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A B S T R A C T

Objective of this study is to introduce a secure IoHT system, which acts as a clinical decision support system
with the diagnosis of cardiovascular diseases. In this sense, it was emphasized that the accuracy rate of
diagnosis (classification) can be improved via deep learning algorithms, by needing no hybrid-complex models,
and a secure data processing can be achieved with a multi-authentication and Tangle based approach. In detail,
heart sounds were classified with Autoencoder Neural Networks (AEN) and the IoHT system was built for
supporting doctors in real-time. For developing the diagnosis infrastructure by the AEN, PASCAL B-Training
and Physiobank-PhysioNet A-Training heart sound datasets were used accordingly. For the PASCAL dataset, the
AEN provided a diagnosis-classification performance with the accuracy of 100%, sensitivity of 100%, and the
specificity of 100% whereas the rates were respectively 99.8%, 99.65%, and 99.13% for the PhysioNet dataset.
It was seen that the findings by the developed AEN based solution were better than the alternative solutions
from the literature. Additionally, usability of the whole IoHT system was found positive by the doctors, and
according to the 479 real-case applications, the system was able to achieve accuracy rates of 96.03% for normal
heart sounds, 91.91% for extrasystole, and 90.11% for murmur. In terms of security approach, the system was
also robust against several attacking methods including synthetic data impute as well as trying to penetrating
to the system via central system or mobile devices.
. Introduction

According to the World Health Organization (WHO), majority of the
orldwide deaths are caused by heart diseases. It is possible to indicate

hat approximately 30% of all deaths are caused by heart diseases [1–
]. Because of that, solutions for detecting early signs of heart diseases
ave great importance for ensuring worldwide well-being. At this point,
ide diversity of cases in the medical data and the fact that the diseases
nd the corresponding symptoms are in a wide scope, it is generally
difficult task to examine the data carefully. As general, it is also

nown that doctors have high work-load and they do not have the same
ompetency [4,5]. That situation affects the way of understanding the
xisting data always same way and learning well enough from the past
ases for better diagnosis and treatment. So, biomedical-oriented deci-
ion support systems have been used for getting detailed information
rom the target data, in order to assist doctors in their decision-making
rocess [6,7]. At this point, one of the most widely used solutions
ithin decision support systems is the classification where it is practical
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to get an accurate decision-making approach by evaluating the existing
data and performing comparisons over it. In the context of classification
studies, researchers always focus on increasing classification success
rates. In order to achieve that, they generally develop different kinds
classification models. Additionally, it is also often tried to improve
effectiveness and efficiency, by using hybrid methods in which different
solution ways such as optimization algorithms and machine learning
techniques are combined together for the classification [1,8,9]. It is also
remarkable that the way of decision support systems is affected from
the latest technological developments such as mobile communication
or cloud systems [10,11]. Recently, the technology era is rising over
many innovative solutions and the Internet of Things (IoT), which is
known as a network of communicating smart devices [12,13] is among
them. As the IoT has gained great popularity in different fields of the
modern life, efforts in the context of biomedical has caused appearance
of a unique name: Internet of Health Things (IoHT). Thanks to the IoHT,
networks of smart medical devices are designed for improving real-time
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healthcare processes [14–16]. Currently, there is a remarkable variety
of medical applications done via IoHT [17–19]. Moving from that, it is
a great idea to use such approach for analysis and diagnosis of heart
diseases.

Doctors often have a stethoscope for hearing and/or recording heart
sounds. That is briefly called as the heart auscultation. It is known as a
cheap, non-invasive screening method corresponding to the process of
interpreting heart sounds produced by mechanical movements of the
heart and blood circulation [20,21]. As it is known, that method is
widely used as an essential way in diagnosing heart diseases. However,
it is not always possible to diagnose heart conditions by only listening
to heart sounds. So, researchers have been trying to improve classifying
sound samples by running machine learning techniques. Differences in
heart sounds that correspond to different heart disease symptoms are
extremely difficult to distinguish. In detail, changes in heart sounds
to detect heart diseases are too small so that it is difficult to perform
proper diagnosis [22–26].

For a long time, many studies on using heart sounds/signals to diag-
nose cardio vascular diseases have been done. These studies included
use of different machine learning techniques such as Support Vector
Machines (SVM), and Artificial Neural Networks (ANNs). Solutions are
mostly based on mixed methods including use of different learning
functions or determining attributes with alternative algorithms. Consid-
ering the SVM, many research efforts were done by employing different
kernel functions. Zhenga et al. used the SVM to diagnose chronic heart
failure [27]. Patidar and his colleagues classified PCG signals to detect
heart valve disease [28]. Maglogiannis et al. developed a diagnostic
system by classifying PCG signals with SVM so that defining heart
valve diseases [29]. Ari et al. classified PCG signals via SVM to ensure
a system for determining heart abnormalities [30]. In the study by
Azmy, normal and abnormal PCG signals were classified by using a
SVM model [31]. Shuping Sun et al. classified PCG signals with SVM
to detect deterioration of ventricular symptoms [32]. Guermoui and
colleagues classified PCG signals in five different disorders, by using
the SVM over some heart symptoms [33]. Gharehbaghi and colleagues
proposed a new method to distinguish pathologic murmurs, thanks to
the growing time SVM [34]. Jiang et al. proposed a multi-SVM based
system for improving the detection performance regarding abnormality
of heart sound so that it is possible to detect the heart murmurs [35].

Adaptive Neural Fuzzy Inference System (ANFIS) and ANNs have
also been used with different methods to enhance the classification
performance. Bahekar et al. tried to improve the success of classi-
fying heart sound signals, by using ANFIS [36]. In another study,
Eslamizadeh and Barati used ANNs to classify heart sounds as normal
and murmurs [37]. Deperlioglu combined ANNs and resampled energy
method so that the accuracy of the classification over S1 and S2 sounds
was increased accordingly [38]. Gharehbaghi et al. used a Backward
Time-Growing Neural Network (BTGNN) model for detecting the fourth
heart sound (S4) [39]. Cheng and colleagues developed a Laconic Heart
Sound Neural Network (LHSNN) for running a heart sound classifica-
tion solution with low hardware requirements [40]. Chundong et al.
designed an optimized neural network model for better detection of
S1 and S2 heart sounds [41]. Here, Li and colleagues provided a very
recent review for heart sound detection/classification solutions from
the literature [42].

