence of rule applications:

(αAff ′Bβ)2 ⇒f2.1 (αAff ′β)1 ⇒f1.2 (αAf ′β)1 ⇒f1.3 (αf ′β)2 ⇒f2.2 (αλβ)1

Suppose that ff ′ has not been inserted between A and B, then it is not difficult
to see that the derived string will always contain some nonterminals.

Working of g : CD → λ: Similar to the working of the rule f : AB → λ.
The rule (1, (λ, S′, λ)del , 1) directly erases S′. We start at S in C1 and by

repeatedly applying the rules p, q, f, g, h, we eventually get (S)1 ⇒∗ (w)1. As
argued above, no malicious derivations can lead to terminal strings in C1. 
�

5 (Meta)linear Languages

We next prove that GCID systems of sizes (2; 2, 1, 0; 1, 0, 0), (2; 2, 0, 1; 1, 0, 0),
(3; 1, 1, 0; 1, 0, 0), or (3; 1, 0, 1; 1, 0, 0) can simulate all linear languages. In these
systems, deletions are performed in a context-free manner. While comparing the
last two sizes with the first two sizes, one may note that the length of the inserted
string is reduced at the cost of increasing the number of components. We also
show how to extend the simulations beyond linear languages.

Theorem 5. LIN � GCID(2; 2, 1, 0; 1, 0, 0).

Proof. Consider a linear grammar G = (N,T, P, S), where every rule of P is of
the form X → Y a or X → aY or X → a or X → λ. We construct a GCID system
Π = (2, V, T, {S},H, 1, 1, R) for G. The rules from P in G are labelled injectively
with labels from [1 . . . |P |]. The alphabet of Π is V = N ∪T ∪{p : p ∈ [1 . . . |P |]}.
The set of rules R of Π is defined as follows.
We simulate the rule p : X → Y a by the following ins-del rules:

p1.1 : (1, (X, p, λ)ins , 2), p1.2 : (1, (p, Y a, λ)ins , 2)
p2.1 : (2, (λ,X, λ)del , 1), p2.2 : (2, (λ, p, λ)del , 1)

We simulate the rule q : X → aY by the following ins-del rules:

q1.1 : (1, (X, q, λ)ins , 2), q1.2 : (1, (q, aY, λ)ins , 2)
q2.1 : (2, (λ,X, λ)del , 1), q2.2 : (2, (λ, q, λ)del , 1)
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We next simulate the rule f : X → a by the following ins-del rules:

f1.1 : (1, (X, a, λ)ins , 2)
f2.1 : (2, (λ,X, λ)del , 1)

We now prove the theorem by discussing the working of the above rules.

Working of p : X → Y a: Consider the string αXβ in C1. On applying rule p1.1,
we insert p after X and get αXpβ in C2. At this point, we have a choice of
applying rule p2.1 or p2.2. In the latter case, the marker p is deleted and we
move to C1 with αXβ in the string and this is our starting point. Hence we
have to use rule p2.1 eventually to proceed. In this case, X is deleted and move
to C1 with αpβ. At this point, we note that the rule p1.1 cannot be applied
since in linear grammar there is at most one nonterminal (in this case, X) in the
string; this was already deleted in the previous step. With these arguments, we
simulate the rule X → Y a as follows:

(αXβ)1
⇒p1.1
⇐p2.2

(αXpβ)2 ⇒p2.1 (αpβ)1 ⇒p1.2 (αpY aβ)2 ⇒p2.2 (αY aβ)1.

In the above sequence, we note that before the derivation (αpβ)1 ⇒p1.2

(αpY aβ)2, the rule p1.1 cannot be applied since in a linear grammar there is at
most one nonterminal (in this case, X) in the string and it is already deleted in
the previous step.

Working of q : X → aY : Similar to the working of the above rule p : X → Y a.
The sequence of rule applications in Π is given below for a better understanding.

(αXβ)1
⇒q1.1
⇐q2.2

(αXqβ)2 ⇒q2.1 (αqβ)1 ⇒q1.2 (αpaY β)2 ⇒q2.2 (αaY β)1.

The working of rule f : X → a is simple and straightforward. Since we
start at S in C1 and if we repeatedly apply the rules p, q, f , we eventually get
(S)1 ⇒∗ (w)1. This proves that L(G) ⊆ L(Π).

