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Abstract: There are many image resizing techniques, which include scaling, scale-and-stretch,

seam carving, and so on. They have their own advantages and are suitable for different application

scenarios. Therefore, a universal detection of tampering by image resizing is more practical.

By preliminary experiments, we found that no matter which image resizing technique is adopted,

it will destroy local texture and spatial correlations among adjacent pixels to some extent. Due to the

excellent performance of local Tchebichef moments (LTM) in texture classification, we are motivated

to present a detection method of tampering by image resizing using LTM in this paper. The tampered

images are obtained by removing the pixels from original images using image resizing (scaling,

scale-and-stretch and seam carving). Firstly, the residual is obtained by image pre-processing. Then,

the histogram features of LTM are extracted from the residual. Finally, an error-correcting output

code strategy is adopted by ensemble learning, which turns a multi-class classification problem into

binary classification sub-problems. Experimental results show that the proposed approach can obtain

an acceptable detection accuracies for the three content-aware image re-targeting techniques.

Keywords: image resizing; local Tchebichef moments (LTM); scaling; scale-and-stretch; seam carving

1. Introduction

As image editing tools and various mobile devices are easily acquired and conveniently used,

maximizing the viewing experience of end users on small devices becomes very important. Compared

to traditional image re-targeting methods, such as linear scaling and cropping, many content-aware

image resizing methods can preserve salient areas, avoiding serious distortions or loss of significant

information[1–3]. Meanwhile, many content-aware resizing algorithms have been adopted using

image editing tools, such as photoshop and GIMP. An ordinary user can very easily create tampered

images for malicious purposes using image editing tools. Moreover, it is impossible to distinguish

those tampered images from authentic images with the naked eye. Therefore, how to detect tampered

images is a hot topic in the field of image content security.

In recent years, a few approaches have existed about the detection of content-aware image

re-targeting. Moreover, most of the detection methods are for the seam carved images. Lu et al. adopted

a forensic hash to distinguish whether an image is subjected to a seam carving operation [4]. However,

it is an active forensics approach; moreover, a falsifier might remove the forensic hash. For passive

forensic detection, Sarkar et al. used 324D Markov features to detect image seam carving [5]. Later,
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Fillion et al. exploited a series of intrinsic features to expose the trace of seam carved images [6]. In Wei

et al. [7], an approach based patch analysis was adopted to distinguish whether an image is original or

not. According to noise and energy distribution in seam carved images, Ryu et al. [8] exploited the

features based on noise and energy bias to detect seam carved images. Local binary pattern (LBP)

was adopted to detect seam carved images [9] in our recent work. Inspired by image entropy with

the ability of capturing the intrinsic information of an image, we exploited multi-scale spectral and

spatial entropies to detect seam carved images with low resizing ratios [10]. Web Local Descriptor

(WLD) and LBP were adopted to distinguish whether an image is original or not [11]. In [12], a large

feature mining approach was proposed to detect image seam carving under recompression in joint

photographic experts group (JPEG) images.

However, most existing detections of image resizing are designed for a specific content-aware

resizing. Much less has been done to distinguish different content-aware resizing approaches in

the process of image re-targeting. In practice, the best re-targeting method relies on an image itself.

For example, scaling images in horizontal or vertical direction can be performed in real time using

interpolation and will preserve the global visual effects and retarget images with medium perceptual

quality. However, scaling will introduce some shape deformation into the retarget image. Seam

carving [1] supports various visual saliency measures for defining the energy of an image. Nevertheless,

seam carving can excessively carve less important parts of an image and result in unwanted visual

distortions. scale-and-stretch [3]can preserve the aspect ratios of local objects. However, if there are

many quads in the image, the approach will fail to preserve the aspect ratio of the whole image [2].

Therefore, there are different image resizing methods depending on the image content to achieve image

change in size while preserving the saliency region. it is necessary to propose a universal detection of

image resizing.

The rest paper is organized as follows: Section 2 summarizes several common methods of image

re-targeting and analyzes their artifacts. Section 3 briefly introduces the proposed detection approach.

Our experimental results are described and analyzed in detail in Section 4, and conclusions are made

in Section 5.

2. Image Resizing and Their Possible Artifacts

2.1. Several Common Methods of Image Resizing

Among the methods of content-aware image resizing, scaling, seam carving [1], and

scale-and-stretch [3] are three common approaches to re-target an image. Seam carving is defined

by forward energy. The intensity gradient magnitude in L1 metric is defined as an importance map.

The contiguous chains of pixels that pass through the regions of the least importance in the image are

deleted or duplicated by seam carving to obtain image resizing. Dynamic programming is adopted

to compute seams. Scale-and-stretch is defined warping. Both image dimensions are processed by

warping at once. Moreover, an objective function is optimized to allow important regions uniformly

scaling in order to preserve their shapes. A saliency and combination of L2 gradient magnitude (defined

by [13]) is defined as the importance map. Scaling implemented image resizing by simply bi-cubic

interpolation and non-uniform scaling.