In terms of recent studies including use of machine learning meth-
ods, it is possible to see different remarkable studies from the litera-
ture. Arora et al. used XgBoost, which is a variant of Decision Trees
(DT), for performing classification of the heart sound, by considering
PCG [43]. Emuoyibofarhe used SVM, k-Nearest Neighbor (kNN), and
DT for running a heart disease diagnosis system with widely-known
machine learning techniques [44]. El Badlaoui et al. used SVM and
kNN for classifying normal and abnormal heart sounds, by evaluating
feature extractions from PCG [45]. In the study by Liu, an Extreme
Learning Machine (ELM) was used for diagnosing a specific disease:

preserved ejection fraction (HFpEF) [46]. Krishnani et al. used some
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machine learning solutions such as Random Forest (RF), DT, and kNN
for diagnosing coronary heart disease over Framingham Heart Study
dataset [47]. In terms of heart sound segmentation and classification,
Noman et al. developed a system with a Markov-Switching Autoregres-
sive (MSAR) model [48]. Abduh et al. classified heart sounds with SVM,
kNN, and also a combination of techniques (bagged Trees, RUSBoosted
tree, subspace kNN), as features obtained via Fractional Fourier Trans-
form supported Mel-Frequency Spectral Coefficients [49]. Chen and
Zhang used SVM for classifying heart sounds adjusted through wavelet
threshold denoising and S transform related discrete time–frequency
energy feature [50]. In another study, Yang et al. employed Envelope
Optimization model and SVM for performing classification over PCG
signals [51]. All these efforts show that although deep learning has a
great importance currently (by 2020), there is still open ways to run
traditional machine learning.

After the introduction of a rapid learning algorithm with deep
belief networks (in 2006), many research studies have been done on
deep learning techniques. Deep learning methods have been applied
to almost every area, including especially big data groups [52]. Deep
learning, which has been widely used in recent years, is an advanced
machine learning technique with a large number of discrete layers
communicating with each other [53]. An autencoder (AEN) is a sim-
ple method that aim to transfer inputs to outputs with the smallest
possible changes. AEN has important state in terms of machine/deep
learning. AEN was proposed first time by Hinton and PDP group [54]
in the 1980s to solve the problem via the back-propagation algorithm
without, by using the input data as a supervisor. Thanks to Hebbian
learning rules, the AEN is used for learning the basic paradigms, solving
the mystery of the unsupervised learner and learning how local changes
can be coordinated in a self-organizing way so that global learning
and intelligent behavior are both obtained [55,56]. In the context
of medical diagnosis, AEN has been used in different diseases. For
example, it was used for diagnosing Alzheimer’s disease [57,58] and
for even the prodromal stage: mild cognitive impairment [57]. It was
also used for diagnosing Parkinson disease [59,60]. Additionally, AEN
was used for diagnosing osteoporosis disease [61], type 2 diabetes [62],
prostate [63], brain [64] (as being recognition related), and even
different cancer types [65–67].

Recently, deep neural nets have been used frequently in diagnosing
heart diseases by examining heart sounds. In some studies, Convolu-
tional Neural Networks (CNN) have been used to classify PCG images
in time domain and frequency domain. For example, Aykanat et al.
used two types of machine learning algorithms: SVM, and CNN with
spectrogram images for classification of heart sounds [68]. Chen et al.
studied the effectiveness of using CNN to detect automatically abnor-
mal heart, and lung sounds for classifying them under different classes
at the end. They tried to increase classification accuracy with 1, 2, and
3 convolutional layers. They obtained the best accuracy value with 2
convolutional layers [69]. Ryu et al. proposed a diagnostic model of
cardiac diseases using CNN. This model can predict whether a heart
sound recording is normal and abnormal by classifying PCGs [70]. As
seen in the examples above, CNN is practically used as a deep learning
method in classifying heart sounds. Recently, there is still great interest
in running alternative heart sound classification solutions developed
with CNN [71,72], Recurrent CNN [73], general CNN models [74,75],
Deep Neural Network (DNN) [76], Long Short-Term Memory [77], and
AEN [78–80]. In this study, an alternative model of AEN was used to
directly classify heart sound data without ever dealing with images.

As it is seen, segmentation or mixed methods are usually used to
increase classification success rate for heart sounds. By combining all
explanations and analysis regarding the literature so far, essential mo-
tivations of this study are based on improving diagnosis-classification
performance easily without dealing with complex methods or algo-
rithms and ensuring a secure, real-time IoHT system to provide an
effective solution for doctors. In this context, objective of this study is

to classify heart sounds with Autoencoder Neural Networks (AEN) (so



O. Deperlioglu, U. Kose, D. Gupta et al. Computer Communications 162 (2020) 31–50
that perform diagnosis of heart diseases) and locate that solution within
an IoHT system supporting doctors through a secure communication
framework with multi-authentication and Tangle based data storing
in real-time. In order to show diagnosis efficiency of the designated
AEN, two widely used heart sound datasets: PASCAL [81], and Phys-
ioNet [82,83] were used for the diagnosis of heart diseases (Thus, it
has been shown that the classification performance increases in both
databases, even though the number of output classes and the number
of sample data are different without changing the design of the AEN).
When the literature is examined, it is possible to see some IoT based,
and cloud support systems developed for monitoring [84–86], and diag-
nosis [87–90] cases in the context of medical healthcare perspectives.
It is clear that the current era rises over IoT systems as the year of
2020 shows increase in especially IoHT side [91,92]. However, there is
still need for alternative research/development of systems, with focus
on especially less complicated solution approach with data security
aspects. So, the IoHT system here has been designed considering both
simple enough diagnosis attributes and security components. In detail,
performance of the AEN solution was evaluated with some metrics as
well as comparative evaluation. In addition, success of the IoHT system
was evaluated via cost analysis and usability-oriented tests done by
some doctors. Finally, some attacking scenarios were applied to test
the data security.

Based on the subject of the paper, the next sections are organized as
follows: The second section is devoted to details about the developed
IoHT system, data security approach, and the employed AEN model as
well as training datasets for heart disease diagnosis-classification. The
section generally explains details about the technical background of the
whole approach-system. Following that section, the third section pro-
vides information about applications done with the IoHT system. Next,
the fourth section focuses on evaluation works and general discussion
about the findings, limitations, ideas for alternative works. Finally, the
content is ended by conclusions as well as future-work plans by the
authors.

2. Material and methods

In order to understand better about how IoHT system in this study
works, details regarding the whole system architecture and the AEN
model can be explained. In this context, the following sub-sections pro-
vides information about IoHT architecture, and the AEN (with technical
details about the datasets and the technique).