For the converse direction L(G) ⊇ L(Π), observe the remarks that we gave
above when explaining the working of the simulations; apart from unnecessary
additional loops in the simulation, no successful derivations are possible in Π
other than those intended for the simulation of G.

The strictness of the inclusion follows from Examples 1 and 3. 
�
Remark 1. By allowing for a few more components, we can extend the previous
simulation result to cover Kleene closures of linear languages or also MLIN .
For instance, starting with axiom S′S and a third component containing rules
r3.1 : (3, (S′, S, λ)ins, 1) and r3.2 : (3, (λ, S′, λ)del, 1) and changing f2.1 to
transit to C3, the modified system Π ′ would describe (L(G))+, or, by having S′

as the axiom and starting in C3, we can get (L(G))∗. 
�
Likewise, we can describe metalinear languages with three or four components.

Theorem 6. MLIN � GCID(4; 2, 1, 0; 1, 0, 0) ∩ GCID(3; 2, 1, 0; 1, 0, 1).
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Proof. If L ∈ MLIN happens to be a linear language, we can proceed as in
Theorem 5. So, we assume that L ∈ MLIN − LIN is given. We can think of the
work of a metalinear grammar G with L(G) = L ⊆ T ∗ (generating the concate-
nation of k linear languages L(G1), . . . , L(Gk) with start symbols S1, . . . , Sk,
respectively, and k pairwise disjoint nonterminal alphabets N1, . . . , Nk) as fol-
lows: starting with S1S

′
2 as the axiom, first, G1 generates a terminal word. Then,

S′
2 → S2S

′
3 is executed, and G2 generates a terminal word, starting from S2. This

strategy continues, until S′
k−1 → Sk−1S

′
k is executed, followed by the generation

of a terminal word by Gk−1 and finally S′
k → Sk initiates the last grammar Gk

to append a terminal word.
Let us first focus on GCID(4; 2, 1, 0; 1, 0, 0). More formally, we construct

a GCID system Π = (4, V, T, {S1S
′
2},H, 1, 1, R) for G. Let V1, . . . , Vk be the

alphabets resulting from the construction of GCID systems Πi for G1, . . . , Gk

according to Theorem 5. Let Ni = Vi − T and assume (w.l.o.g.) that N1, . . . , Nk

are pairwise disjoint. Let V =
⋃k

i=1 Vi ∪{S′
i : i ∈ [1 . . . k]}. Let Ri be the rule set

of Πi. R′
i coincides with Ri except for (possibly) terminating rules of the type

f2.1 that target at C3 for i ∈ [1 . . . (k − 1)]. Let R =
⋃k

i=1 R′
i ∪ RT , where RT

collects transition rules that are described in details in the following.
The work of grammar Gi, say, of G1, is simulated (as described in the proof of

Theorem 5). Then, (in general) we transit to the third component. We perform
the following transition rules:

r1→22.1 : (2, (λ, r1→2, λ)del , 1)
r1→23.1 : (3, (S′

2, r1→2, λ)ins, 4), r1→23.2 : (3, (r1→2, S2S
′
3, λ)ins , 2)

r1→24.1 : (4, (λ, S′
2, λ)del , 3)

Similar transition rules are added to start simulations of G3, . . . , Gk−1.
Finally, we have the rules:

rk−1→k2.1 : (2, (λ, rk−1→k, λ)del , 1)
rk−1→k3.1 : (3, (S′

k, rk−1→k, λ)ins, 4), rk−1→k3.2 : (3, (rk−1→k, Sk, λ)ins , 2)
rk−1→k4.1 : (4, (λ, S′

k, λ)del , 3)

Observe that the applications of the new rules (in comparison to what is
inherited from Theorem 5) is deterministic, and due to the new components,
no interference with previously introduced rules is possible. Furthermore, the
context-free deletion rules in C2 of Theorem 5 will delete only nonterminals of
Ni, i ∈ [1 . . . k], in the present simulation; hence, they do not interfere with the
new nonterminals like S′

i.
We now turn to GCID(3; 2, 1, 0; 1, 0, 1). The only real problem merging C2

and C4 was that during the simulation of Gi, possibly the symbol S′
i+1 gets

deleted. This can be prevented by requiring the right context of ri→i+1 in
the rule that deletes S′

i+1. More precisely, the modified rules for Pi will be
ri→i+13.1 : (3, (S′

i+1, ri→i+1, λ)ins, 2) and ri→i+12.2 : (2, (λ, S′
i+1, ri→i+1)del , 3).