According to the above description of the three resizing methods, it is clearly found that

scale-and-stretch can keep significant regions in an image, which is consistent with its original image

after the image is re-targeted. However, seam carving implements image re-targeting by deleting or

inserting pixels within a minimal energy; therefore, it may cause the salient object distortion.

2.2. Analysis of Image Resizing Artifacts

There exist three kinds of artifacts for the image processed by the content-aware resizing method

[13], such as geometric deformation, information loss and local texture distortion. Figure 1 shows

these artifacts caused by content-aware re-targeting. Figure 1b shows line or edge distortion after
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re-targeting. However, salient areas of an image, such as people and building, do not significantly

change. The shape distortion of an image is shown in Figure 1c. This further explains that removed

pixels might exist in salient areas of the image when a pixel with a minimum energy is deleted in the

process of the image seam carving. Therefore, it is easy to deform important objects of the image in

the process of image resizing. Figure 1d shows the artifact of information loss. A scaling method is

bi-cubic interpolation and re-targets the entire image in the process of image re-targeting. To better

show the image distortion in the process of image resizing, we adopt an LTM histogram to identify

the distortion caused by different resizing methods in this paper. Figure 2 shows the residual LTM

diagram for three different resizing methods. It can be found from Figure 2b that the image distortions

of a non-subject area are not easily perceived in Figure 1b. However, these distortions can be clearly

found in the residual LTM diagram. It can be clearly showed that the distortions are found in the

process of image re-targeting in Figure 2d.

(a) original image (b) scale-and-stretch method

(c) seam carving method (d) scaling method

Figure 1. Resized image obtained by different retargeting methods.

(a) (b)

(c) (d)

Figure 2. Residual LTM (local Tchebichef moments) diagram obtained by different re-targeting methods:

(a–d) correspond to the residual LTM diagram of Figure 1a–d, respectively.

3. Proposed Method

A passive detection method is presented for image resizing forgery detection in this paper. Figure 3

shows the implementation process diagram of our presented algorithm. Similar to the process of most
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existing forensics methods, our proposed method consists of two parts, i.e., a training part and a testing

part. In the training process, tampered images and their corresponding original images are adopted

as data sets. First, all the training images are preprocessed. Second, the LTM histogram features are

extracted from preprocessed images. Finally, a training model is obtained by using ensemble learning

based on extracted features. In the testing process, the LTM histogram features are extracted according

to the same steps in the training part. Finally, the extracted features are used by the trained ensemble

classifier to distinguish which resizing method a tested image is re-targeted.

Original images

Tampered images

Preprocessing LTM histogram

Ensemble 

classifier

Tested images

Preprocessing LTM histogram

Results

Training stage

Testing stage

Figure 3. A block diagram of our proposed approach.

3.1. Preprocessing

An image obtained by content-aware resizing methods usually has a good visual effect.

Furthermore, it is impossible for users to distinguish from authentic photographs using the naked

eye. However, the correlation between adjacent pixels will inevitably change after an image is resized.

Therefore, it is necessary to preprocess re-targeted images. Image residuals can efficiently capture the

change of adjacent pixels in the process of image re-targeting. In this paper, a one-dimensional low-pass

filter is adopted to calculate residuals along the horizontal and the vertical directions. The formula is

shown as Equation (1):

R(x, y) = I(x, y)− I(x, y) ∗ L(u), (1)

where I(x, y) is an image and L(u) is low-pass filter. Figure 4 shows the residuals of the preprocessed

content-aware image resizing. Through the residuals, it can be clearly found that tampered traces are

caused by different content-aware image resizing methods.
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(a) scale-and-stretch method (b) seam carving method (c) scaling method

(d) (e) (f)

Figure 4. Tampered images and correspond residual images obtained by different re-targeting methods:

(d–f) corresponds to the residual LTM diagram of (a–c), respectively.

3.2. Features of LTM

After images preprocessing, orthogonal Tchebichef moments are adopted to construct feature

vectors on 5 × 5 neighbor pixels. In addition, the texture information is encoded with Lehmer to

represent the relative strength of moments. The extracted feature vectors are called LTM. A byte value

for each pixel is provided, and an LTM diagram is generated by the encoding scheme. Therefore, the

histogram features of LTM are adopted to identify whether an image is subjected to image resizing.

Figure 5 shows the histogram features of LTM after preprocessing.

(a) (b) (c)

Figure 5. The histogram features of LTM: (a–c) corresponds to the LTM histogram of Figure 4d–f,

respectively.

3.3. Ensemble Learning for Blind Forensics

In this paper, an error-correcting output codes (ECOC) strategy [14] based on ensemble learning is

adopted, which transforms multi-class classification problems into binary classification sub-problems.