2.1. Internet of health things architecture

The IoHT system developed in this study has been structured over
a combination of technological components. These components can
be used easily and ensure a comprehensive communication network
where the data for diagnosis can be shared fast and the devices in that
environment can form an interactive usage. The system includes use of
a cloud environment, beacons for tracking the doctors (for data sharing
purposes), a central system for managing communication between the
cloud and the devices as well as ensuring training of the deep learning
model. Furthermore, the system employs a data security layer (inside
the central system, as shared with user side), and mobile devices with
digital stethoscopes used by doctors. Fig. 1 provides the general schema
of the IoHT architecture-system. Considering that architecture, role
of the components and general working mechanism within the IoHT
approach can be explained as follows:

• Cloud environment: The cloud environment is based on Azure
services ensuring synchronizations of mobile devices, keeping an
up-to-date trained AEN, allowing share of heart sounds-cases, and
ensuring communication among doctors. The cloud employs some
small program-script codes, which are triggered by the central
system and/or mobile devices to keep real-time interaction in
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the context of the system. At this point, using cloud environment
has the objective of ensuring a bigger IoHT system with multi-
hospitals at the same time. In this way, a global network of heart
disease diagnosis over AEN can be achieved directly.

• Central system: Central system is a workstation where training of
the AEN model can be done offline. Thanks to the software in that
system, it is also possible to run automated training phases with
new data so that the cloud is updated for improving diagnosis
capabilities. The central system also tracks which beacons are
sensed and which doctors (mobile devices) can be synchronized.
The central system has the ability to receive data from beacons
and communicate with the cloud. In this way, the cloud ensures
an updated, balanced real-time running for the IoHT system. On
the other hand, the central system is responsible for ensuring
encrypted data for the active users over the system and stores
actions in the IoHT environment within a Tangle data model,
which was provided open source by the IOTA. The central system
also controls multi-authentication by the users.

• Beacons: Beacons are known as a type of wireless sensors, which
are cheap, small electronic tools to transmit a signal over Blue-
tooth communication [93,94]. With beacons, it is possible to
sense other devices, track actions, analyze surrounding environ-
ment, and employ interaction-oriented feedback for different pur-
poses. Thus, applications such as in-door/out-door navigation,
e-trade, and multi-communication within wide places can be
achieved [95–98]. In the IoHT architecture designed in this study,
proximity beacons with up to 5-month battery life are located in
the hospital environment, in order to track actions by doctors.
Considering active use by doctors, beacons sense mobile devices
where the application of the system is installed and ensure a
network of doctors for sharing the most recently trained AEN with
them. Also, beacons allow sharing new data (heart sounds) to
analyze or simply enabling doctors to communicate each other
over a messaging service. Beacons are controlled by the central
system so that there is a one-way communication between a
beacon and a mobile device as well as a beacon and the central
system.

• Mobile devices with digital stethoscopes: In the context of
the IoHT system, real-time heart sound gathering and AEN based
diagnosis are all done with mobile devices and digital stetho-
scopes carried by doctors. Here, a mobile application (Fig. 2) is
used for obtaining heart sounds from patients, and performing
diagnosis-classification over them by communicating with the
cloud. According to the communication sessions done between
the cloud and the central system, each active mobile device is
supported with the latest sound data as well as past analyze
reports in real-time. The mobile application also allows doctors
to see-track each other and perform instant messaging. At this
point, installing mobile application for the first time requires
users to create a public key-based data for multi-authentication.
After a user tries to login to the system with username and
password, the central system creates a unique code for the second
authentication step. The users may also enable application to
communicate with the central system for automatic login for each
time (central system generates data and check that with the target
user’s application through a secure channel). It is also possible
to activate alternative authentication mode such as voice, hidden
answer, or visual puzzles.

• Data security layer: In order to ensure a secure communication
and data storing, the IoHT system was supported with a data se-
curity layer. That approach consists of three essential approaches:
(1) Public key-based multi-authentication for mobile devices, (2)
Tangle based action storing against malicious attacks, (3) Twin
data synchronization between central system and the cloud. As
the authentication between the central system and mobile devices
are done according to the actions expressed before, the system
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Table 1
Technical details regarding the heart sounds files in the PASCAL dataset.

Categories Duration Sampling frequency Number of files

Normal 8 s 4000 Hz. 196
Noisy Normal 8 s 4000 Hz. 118
Extrasystole 8 s 4000 Hz. 47
Murmur 8 s 4000 Hz. 61
Noisy Murmur 8 s 4000 Hz. 27

Total 449

uses Elliptic Curve Digital Signature Algorithm (ECDSA), which
is preferred to be used within wireless communications. Here, the
implementation by Sghaier et al. [99] was followed for ensuring
optimum running of the algorithm. Also, the deterministic usage
suggested by [100] has been followed for better security. The
central system stores twin data over the cloud environment so
that it regularly checks and any data discrepancy correspond-
ing to possible attacks or data errors is detected accordingly.
Additionally, the central system stores data in terms of Tangle
data model, which was introduced by the IOTA, as focusing on
Directed Acyclic Graph (DAG) [101,102]. Here, actions by users
are checked in the context of the data history shared with all
authenticated peers (mobile devices). In the scenario of this study,
it is not necessary to approve any past action (as done originally
in Tangle) to join to the Tangle network (because authenticated
users are already part of the network here). Micro proof-of-work
phases allows fast using experience without having any idea about
data security communications on the background. A brief scheme
of the data security layer/approach is given in Fig. 3.

.2. Heart disease diagnosis-classification infrastructure

Heart disease diagnosis in this study is associated with a classifi-
ation approach, which forms a diagnosis infrastructure for the IoHT
ystem. For all classification tasks, MATLAB r2017a was used along
he research period. While the cloud environment of the IoHT system
s supported by the trained AEN data, offline (independent) training
hases are done in the central system. The block diagram of the
iagnosis-classification flow is shown in Fig. 4. The details of each data
et, and each block in the diagram are explained under next paragraphs.

