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Diabetic retinopathy is one of the common complications of diabetes. Unfortunately, in many cases the patient is not aware of any
symptoms until it is too late for effective treatment. Through analysis of evoked potential response of the retina, the optical nerve,
and the optical brain center, a way will be paved for early diagnosis of diabetic retinopathy and prognosis during the treatment
process. In this paper, we present an artificial-neural-network-based method to classify diabetic retinopathy subjects according to
changes in visual evoked potential spectral components and an anatomically realistic computer model of the human eye under
normal and retinopathy conditions in a virtual environment using 3D Max Studio and Windows Movie Maker.

INTRODUCTION

Diabetic retinopathy is a common cause of visual loss
in the world and it is a potentially blinding complica-
tion of diabetes that damages the eye’s retina [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13]. Non-insulin-dependent dia-
betes mellitus (NIDDM) may be the most rapidly grow-
ing chronic disease in the world. Its long-term compli-
cations, including retinopathy, nephropathy, neuropathy,
and accelerated macrovascular disease, cause major mor-
bidity and mortality [14, 15, 16, 17]. At first, you may
notice no changes in your vision. But do not let diabetic
retinopathy fool you. It could get worse over the years and
threaten your good vision. Diabetic retinopathy is a com-
plication of diabetes that affects the blood vessels of the
retina [18]. Growth of new blood vessels, known as prolif-
erative retinopathy, may lead to blindness through hemor-
rhage and scarring. A deterioration of retinal blood vessels
causing loss of blood vessels and leakage into the retina
is known as maculopathy and leads to visual impairment
and may progress to blindness.

Electrophysiological tests reveal an abnormal function
of the visual system in patients with diabetic retinopa-
thy [19]. Visual evoked potential (VEP) has been used in
the clinical environment as a diagnostic tool for a long
time [20, 21, 22]. VEP is one of the noninvasive tools
in analyzing diabetic retinopathy [23, 24, 25]. So far not
much of the work has been taken up to identify the ef-
fect of retinopathy on optical response and variation in
the functioning of the optic nerve [26]. Through analy-
sis of evoked potential response of the optical nerve and

optical brain center a way will be paved for early diagno-
sis of diabetic retinopathy and prognosis during the treat-
ment process [27, 28, 29, 30, 31, 32, 33, 34].

In general, the clinical use of VEP is based on the
peak amplitude and the latencies of the N75, P100, and
N145 [22, 35, 36, 37]. The amplitude and the laten-
cies of these peaks are measured directly from the sig-
nal [38, 39]. This requires precise definition of the start-
ing and the end points. Latency measure depends on the
point at which the latency is calculated and usually irreg-
ular peaks occur due to background EEG, so that aver-
aging and interpolation are required. Therefore the di-
agnosis based on amplitude and latency in time domain
is not alone sufficient. Hence other components should
also be taken into consideration. In recent years, many
researchers have described a variety of approaches to ex-
tract the evoked potentials from the background ongoing
EEG [40, 41, 42, 43, 44, 45, 46, 47]. The investigation of
the frequency domain characteristics of VEP is an attrac-
tive analytic approach because it allows detection of subtle
waveform abnormalities that may escape detection with
normal latency measurements [48, 49, 50]. The spectral
analysis of VEP can yield useful information when it is
performed carefully [51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

Classification of the severity of diabetic retinopathy
and quantification of diabetic changes are vital for assess-
ing the therapies and risk factors for this frequent com-
plication of diabetes. Current clinical studies use the stan-
dardized, validated Wisconsin grading system of retinopa-
thy, which is performed by an experienced ophthalmolo-
gist or grader using standard photographs. This method
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is a time-consuming process which requires significant
training and exercise and is vulnerable to observer error
[61, 62, 63].

The artificial neural network (ANN) has been used in
a number of different ways in medicine and medically re-
lated fields [64, 65, 66, 67, 68]. The principle advantages
of ANNs are that they are able to generalize, adapting to
signal distortion and noise without loss of robustness, and
that they are trained by example and do not require pre-
cise description of patterns to be classified or criteria for
classification [62, 69, 70]. Computer simulation is well
established as a powerful and effective way of modeling
health care systems [63, 70, 71].

In our analysis, we first present a method to classify
diabetic retinopathy subjects according to changes in VEP
spectral components using feedforward ANN. Second we
present an anatomically realistic computer model of the
human eye under normal and retinopathy conditions in a
virtual environment using 3D Max Studio and Windows
Movie Maker.