The remaining technical details are left to the reader.
Remark 1 and more concretely Example 3 shows the claimed strictness of

the inclusion. 
�
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Since LIN and MLIN are known to be closed under reversal [15], by using
Corollary 1, we can immediately conclude the next two Theorems (7 and 8):

Theorem 7. LIN � GCID(2; 2, 0, 1; 1, 0, 0).

Theorem 8. MLIN � GCID(4; 2, 0, 1; 1, 0, 0) ∩ GCID(3; 2, 0, 1; 1, 1, 0).

Theorem 9. LIN � GCID(3; 1, 1, 0; 1, 0, 0).

Proof. Consider a linear grammar G = (N,T, P, S). We construct a GCID sys-
tem Π = (3, V, T, {S},H, 1, 1, R). The rules from P in G are assumed to be
labelled injectively with labels from the set [1 . . . |P |]. The alphabet of Π is
V = N ∪ T ∪ {p, p′ : p ∈ [1 . . . |P |]}. The set of rules R of Π is defined as follows.

We simulate the rule p : X → Y a by the following ins-del rules:

p1.1 : (1, (X, p, λ)ins , 3), p1.2 : (1, (p, a, λ)ins , 2), p1.3 : (1, (p′, Y, λ)ins , 2)
p2.1 : (2, (p, p′, λ)ins , 3), p2.2 : (2, (λ, p′, λ)del , 1)
p3.1 : (3, (λ,X, λ)del , 1), p3.2 : (3, (λ, p, λ)del , 1)

We simulate the rule q : X → aY by the following ins-del rules:

q1.1 : (1, (X, q, λ)ins , 3), q1.2 : (1, (q, q′, λ)ins , 2), q1.3 : (1, (q′, Y, λ)ins , 2)
q2.1 : (2, (q, a, λ)ins , 3), q2.2 : (2, (λ, q′, λ)del , 1)
q3.1 : (3, (λ,X, λ)del , 1), q3.2 : (3, (λ, q, λ)del , 1)

We simulate the rule f : X → a by the following ins-del rules:

f1.1 : (1, (X, a, λ)ins , 3)
f3.1 : (3, (λ,X, λ)del , 1)

Working of p : X → Y a: Consider the string αXβ in C1. On applying rule p1.1,
we insert p after X and get αXpβ in C3. At this point, we have a choice of
applying rule p3.1 or p3.2. In the latter case, the marker p is deleted and we
move to C1 with αXβ as the string and this is our starting point. Hence, we
use rule p3.1 eventually to proceed. Then, X is deleted and we move to C1 with
αpβ. Now, the rule p1.1 cannot be applied since in linear grammars there is at
most one nonterminal (in this case, X) in the string that was already deleted in
the previous step. Hence, we simulate the rule X → Y a as follows:

(αXβ)1
⇒p1.1
⇐p3.2

(αXpβ)3 ⇒p3.1 (αpβ)1 ⇒p1.2 (αpaβ)2 ⇒p2.1 (αpp′aβ)3

⇒p3.2 (αp′aβ)1 ⇒p1.3 (αp′Y aβ)2 ⇒p2.2 (αY aβ)1.

Working of q : X → aY : Consider the string αXβ in C1. On applying rule q1.1,
we insert q after X and get αXqβ in C3. At this point, we have a choice of
applying rule q3.1 or q3.2. In the latter case, the marker q will be deleted and
we move back to the starting point. Hence we have to use rule q3.1 eventually
to proceed. In this case, X is deleted and we move to C1 with αqβ where q′ is
inserted after q and the string moves to C2 with αqq′β. In C2, we can apply
the rule q2.1 or q2.2. On applying q2.2, q′ is deleted and the string αqβ will
be in C1 and we are back to the previous step. This is also depicted in the
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following derivation. This forces us to apply the rule q2.1 and the sequence of
rule applications is shown in the derivation. With these arguments, we simulate
the rule X → aY as follows:

(αXβ)1
⇒q1.1
⇐q3.2

(αXqβ)3 ⇒q3.1 (αqβ)1
⇒q1.2
⇐q2.2

(αqq′β)2 ⇒q2.1 (αqaq′β)3

⇒q3.1 (αaq′β)1 ⇒q1.3 (αaq′Y β)2 ⇒q2.2 (αaY β)1.