In this study, the following datasets were used for the classification
diagnosis) applications:

.2.1. PASCAL B-training dataset
PASCAL B-training dataset includes heart sounds files in the WAV

ormat. The related sound files were obtained at clinic trials at hos-
itals, thanks to the digital stethoscope named as DigiScope® [103].
igiScope® comes with a panel in addition to the stethoscope compo-
ents, and it can amplify the sound range of 20 to 1000 Hz for heart
ounds. Additionally, it can be used for also lung sounds, by targeting
he range of 70 to 2000 Hz. It is important that DigiScope® can also

amplify the sound at maximum 200 times. As using 9 V batteries for
long-time use, and having a 15 to 90 Db volume range, it comes with a
special software platform for recording, analyzing, and sharing sounds
over the Internet. DigiScope® is around 490g, which means it is not
heavy to carry during medical tasks. The PASCAL B-training dataset (as
used also in this research) obtained with that device comes with 449
files in 5 categories (also output) as normal, noisy normal, extrasystole,
murmur, and the noisy murmur. Table 1 represents technical details of

the files.
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Table 2
Technical details regarding the heart sounds files in the PhysioNet dataset.

Categories Duration Sampling frequency Number of files

Normal 15 s 2000 Hz. 196
Abnormal 15 s 2000 Hz. 118

Total 409

2.2.2. PhysioNet A-training dataset
In the PhysioNet A-Training dataset, the heart sounds are included

as again sound files, which are in the WAV format. As the sounds
were obtained during clinic trials at hospitals, there are both healthy
and pathological records in the dataset. It is also remarkable that
the PhysioNet A-Training dataset includes heart sounds recorded from
children and adults. In detail, one to six heart sounds were recorded
from each person / patient. The duration of the recordings varies from a
few seconds to a hundred seconds. All the recordings were accordingly
resampled to 2000 Hz and recorded in WAV format [104,105]. The
dataset contains 409 files in 2 categories (output) as normal, and
abnormal. Table 2 shows the technical details for the sound files.

2.2.3. Preprocessing of heart sounds
Preprocessing of the heart sounds corresponds to three steps such

as resampling, normalization and filtering. In the classification step, all
heart sounds should be recorded at the same length of time so that the
learning data set matrix dimensions are equal. Similarly, the sampling
frequency should be equal. For this purpose, the sound files are set to
the same sampling time in the resampling step and at the same size of
time. As shown in Table 1, the length of all audio files in the PASCAL
data set is set to 8 s. No processing was done in resampling step because
the sampling rate is 4000 Hz for all files. Likewise, as shown in Table 2,
the lengths of all audio files in the PhysioNet data set to 15 s. No
processing is required to be done in the resampling step because the
sampling rate is 2000 Hz for all files. First, the PCGs were normalized to
a fixed ‘[-1 1]’ scale: because heart sounds should be normalized before
filtering. Normalization can be performed by using the Eq. (1) [103].

𝑥𝑛𝑜𝑟𝑚 [𝑛] = 𝑥[𝑛]
𝑚𝑎𝑥 (|𝑥[𝑛]|)

(1)

where 𝑥𝑛𝑜𝑟𝑚[n] corresponds to the normalized signal, and the x[n] is
the resampled signal.

Because of the uncontrolled environmental factors during heart-
beat recording, many sound files include noises. These noises may be
because of lung sounds, stethoscope movement, and even breathing
sounds. So, it is quite difficult to classify records in their own, exact
categories. In order to solve that issue, heart sounds should be filtered
to become noise-free before the classification. In this study, an elliptic
filter was used for that purpose.

In order to achieve early diagnosis of heart diseases, the step of
noise removal is too critical for the first steps of classification. Coskun
et al. used several filtering methods for the same heart sound datasets
(considered in this study) and the classification approach employed in
their study was an attempt to emphasize filtering step for heart sounds.
That study has given an insight for future studies in the related area.
In detail of the study, the classifying of heart sounds was done with
the SVM over mobile devices and it was seen that the fastest filter was
Butterworth and the best effect on classification results was obtained
via elliptic filter. Moving from that study and some other studies done
previously, it is also possible to indicate that the effect of the filters
used during classification may show differences according to the target
dataset [104,105].

2.2.4. Diagnosis-classification process
In this study, an Autoencoders Neural Network (AEN) was used

to classify the heart sounds. AEN is a type of Multilayer Perceptron
(MLP based ANNs) and sometimes referred to as auto-associator. An
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Fig. 1. The IoHT architecture designed in this study.
Fig. 2. Some screenshots from the mobile application used by doctors.
t

AEN ensures an algorithm of unsupervised-learning, which is used for
effectively encoding a dataset for reduced dimension size. For past
few decades, AENs have been extremely important in the context of
research on ANNs. Bourlard and Camp have proposed a multi-layer
sensor in auto-coupling mode. Thus, they provided data compression
and dimensional reduction during data processing [106]. In general,
AENs are used to learn productive models defining the target data.
One of the major advantages of AEN is that it constantly filters out the
propagation process, as bringing forward useful features of the model.
Moreover, since the input vector is converted into a smaller size by
coding, a more efficient and faster learning process is obtained [52].
 r

35
2.2.5. Autoencoder neural network
In 1986, Rina Dechter showed early example of Deep Learning

for the first time. However, the first study was actually a controlled,
deep, forward-feed learning algorithm for multi-layered perceptions,
as introduced by Ivakhnenko and Lapa in 1965. AEN, a type of deep
neural networks or deep learning, was first mentioned in the 1990s and
has also become widespread in the 2000s. An AEN model is basically
ANNs structure with three main layers. These layers are: an input layer,
several hidden (coding) layers, and an output (decoding) layer. An AEN
architecture with n hidden layer is given in Fig. 5. AEN is trained
o restructure the inputs and forces the hidden layer to learn good
epresentations of the inputs. AEN is an unsupervised machine learning
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Fig. 3. Secure communication in the IoHT system.
Fig. 4. The block diagram of application of heart sounds diagnosis-classification.
method, which is applying back propagation to try to equalize the
target values to the inputs. Briefly, an AEN is trained to try to copy
the input to the output. Internally, there is a hidden layer providing a
code used to represent the input [53,107].

In an AEN model having single hidden layer, the vector of hidden
node events can be computed as in Eq. (2):

ℎ = 𝑓 (𝑊𝑑 . 𝑎 + 𝑏𝑖𝑎𝑠𝑑 ) (2)

In this equation, 𝑓 represents the function of activation, 𝑊𝑑 repre-
sents the matrix of parameters, and d represents the bias parameters
vector. In this study, Scaled Conjugate Gradient Algorithm and Cross
entropy cost function was used in the coding layer.