This is because ECOC is an excellent multi-class classification tool, and the ensemble learning performs

well in terms of computational complexity and detection accuracy. The tamper of three different

resizing methods, such as scale-and-stretch, seam carving and scaling, is identified. Therefore, for

this three-class classification problem, a pair coupling strategy [15] is adopted. Specifically, a discrete

matrix (coding matrix) is defined first. In addition, then, the problem is decomposed into n = 3

binary classification sub-problems according to the sequence of 0 and 1 in the coding matrix, namely

dichotomies. After that, ensemble learning is adopted to train these dichotomies and test the extracted



Appl. Sci. 2019, 9, 3007 6 of 10

histogram of LTM to obtain binary vectors. Finally, the class is identified by the minimum hamming

distance between the encoded word and the vector.

4. Results

4.1. Experimental Environment

To verify the performance of our proposed algorithm, we conduct a number of experiments in

our personal computer. The passive forensics approach is implemented in Matlab2012b. The ensemble

learning can be downloaded from [16]. In this paper, the Uncompressed Colour Image Database

(UCID) [17] is adopted as the original images. The image database contains 1338 images, which are

composed of people, buildings, animals and landscapes. Since there is no publicly available image

database of image resizing available, we construct an image library from UCID for resizing carving

detection. According to different resizing ratios, three resizing methods are used to produce tampered

images. The resizing ratios vary from 10% to 50% with a step size of 10%. That is, for every resizing

method, the resizing ratios of tampered images are 10%, 20%, 30%, 40%, and 50%. Therefore, we have

1338 original images and 3 × 5 × 1338 tampered images. To verify our proposed approach, we perform

the performance evaluation for the following cases: (1) tamper detection for a single resizing method;

(2) tamper detection for multiple resizing methods; and (3) tamper detection without preprocessing. In

all experiments, the ECOC based on an ensemble learning strategy is adopted to test the effect of our

proposed method. The image dataset is divided into two groups, 50% for training and 50% for testing.

The training and testing are repeated ten times, and the average detection accuracy is reported in this

paper.

4.2. Experimental Discussions

4.2.1. Tamper Forensics on a Single Resizing Method

In this experiment, we test the detection performance of our proposed method for a single resizing

method. The tampered images with scaling ratios from 10% to 50% are adopted to test the performance

of our proposed approach. Table 1 shows the detection results. From Table 1, we can see that the

detection accuracy is improved with the increment of the scaling ratio. When the scaling ratio is less

than 20%, our proposed approach has a higher detection accuracy for the scale-and-stretch resizing

method. Since the optimal local scaling ratio of each local block is calculated iteratively and the warped

image is updated simultaneously to match the scaling ratios as much as possible, the entire image is

resized in the process of scale-and-stretch re-targeting. However, the seam carving method resizes an

image by deleting the seams with the lowest energy once. Therefore, the tampered images obtained

by the seam carving method are difficult to be distinguished from the authentic images when the

scaling ratio is low. With the increment of the scaling ratio, the algorithm will cause a global structure

distortion. It can also be reflected in Table 1. Our proposed approach can get a higher accuracy rate

for images obtained using the seam carving method than that using other resizing methods with the

increment of the resizing ratio.

Table 1. Comparisons in terms of accuracy for tampered images with single re-targeting methods.

Scaling Ratio (%)
Accuracy (%)

Scale-and-Stretch Seam Carving Scaling

10 82.51 75.26 74.33
20 88.45 91.67 87.37
30 95.51 97.87 95.55
40 98.95 99.77 98.87
50 99.85 100 99.81
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4.2.2. Identifying Images Obtained by Different Content-Aware Resizing Methods

In this experiment, the tampered images with scaling ratios from 10% to 50% are obtained by

different content-aware resizing methods. They are adopted to test the performance of our proposed

algorithm. The average detection accuracies of different content-aware re-targeting methods, where

the average detection accuracy is the average value of diagonal elements in the confusion matrix, are

summarized in Table 2. Note that “mixed” represents the mixed test set of tampered images with

the scaling ratios from 10% to 50%. There are three content-aware resizing methods in this paper.

Therefore, this is a four-class classification problem (the original images as a special class), according

to the ECOC strategy.

Table 2. The average detection accuracies of our proposed approach with preprocessing.

Uncompressed (%) Compressed (%)

10% 20% 30% 40% 50% mixed 10% 20% 30% 40% 50% mixed
82.04 90.00 93.30 94.61 95.94 92.04 76 81.13 84.08 87.98 88.34 78.33

Table 2 shows that the average accuracy is improved with the increment of the scaling ratio.