The working of rule f : X → a is simple and straightforward. By repeatedly
applying p, q, f , we eventually get (S)1 ⇒∗ (w)1. Thus L(G) ⊆ L(Π). Moreover,
as argued above, no other derivations are possible for Π, entering C1 with a
string αXβ. So, by induction, L(G) ⊇ L(Π) also follows. 
�
As LIN is known to be closed under reversal, by using Corollary 1, we have:

Theorem 10. LIN � GCID(3; 1, 0, 1; 1, 0, 0).

In the literature, GCID(4; 1, 1, 0; 1, 0, 1), GCID(4; 1, 0, 1; 1, 1, 0) (see [5]) and
i) GCID(5; 1, 1, 0; 1, 1, 0), ii) GCID(5; 1, 1, 0; 1, 0, 1), iii) GCID(5; 1, 1, 0; 2, 0, 0),
iv) GCID(5; 1, 0, 1; 2, 0, 0), v) GCID(5; 2, 0, 0; 1, 1, 0), vi) GCID(5; 2, 0, 0; 1, 0, 1)
(see [12]) describe RE . Thus, the generative power of GCID(4; 1, 1, 0; 1, 0, 0),
GCID(4; 1, 0, 1; 1, 0, 0), GCID(5; 1, 1, 0; 1, 0, 0), GCID(5; 1, 0, 1; 1, 0, 0) is open.
In the following, we discuss the power of these systems.

Remark 2. As in Remark 1, one can see that the Kleene star of each of the linear
languages lies in GCID(4; 1, 1, 0; 1, 0, 0)∩GCID(4; 1, 0, 1; 1, 0, 0). Inheriting the
proof idea of Theorem 6, we deduce the following from Theorems 9 and 10:

Theorem 11. MLIN ∈ GCID(5; 1, 1, 0; 1, 0, 0) ∩ GCID(5; 1, 0, 1; 1, 0, 0).

C2C1 C3
p, q, f, g p, q, f, g

p, q, f, gp, q, f, g

h p, q

Fig. 1. Control graph structure of Theorem 2; the corresponding simple undirected
graph is a path on three vertices, which corresponds to three nested membranes.

C2C1 C3

p, q

p, q

p, q

p, q, f

p, q, f

Fig. 2. Control graph structure of Theorem 9; the corresponding simple undirected
graph is a cycle on three vertices, which cannot correspond to any nested membrane
structure.
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6 Conclusions

We have studied GCID systems of various small sizes, proving them to be either
computationally complete or able to simulate at least all (meta-)linear languages.
Example 2 shows (together with [20]) that two components are more powerful
than one for systems of size (1, 1, 1;x, y, z) with y + z ≤ 1, x ∈ {0, 1}. Proving
a non-trivial simulation result for the family of context-free languages (say, by
GCID systems with size (3; 1, 1, 0; 1, 1, 0)) is left open. Also, we have indicated
how to simulate Kleene closures of meta-linear languages; it would be there-
fore interesting to see if the regular closure of the linear languages can be also
simulated; refer to [15] for details of this language class.

The underlying control graph of a k-GCID system Π is defined to be a graph
with k nodes labelled C1 through Ck. There exists a directed edge from Ci to Cj
if and only if there exists a rule of the form (i, r, j) in R of Π. If the undirected
simple graph corresponding to this underlying directed graph is a tree, then Π
can be viewed as an insertion-deletion P system (see [5]). In this paper, the
underlying graphs of the GCID systems that simulate the families RE and LIN
(in Theorems 2, 4 and 5) are trees. Hence, the corresponding results can be
immediately also read as results on insertion-deletion P systems. However, one
may note that the control graph of the construction of Theorem 9 contains a
triangle (q1.3 leads from C1 to C2, q2.1 from C2 to C3 and q3.1 from C3 to
C1 in the proof of Theorem 9) and is hence not a tree. Whether or not similar
results hold for insertion-deletion P systems remains open. The control graphs
of the graph-controlled ins-del systems discussed in this paper are visualized in
Figs. 1 and 2 for the case of Theorems 2 and 9, respectively. The annotations
given on the edges tells what part of the simulation is responsible for this edge.
The according pictures of the simulations in the metalinear cases are even a
bit more involved (as we have four components in the first part of Theorem 6)
and is hence omitted. However, as there are only connections between C1 and
C2, between C2 and C3, and between C3 and C4, this corresponds again to an
insertion-deletion P system.
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