The secret representation of the data is then mapped to a field by
using the decoding function in Eq. (3):

�̂� = 𝑓 (𝑊𝑑 . ℎ,+𝑏𝑖𝑎𝑠𝑑 ) (3)

where 𝑊𝑑 is the matrix of decoding and highlights a is bias parameters
vector. In order to reconstruct the parameters of AEN, Levenberg–
Marquardt algorithm and Mean Square Error (MSE) methods are used
to minimize the error of decoding between a and â. MSE can be
btained via Eq. (4):

𝑆𝐸(𝑎, �̂�) = ‖𝑎 − �̂�‖22 =
‖

‖

‖

𝑎 −
(

𝑊𝑑 . ℎ + 𝑏𝑖𝑎𝑠𝑑
)

‖

‖

‖

2

2
(4)

If the hidden layer has a size less than a, the AEN learns the

raining data represented in compressed form. In fact, an AEN with

36
Fig. 5. An AEN architecture with n hidden layers [107].

k linear hidden units will learn to reflect the data to the first k main
components. Normally, an AEN with k linear hidden nodes learns to
transfer training data to the first k main component. Nonlinear hidden
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nodes allow an AEN to learn more complex coding functions, such as
in additional hidden layers.

2.3. Performance evaluation for the datasets

In the context of medical classification studies, different perfor-
mance calculations are widely-used. Accuracy, Precision, Recall, F-
measure, and Gmean are among them and these measures are run for
evaluating the precision of a used method. For the PASCAL B-Training
dataset, all those measures have been used accordingly. Equations
regarding the measures are as follows briefly [108]:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(5)

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (9)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗
[

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

]

(10)

− 𝑚𝑒𝑎𝑛 = 𝑠𝑞𝑟𝑡(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦) (11)

In the Eqs. (5)–(11), FP and TP define the number of false positive
iagnosis, and the number of true positive diagnosis respectively. FN
s for the number of false negative diagnosis, and the TN means the
umber of true negatives. FP also corresponds to the number for false
ositives and that is calculated from negative samples in the context of
lassification results. For the classifier, the value of precision explains
he ability to diagnose correctly, as derived from the ratio of accuracy.
n the other hand, the concept of sensitivity explains what extent the

elated classifier defines the formation of the target class correctly. In
ddition, the specificity defines the target class separation capability of
he classifier while the precision is the measure regarding the quality
f results being accurate or precise. Recall is also known as the rate
or true positive as it means also the ratio of the correctly identified
ositives within a test. Finally, F-measure (F1-score) corresponds to the
easure of accuracy of a test. It briefly gives the weighted harmonic

verage of precision and recall [109–111].
It is remarkable that the Accuracy, Sensitivity and Specificity are

sed to assess the precision of an employed solution [68,69]. In this
tudy, some other measures have been also used for evaluating the
erformance against PhysioNet A-Training dataset. Here, the Phys-
oNet/Computing in Cardiology (CinC) Challenge 2016 suggests a pub-
ic database with heart sounds [112]. The scoring algorithm defined
s the average of specificity (𝑆𝑝) plus sensitivity (𝑆𝑒) is as follows (as
roposed by the challenge organizers):

𝑐𝑜𝑟𝑒 =
𝑆𝑒 − 𝑆𝑝

2
(12)

where

𝑆𝑒 =
𝐴𝑎

𝐴𝑎 + 𝐴𝑛
(13)

𝑝 =
𝑁𝑛

𝑁𝑎 +𝑁𝑛
(14)

In the Eqs. (12)–(14), 𝑁𝑛, and 𝐴𝑎 corresponds respectively to the
orrectly classified normal, and abnormal recordings. Additionally, 𝑁𝑎,
nd 𝐴𝑛 mean incorrectly classified normal, and abnormal recordings
espectively [113].
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. Applications with the secure internet of health things approach
ith autoencoder based diagnosis

Heart diagnosis performance is the most critical characteristic of
he developed IoHT approach in this study. Except from using ex-
eriences with the IoHT system, it is important to see if successful
iagnosis-classification performances can be achieved via AEN based
nfrastructure. Moving from that, previously done studies were exam-
ned along this research, and attempts were made to determine the
ost appropriate AEN confederation. The same AEN was used in the

lassification study for both databases. In this way, it was ensured
hat the IoHT system with the well-trained AEN can be applied for
eal cases. For the real cases, a total of 12 doctors (whose expertise
s cardiology) from different hospitals in Turkey were wanted to use
he system for a determined period, in order to get some feedback of
sing experiences.

The structure of the AEN model used in this study is given in
ig. 6. That model consists of 8 steps. The first step is an automatic
dentifier (with a hidden layer size of 10), by employing a linear
ransfer function for the decoding. In the AEN, the coefficient for
he L2 weight ‘regulaizer’ is 0.001, the coefficient for the sparsity
egularization term is 4, and the sparsity proportion is 0.05. The mean
quared error (MSE) function adjusted for training the AEN is the loss
unction for training. That function includes L2 weight regularization
nd sparsity regularization. Decoder transfer function, which is the last
rocess of the Autoencoder 1, was selected as ‘purelin’. In order to train
he AEN, the scaled conjugate gradient descent algorithm is employed
ccordingly. The second step of AEN is features 1, which extracts the
eatures in the hidden layer by encoding Autoencoder 1 and the input
atrix. The third step of the AEN is Autoencoder 2 and it has same

haracteristics with the Autoencoder 1. It was trained using the features
rom the first autoencoder without scale the data. Features 2 is for
xtracting the features in the hidden layer by encoding Autoencoder
and features 1. The fifth step of the AEN is structured over a SoftMax

ayer and it is trained for classification, by using the features 2 and the
utoencoder 2.

The Softmax layer is used regarding the classification purpose. The
oftmax layer has the same size with the target matrix. Loss function for
he softmax layer is the cross-entropy function. In the sixth step of the
EN, the softmax layer and the encoders are stacked to form the deep
etwork: Deepnet 1. In the seventh step, the deep network is trained
ccording to the heart sounds, as using input and output matrices to
reate Deepnet 2. In the last step, Deepnet 2 estimates types of heart
ounds for input data using Deepnet 2. The maximum training epochs
or each step of the AEN was 1000.

.1. Diagnosis findings for the PASCAL dataset

First diagnosis-classification task was done by using the PASCAL
ataset. From the dataset, 80% of the samples were for training data,
hile 20% was for testing phase. The target matrix was with three
utput classes: normal, murmur, and extrasystole. The AEN model was
etrained and run 20 times for each of different training and test data
ets. The same performance ratio as 100% was achieved in all twenty
uns. The sample training, test and all confusion matrices regarding
verage performance are given in Figs. 7 and 8. In these figures, (a)
s the Confusion matrix of training data, (b) is the Confusion matrix of
est data, (c) is the Confusion matrix of all data.