However, the detection accuracy is apparently decreased for highly compressed images with Quality

factor (QF) being equal to 75. Through careful analysis of our experimental results, it is found that

the main reason for the decrement of the detection accuracy in the compressed condition is that the

traces of the tampered images are weakened when images are compressed. Therefore, the detection

accuracy is decreased in this case. We have also completed the experiment of the “mixed” tampered

uncompressed and compressed images and get the confusion matrix. Table 3 shows our experimental

results, where CMOMTUI represents the confusion matrix of “mixed” tampered uncompressed images,

CMOMTCI represents the confusion matrix of “mixed” tampered compressed images, “*” represents

the classified accuracy less than 1%, OR represents original images, SNS represents a scale-and-stretch

method, SC represents a seam carving method, and SL represents a scaling method. From Table 3, we

can see that our proposed method can get a high accuracy for the three content-aware resizing methods

mentioned in this paper. However, it can’t obtain a good detection accuracy on the tampered images

with JPEG compression. In addition, its false positive rate is relatively high for the seam carving

method (SC) and the scaling method (SL).

Table 3. CMOMTUI and CMOMTCI with preprocessing.

Uncompressed
Detection Accuracy (%)

Compressed
Detection Accuracy (%)

OR SNS SC SL OR SNS SC SL

OR 95.93 * * * OR 93.45 * * *
SNS * 90.14 11.12 3.61 SNS * 80.69 11.75 10.49
SC * * 83.71 6.01 SC * 1.49 68.43 18.77
SL 3.26 8.90 5.17 90.38 SL 5.56 17.82 19.82 70.73

4.2.3. The Detection Accuracy without Preprocessing

Tables 4 and 5 report the identified results for the uncompressed and compressed tampered

images without preprocessing, respectively, where CMOMTUI represents the confusion matrix of

“mixed” tampered uncompressed images, CMOMTCI represents the confusion matrix of “mixed”

tampered compressed images, “*” represents the classified accuracy less than 1%, OR represents

original images, SNS represents the scale-and-stretch method, SC represents the seam carving method,

and SL represents the scaling method. It can be found from Tables 4 and 5 that our proposed approach

has a sightly higher detection accuracy on the uncompressed images when the features of LTM are

extracted from the images without preprocessing. However, when the images are compressed by

QF = 75, the accuracy of our proposed approach is significantly lower than that of the images with
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preprocessing. The main reason is that the residual may weaken the tampered trace of the images

without compression when it is used in the process of preprocessing. However, the images with

compression are preprocessed by residuals, and the changes of these images will be highlighted.

Table 4. The average detection accuracies of our proposed approach without preprocessing.

Uncompressed (%) Compressed (%)

10% 20% 30% 40% 50% mixed 10% 20% 30% 40% 50% mixed
84.04 91.02 94.32 95.41 96.04 93.04 70.93 74.59 79.63 83.18 85.34 76.09

Table 5. CMOMTUI and CMOMTCI without preprocessing.

Uncompressed
Detection Accuracy (%)

Compressed
Detection Accuracy (%)

OR SNS SC SL OR SNS SC SL

OR 96.39 * * * OR 87.98 * * *
SNS * 91.54 9.21 3.21 SNS * 77.25 16.29 12.49
SC * * 85.71 5.41 SC 1.35 1.73 65.14 17.07
SL 3.60 8.40 5.08 91.38 SL 10.67 21.02 18.57 70.73

5. Conclusions

Content-aware image re-targeting methods are widely adopted to resize images to display on

all kinds of terminals. However, they can be also used to make fake images, which don’t have any

perceptual annoying distortions. By the principle analysis of the three image resizing methods, we

found that the correlation between adjacent pixels can be destroyed in the process of image resizing.

Tchebichef moments have been extensively applied in field of image/vedio such as information

security [18], pattern recognition [19] and image quality assessment [20], and so on. Inspired by this,

it can be found from experiments that LTM can effectively reflect the correlation changes between

adjacent pixels. We proposed a passive forensics algorithm based on LTM to identify tampered images

obtained by content-aware image resizing methods in this paper. Our experimental results showed

that our proposed method can obtain a better accuracy. It is verified that it has a good performance

for the image resizing with high scaling ratios. In the future, we will try to evaluate the detection

accuracy on the tampered images obtained by image resizing with low scaling ratios. In addition, our

proposed method could not obtain a satisfied detection accuracy on the re-targeted images with JPEG

compression. We will further analyze the tampered trace of the resized images with JPEG compression.

In addition, since there are still a few image resizing methods [21,22] besides the three methods

proposed in this paper, we will attempt to distinguish these image resizing techniques for re-targeted

images by applying other multi-class classifiers [23–28] and designing more general features from

image/video processing methods [29–38]. In view of the importance of social media digital images

in practical applications, research on their authenticity, integrity and traceability has been one of

the hot and challenging research topics in the field of information security. We will adopt network

optimization methods [39–48] to improve the real-time and high efficiency performance of the feature

extraction phases.
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