MATERIALS AND METHODS

Subjects

Experiments were carried out with 50 normal and
300 abnormal subjects (135 females and 165 males in the
age group of 39–65 years). The subjects were obtained
from the diabetic department with duration of diabetics
and type of diabetics, that is, insulin-dependent diabetes
mellitus (IDDM) and NIDDM. Only NIDDM patients
were taken to further analysis. After papillary dilation the
subjects were screened in the ophthalmology department
with both direct and indirect ophthalmoscopy, further vi-
sion test, and refraction test, and intraocular pressure was
measured. High intraocular pressure subjects were elim-
inated from further analysis. The NIDDM subjects were
divided based on ophthalmoscope results into 4 groups:
first group is control (normal) and the other 3 groups
have diabetic retinopathy—second group, background di-
abetic retinopathy (BDR), third group, preproliferative
diabetic retinopathy (PDR) and fourth group, prolifera-
tive diabetic retinopathy (PPDR).

VEP recordings

All the VEP recordings were performed in a specially
equipped electrodiagnostic procedure room in the neu-
rology department (darkened, sound-attenuated room).
At the beginning, the patient is seated comfortably ap-
proximately 1 meter away from the pattern-shift screen
and the viewing distance adjusted based on the subject’s
visual acuity. The visual stimuli were checkerboard pat-
terns (contrast 70%, mean luminance 110 cd/m2) gener-
ated on a TV monitor and reversed in contrast at the rate
of two reversals per second. At the viewing distance of
114 cm the check edges subtended 15 minutes of visual
angle and the screen of the monitor subtended 12.5◦. The
refraction of all subjects was corrected for the viewing dis-
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Figure 1. Normal subject VEP waveform.

tance. The stimulation was monocular, with occlusion of
the contralateral eye.

Standard silver-silver chloride disc surface electrodes
were fixed in the following positions: active electrode at
Oz, reference electrode at Fpz, ground on the left ear (ac-
cording to the international 10/20 electrode system). The
interelectrode resistance was kept below 3 kΩ. The bio-
electric signal was amplified (gain 20 000), filtered (band-
pass, 1–100 Hz), and averaged (200 events free from ar-
tifacts were averaged for every trial) with sweep speed
50 ms/div and sensitivity 2 µv/div using Nicolet Viking IV
NT machine. The analysis time was 500-millisecond in-
tervals following a stimulus.

VEP data analysis
The recorded averaged VEP data appears as a wave-

form with characteristics points N75, P100, and N135
shown in Figure 1 with potential on the vertical axis (Y
component) and time on the horizontal axis (X compo-
nent). The analogue signal was digitized at a sampling rate
of 1024 samples/s. Using Welch’s averaged periodogram
method the spectral components of the sampled data were
identified using MATLAB signal processing toolbox func-
tions with 95% confidence level.

Feature extraction and classification

First, two dominant peaks’ amplitude and corre-
sponding frequency values in the spectrum were ex-
tracted. Correlation between the spectral components and
diabetic retinopathy stages was identified. These VEP fea-
tures are classified by feedforward neural network into
normal, BDR, PPDR, and PDR categories.

Neural network configuration

We implemented the three-layer feedforward back-
propagation neural networks, that is, one input layer, one
hidden layer, and one output layer. The ANN had 6 in-
put nodes, 4 hidden nodes, and 4 output nodes. The four
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Figure 2. Feedforward neural network.
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Figure 3. Normal subject VEP spectrum.

output nodes corresponded to normal waveform, BDR
waveform, PPDR waveform, and PDR waveform. The
neural network output vector is based on the VEP spec-
tral components (Figure 2).

Neural network training

The neural networks were trained by backpropagation
algorithm. Gradient descent (GDM) was used to min-
imize the mean squared error between network output
and the actual error rate. During the training period we
utilized 6 input nodes, 6 hidden nodes, and 4 output
nodes, logsin transfer function, GDM training method,
6000 epochs, 0.9 learning rate, 0.0001 goal. The training
error continues to decrease as the number of epochs in-
creases. Repeated experiments were performed to deter-
mine the size of the hidden layer and training sample.
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Figure 4. 25 normal patients’ first spectral component 2D his-
togram.

Our final ANN consists of 4 hidden units, which provide a
compromise between the mapping error and the compu-
tational time. Weights were initialized to random values
and networks were run until at least one of the following
termination conditions was satisfied:

(1) maximum epoch,
(2) minimum gradient,
(3) performance goal.

Neural network testing

For testing, the input data was presented to the ANN
without weight adjustment. The output of the ANN was
compared with the clinician’s classification based on the
retinal blood vessel examination and VEP averaging la-
tency methods. Results were compared, and the percent
of input patterns, which was correctly classified, was cal-
culated.