As it is seen from the confusion matrices, all accuracy scores of
he classifications were 100% with the developed AEN model. For the
ASCAL dataset, the AEN provided a sensitivity rate of 100% and the
pecificity rate of 100%.
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Fig. 6. The structure of Autoencoder Neural Networks.
3.2. Diagnosis findings for the PhysioNet dataset

In the second application, diagnosis-classification was done for the
PhysioNet dataset. From the related dataset, 80% of the samples were
used as training data, while the remaining 20% were for testing. The
target matrix corresponds to two output classes: normal, and abnormal.
The AEN was retrained and run 20 times for each of different training
and test data sets. The same performance ratio as 99.8% was achieved
in all twenty runs. The sample training, test and all confusion matrices
regarding the average performance are given in Figs. 9 and 10. In these
figures, (a) is the Confusion matrix of training data, (b) is the Confusion
matrix of test data, (c) is the Confusion matrix of all data. As it is seen
from the confusion matrix, accuracy of the classification was 99.8%,
while the sensitivity was 99.65%, and the specificity was 99.13%, as
provided by the AEN model.

Based on the 20 runs and the finding for the whole data for each
dataset, Fig. 11 provides a general box-plot graphic.

Based on the related findings and further investigations–evaluation
processes, the next section provides a general analyze of the IoHT
system as well as the AEN infrastructure for diagnosis of heart diseases
considered within this research study.

4. Evaluation and discussion

The evaluation phase for the IoHT system has included several ap-
proaches in the context of testing AEN and the IoHT system separately.
The next sub-sections explain all evaluation tasks and the obtained
findings accordingly.

4.1. Evaluation of the AEN

In order to analyze success of the IoHT system well enough, the
first task was to evaluate the AEN infrastructure. That was done by
evaluating the AEN itself and also including it within a comparative
evaluation. The next sub-sections discuss about the findings regarding
the evaluation of the AEN.
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Table 3
The obtained evaluation results for both databases.

Database Accuracy Sensitivity (%) Specificity (%) F-measure (%) G-means (%)

PASCAL 100 100 100 100 100
PhysioNet 99.80 99.65 99.13 99.67 99.38

4.1.1. Performance of the AEN
For determining exact state of how well AEN can be applied for

diagnosing heart diseases, the success of classifying heart sounds with
AEN has been examined. For this purpose, two different heart sound
data set, such as PASCAL and PhysioNet were classified by using AEN.
The obtained evaluation results for both databases are given in Table 3.

As it can be seen from Table 3, the AEN has been successful enough
against both datasets employed for both training and test tasks for the
diagnosis infrastructure of the IoHT system. More evaluation including
comparative approaches and analyze of both IoHT system and the AEN
during real-time applications (real cases) are discussed within next
paragraphs.

4.1.2. Comparative evaluation of the AEN
In order to evaluate the obtained results, additional comparisons

were made by considering alternative solutions used the same PASCAL
and PhysioNet datasets. As similar to single run of the developed solu-
tion in this study, comparison findings were gathered by performing
20 runs for each method. The comparison data for PASCAL dataset
were given in Table 4. This table contains widely employed five types
of classification methods such as AEN, ANNs, SVM, CNN, and DNN.
In Table 4, the bold-style values are for the best scores among the
methods.

As seen from Table 4, classification studies for PASCAL dataset
with AEN have the highest accuracy, sensitivity and specificity ratios
according to the other classification methods. By achieving the 100%
overall accuracy rate for PASCAL dataset, the proposed solution has the
best performance in all of them. F-measurement is the harmonic mean
of the classifier and its recall. In most cases, there is a trade-off between
precision and recall. If you optimize the classifier to increase one and
remove the other, the harmonic average decreases rapidly. However,
when both sensitivity and recall are equal, it is the largest. The fact that
the F-measure is 1 indicates that the classifier is in the best condition.
As similar, the G-mean value was 1.
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Fig. 7. Confusion matrices regarding classification of PASCAL dataset with ‘‘Application 1’’: (a) Matrix of the training data, (b) Matrix of the test data, (c) Matrix for the all data.
Table 4
Comparative evaluation for the PASCAL dataset.

Study Method Average
accuracy
(%)

Average
sensitivity
(%)

Average
specificity
(%)

This Study AEN 100 100 100

Deperlioglu [38] Non-Segmented ANNs 82.8 85.5 85.9
Deperlioglu [38] Segmented ANNs 86.50 86.3 88.50
Deperlioglu [109] CNN 97.90 99.47 98.42
Mubarak [110] SVM 84.21 83.33 85.06
Singh [114] Naïve Bayes 93.33 93.33 93.33
Gomes [115] Decision tree 72.76 – –
Sujit [116] AdaBoost 83.33 84.92 86.81
Tong [117] SVM 90.50 100 81.80
Nabih-Ali [118] DWT and ANNs 97.00 – –
Deperlioglu [119] Segmented Autoencoder 99.93 99.77 99.77
In addition to the findings for the PASCAL dataset, the comparison
ata for PhysioNet dataset were given in Table 5. In Table 5, the
old-style values are for the best scores among the methods considered.
39
As seen from Table 5, classification studies for PhysioNet dataset
with AEN have the highest accuracy, sensitivity and specificity ratios
according to other classification methods. Achieving the 99.8% overall
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Fig. 8. Confusion matrices regarding classification of PASCAL dataset with ‘‘Application 2’’: (a) Matrix of the training data, (b) Matrix of the test data, (c) Matrix for the all data.
Table 5
Comparative evaluation for the PhysioNet dataset.

Study Method Average
accuracy
(%)

Average
sensitivity
(%)

Average
specificity
(%)

This Study AEN 99.80 99.65 99.13

Ryu [70] CNN 79.5 70.8 88.2
Langley [113] Wavelet Entropy 77 98 56
Deperlioglu [120] Segmented CNN 97.21 94.78 99.65
Thomae [121] Deep Gated RNN 55.0 99.0 11.0
Nilanon [122] CNN 81.35 73.5 89.2
Tschannen [123] Wavelet-based deep CNN 85.7 85.5 85.9
Yang [124] SVM 83 70 96
Puri [125] SVM 78.20 77.49 78.91
Potes [126] AdaBoost and CNN 81.91 77.81 86.02
accuracy rates for PhysioNet dataset, the proposed method has the best
performance in all of them. In this classification study, F-measure were
found %99.67 and G-mean %99.38 were found. The F-measure and
G-means, the most common used evaluation metrics, show that the
classification method is very successful for the precision and the recall.
40
Achieving the 100% and 99.8% overall accuracy rates for the two
most commonly used the data sets of heart sounds shows that the
obtained results are not random. It is also seen that the number of cate-
gories in the output class does not affect the result for classification with
AEN. In this study, the AEN model provided very good results in the
classification phases performed separately for two different databases.
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Fig. 9. Confusion matrices regarding classification of PhysioNet dataset with ‘‘Application 1’’: (a) Matrix of the training data, (b) Matrix of the test data, (c) Matrix for the all
data.
But it is still open for alternative adjustments against different datasets
of heart sounds. Being robust against possible change on output states,
and achieving good results, which are not random, mean that the model
can be adapted easily (and successfully) to alternative heart data. These
results also point that a good classification can be made without using
any wavelet methods or various segmentation methods (i.e. Shannon
energy, re-sampled energy). Heart sounds can be easily classified by a
well-designed AEN. Thus, clinical decision support systems, which use
classification as a tool, are both reduced in workload and in terms of
processing time and cost.

4.1.3. Giacomini–White test for statistical validation
By considering the performances of each method for each dataset,

it is also necessary to perform a validation tasks, in order to show that
the obtained findings were not with a chance. In order to perform
that, Giacomini–White Test [127] was employed in this study. The
test was done to understand if the minimum mean accuracy rate for
each method means that the related method is good at diagnosis-
classification. Next to the pairwise-comparison performed over all

methods, findings about which method had the better performance

41
Table 6
Findings regarding the Giacomini–White Test.

Dataset The Best Performance

PASCAL dataset AEN (This Study)/DWT and ANNs [102]/ Autoencoder [110]
PhysioNet dataset AEN (This Study)/CNN [103]

Significance level of 5%

(in other words, outperforms the others statistically with the 5%
significance level) are shown in Table 6. In the table, more than one
method means that there is an equivalence among the methods for the
corresponding dataset.

The related findings from the Giacomini–White Test confirms the
successful performances by the AEN infrastructure. Additionally, the
methods in [102], and [110] took places in the best performance (with
the AEN) for the PASCAL dataset while the method [103] had place in

the best performance (with the AEN) for the PhysioNet dataset.
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Fig. 10. Confusion matrices regarding classification of PhysioNet dataset with ‘‘Application 2’’: (a) Matrix of the training data, (b) Matrix of the test data, (c) Matrix for the all
ata.
.2. Evaluation of the IoHT system

Evaluation of the IoHT system has been done by considering four
ifferent perspectives as cost analysis, usability tests, and feedback as
ell as findings from real cases. In this way, it was aimed to analyze
ffectiveness and applicability of the system further in different envi-
onments and by doctors or even supportive medical staff. Evaluation
hases were done thanks to a 4-month use of the system by a total
f 12 doctors at 5 different hospitals, as 3 doctors from Suleyman
emirel University Hospital (Isparta, Turkey), 2 doctors from Isparta
eddem Hospital (Isparta, Turkey), 3 doctors from Isparta Davraz
ospital (Isparta, Turkey), 2 doctors from Akdeniz University Hospi-

al (Antalya, Turkey), and 2 doctors from Private Akdeniz Hospital
Antalya, Turkey).

.2.1. Cost analysis
By considering optimum components to run the IoHT system de-

eloped in this study, it is possible to have a general cost analysis. By
42
accepting that all doctors have smart phones to run mobile application,
average costs of each component (by June 2020) can be summed for
ensuring a cost on low, medium, and high-level scenarios. Table 7
provides three different cost analyses in this manner.

As it is seen from Table 7, medium cost of the system is 1900$ for
a medical environment with 5 doctors, and a 1-year use at total. Here,
the medium cost will be acceptable for most of hospitals. The costs
may be reduced to 1630$ by employing cheaper beacons (or similar
sensors with less costs), and choosing a different cloud provider as
Google Cloud. On the other hand, the costs may be high as 2390$ if
beacons, central system, and the cloud provider are changed to higher
levels. Also, it is possible to run the central system without employing
a cloud. However, – as it was indicated before – especially use of
cloud corresponds to a wider use of the system in the future with
multi-hospitals at the same time.

4.2.2. Usability tests
For evaluating usability of the IoHT system as well as the AEN di-

agnosis solution, a usability test was done with the active contribution



O. Deperlioglu, U. Kose, D. Gupta et al. Computer Communications 162 (2020) 31–50
Fig. 11. Box-plot graphic for the findings from 20 runs for each dataset.
Table 7
General cost analysis of the IoHT system.

Component Low Cost Medium Cost High Cost

Cloud Service Google Cloud: 12 * 15$ = 180$
(average of 15$ per month)

Azure: 12 * 20$ = 240$
(average of 20$ per month)

Amazon Web Services (AWS):
12 * 30$ = 360$ (average of 30$
per month)

Beacons Qualcomm: 10 * 5$ = 50$
(accepting as 10 beacons are
enough)

FEASYCOM: 10 * 10$ = 100$
(accepting as 10 beacons are
enough)

iBeacon: 10 * 20$ = 200$
(accepting as 10 beacons are
enough)

Central System 1150$ (Intel Xeon E-2124 4
core-CPU with 4.5 GHz and, 8 GB
RAM, Nvidia Quadro P400, 1 TB
hard drive)

1250$ (Intel Xeon 18 core-CPU
with 3.6 GHz and, 16 GB RAM, 1
TB hard drive)

1520$ [Intel Xeon E-2224G 4
core-CPU with 3.5 GHz
(4.70 GHz Turbo) and, 16 GB
RAM, 1 TB hard drive]

Software Development Average of 100$ Average of 100$ Average of 100$

Digital Statoscope Plusmed Plus-vesd: Average of
150$

DigiScope®: Average of 210$ DigiScope®: Average of 210$

Total 1630$ 1900$ 2390$

Considering a total of 5 doctors in the same medical environment, with 1-year use
43
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Fig. 12. General flow of the usability test.

y 12 doctors. All doctors used DigiScope® as the digital stethoscope,
and the environments were supported with FEASYCOM Mini Bluetooth
5.0 proximity beacons. Used smart phones were as follows (with total
number of doctors using each): iPhone X (2), iPhone 8 (1), iPhone 8
Plus (1), iPhone 7 (1), iPhone 7 Plus (2), Samsung Galaxy S10 (2), Sony
Xperia XZ (1), Xiaomi Redmi Note 8 (1), and Vestel Venus Z20 (1). The
usability test prepared by including some tasks to do while using the
system. In detail, average completion time for each task, completion
rate (by considering limited time periods for each task), and average
feedback by the doctors by indicating 1 if the task is easy, 2 if the
task has medium difficulty, and 3 if the task is difficult. Each task was
done respectively, and after each task, an evaluator noted completion
time, completion state (successful if the task was completed within the
limit), and the feedback by the user for the difficulty of the performed
task (Fig. 12). Table 8 provides all tasks as well as the other findings
obtained at the end of the usability test.