RESULTS

VEP spectral components interpretation

The spectral response results show that the peak re-
sponse occurs at specific frequencies like 2, 3, 4, 5, and
6 Hz. The first two spectral components with considerable
amplitude were extracted from the power spectrum plot.
The important finding of this result shows that there are
distinct differences at the peak frequencies for normal and
diabetic retinopathy patients. Positive correlation was ob-
tained between the spectral components with the disease
condition (r = 0.987).

It is found that in all 50 normal subjects the dominant
spectral component falls exactly at 2 Hz and the second
dominant peak falls in the range of 4–7 Hz (P < .0001).
Figure 3 shows the spectral plot of normal subject. It is
shown that the dominant spectral component falls at 2 Hz
and the secondary component at 7 Hz. 25 normal sub-
jects’ dominant spectral component magnitudes 2D his-
togram is presented in Figure 4 and the corresponding
second dominant peak magnitude values are presented in
Figure 5.

It is found that for all the BDR subjects the domi-
nant spectral peak falls in the range of 2–3 Hz and the
second dominant peak falls in the range of 5–9 Hz (P <
.0001). Figure 6 shows the spectral plot of BDR subject.
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Figure 5. 25 normal patients’ second spectral component 2D
histogram.
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Figure 6. BDR subject VEP spectrum.
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Figure 7. 30 BDR patients’ first spectral component 2D his-
togram.

It is shown that the dominant spectral component falls
at 3 Hz and the secondary component at 6 Hz. 30 BDR
subjects’ dominant spectral component magnitudes 2D
histogram is presented in Figure 7 and the corresponding
second dominant peak magnitude values are presented in
Figure 8.

For PPDR subjects we found that the dominant spec-
tral peak falls in the range of 4–6 Hz and the second dom-
inant peak falls at 2 Hz or in the range of 6–10 Hz (P <
.001). Figure 9 shows the spectral plot of PPDR subject.
It is shown that the dominant spectral component falls at
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Figure 8. 30 BDR patients’ second spectral component 2D his-
togram.
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Figure 9. PPDR subject VEP spectrum.
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Figure 10. 20 PPDR patients’ first spectral component 2D his-
togram.

4 Hz and no secondary component exists. 20 PPDR sub-
jects’ dominant spectral component magnitudes 2D his-
togram is presented in Figure 10 and the corresponding
second dominant peak magnitude values are presented in
Figure 11.

For PDR subjects we found that the dominant spectral
peak falls in the range of 6–8 Hz and the second dominant
peak falls in the range of 2–3 Hz (P < .001). Figure 12
shows the spectral plot of PDR subject. It is shown that
the dominant spectral component falls at 6 Hz and no
secondary component exists. 20 PDR subjects’ dominant
spectral component magnitudes 2D histogram are pre-
sented in Figure 13 and the corresponding second dom-
inant peak magnitude values are presented in Figure 14.
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Figure 11. 20 PPDR patients’ second spectral component 2D
histogram.
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Figure 12. PDR subject VEP spectrum.

Neural network interpretation of VEP data

The classification ANN was trained on 25 normal and
200 abnormal subjects, that is, BDR, PPDR, and PDR sub-
jects VEP spectral components, and tested on 25 normal
subjects and 100 diabetic subjects VEP spectral compo-
nents. We found that 95% of VEPs were classified cor-
rectly.

We animated the diabetic retinopathy condition us-
ing 3D Max Studio and Windows Movie Maker from the
hospital database and correlated with the VEP spectral
components. We added voice information along with the
picture information, which correlated the VEP wave with
stages of diabetic retinopathy and treatment method. Us-
ing this animation the patient can identify the change
in VEP and change in retinal condition. Users were able
to explore the eye components to discover retinopathy
characteristics. This animation and simulation model will
eventually be used to educate patients and medical stu-
dents on various aspects of the diabetic retinopathy (Fig-
ures 15 and 16).

DISCUSSION

A system for classification of diabetic retinopathy
using VEP spectral components has been developed
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Figure 13. 20 PDR patients’ first spectral component 2D his-
togram.
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Figure 14. 20 PDR patients’ second spectral component 2D his-
togram.

Figure 15. Animated retinal blood vessel picture.

Figure 16. Animated diabetic retinopathy movie.

and tested on prerecorded data from a set of pa-
tients. This paper describes a specific application which
can be extended to further applications in medicine.
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Presently we are testing the system on a large patient of-
fline database and in the future it can be implemented
for routine clinical use. This method of classification of
diabetic retinopathy condition using frequency spectrum
and peak frequency components almost coincides with
the expected retinopathy condition. These results will
have significant usage in analyzing the diabetic retinopa-
thy condition. This system provides an early warning of
diabetic retinopathy abnormalities for diabetic patients.
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