According to Table 8, the IoHT system has been considered as
a practical, easy-to-use approach for the diagnosis of heart diseases.
While doctors think that especially heart sound analyze and diag-
nosis tasks near to medium difficulty level, the whole system can
be effectively and efficiently used by doctors, considering completion
time, completion rate and difficulty feedback for all tasks. The related
findings have been illustrated in also Figs. 13 to 15, respectively.

4.2.3. Feedback from doctors and real cases
As it was indicated before, the IoHT system was used for around

4 months by a total of 12 doctors at 5 different hospitals. In addition
to the usability tests done by those doctors, they have also wanted to
give open feedback about their ideas on the used IoHT system. While
around 98% of the ideas-comments are positive, the most remarkable
ones are as follows:

• ‘‘That system allows me to save time and concentrate more on the
treatment stage, rather than diagnosis’’.

• ‘‘I would like to use that system in every medical environment I take
place’’.

• ‘‘Thanks to that system, it became easier to share diagnosis results and
ideas with my colleagues’’.

• ‘‘That system can be used for different medical cases and diagnosis
tasks’’.

• ‘‘It would be great if that system can be supported with also medical
image analysis’’.

• ‘‘The system may include an offline mode because GSM communica-

tion is weak in some places’’.
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• ‘‘It is very nice to use the system with my smart phone, without needing
any further tool.

• ‘‘With that system, I can diagnose heart sounds faster’’.
• ‘‘This system is very practical and fast to use for analyzing heart

sounds’’.
• ‘‘The system provides a secure communication to keep my data as well

as medical cases in safe’’.
• ‘‘I liked the multi-authentication mode by the system’’.
• ‘‘Diagnosis performance of that system was accurate in all cases I

analyzed’’.

Considering the 4-month use experience by the doctors at 5 different
hospitals, a total of 479 real cases (real analyze–diagnosis from newly
encountered heart sounds) were analyzed by using the IoHT system
(The previously mentioned devices/components in usability tests were
being used during that period). As the AEN infrastructure is effective on
diagnosing normal, extrasystole, and murmur class-category from heart
sounds, performance of the system was evaluated for each hospital, by
considering the related cases. Table 9 provides findings about true–false
diagnosis done for the real cases.

As it can be seen from feedback by the doctors and also findings
by real cases, the developed IoHT provides successful enough perfor-
mance in real-time applications. It is remarkable here that the AEN
infrastructure of the system is accurate in discriminating–classifying
not only normal/abnormal heart sounds but also different kinds of
abnormal heart sounds. It is also understood that there is not any vital
communication-running problem among the technical components of
the IoHT system. In detail, positive outcomes in even use of different
mobile devices at different locations/environment set-ups show that
the developed system has important potential for making it adapted
to different conditions and components. But in order to cover every
aspects of that research, the next sub-section is devoted to limitations
and suggestions.

4.2.4. Data security tests
As the IoHT system developed in this study ensures multiple data

security aspects (in terms of both secure communication and data stor-
ing), it was tested with some alternative security related attacks. The
attacks were generally based on trying to manipulate the system data
with synthetic data impute, and penetration tries via central system
and mobile devices. A total of 32 different scenarios have been applied
accordingly. Table 10 provides information regarding the attacks and
the results.

As it can be seen from Table 10, the security side of the IoHT system
seems robust against any possible malicious attacks with different ways.
Unsuccessful attacks were because of strong encryption scheme as
well as multi-authentication for communication and proof mechanism
provided by the Tangle. One successful attempt with a specific vulnera-
bility was associated with the Windows operating system on the central
system and that was eliminated after latest updates.

4.3. Limitations and suggestions

The developed IoHT system provided positive findings in terms of
evaluation works with different perspectives. However, it is still possi-
ble to discuss about some limitations and derive ideas about alternative
works to do by interested researchers. First of all, some limitations
that may be associated with that research can be expressed briefly as
follows:

• Diagnosis performance of the developed system (with its AEN in-
frastructure) was evaluated by considering two different datasets.
It may be required to train the AEN continuously with newer
data/cases for making it adapted to even slight changes (in the
heart disease diagnosis problem) and preventing it from rising

bias.
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Table 8
Findings for the usability test applied for the IoHT system.

Task Average completion
time (s)/Limit

Completion rate (%) Average difficulty

Run the mobile application. 3/5 100 1.10
Gather a heart sound. 22.3/25 100 1.87
Analyze the heart sound. 16.8/25 100 1.75
Perform diagnosis. 18.4/20 100 1.69
Save results. 9.6/10 98 1.32
View general analyses. 12.6/10 97 1.41
Contact with a doctor. 15.7/15 97 1.27
Share data with a doctor. 19.6/20 96 1.98
Train the AEN system. 27.1/25 95 2.16
Update the cloud. 14.3/15 97 2.08
View active beacons. 8.5/10 100 1.12
View active doctors. 9.4/10 100 1.14
View statistics for the doctors. 11.5/10 98 1.37

Findings are average of the values by 12 doctors used the system.
Fig. 13. Average completion time for each task at the usability test.
Table 9
Diagnosis performance by the IoHT system, for real cases.

Hospital T/F Diagnosis
for Normal

T/F Diagnosis
for Extrasystole

T/F Diagnosis
for Murmur

Suleyman Demirel University Hospital 53/2 19/3 14/1
Isparta Meddem Hospital 47/1 31/1 15/2
Isparta Davraz Hospital 39/2 38/2 19/3
Akdeniz University Hospital 51/1 21/2 20/1
Private Akdeniz Hospital 52/4 16/3 14/2

Total Accuracy (%) 96.03 91.91 90.11
• In terms of IoHT architecture, some unexpected scenarios may be
still experienced. For example, materials of buildings may cause
interrupts / problems in wireless communication of beacons as
well as mobile devices, and low-level technological resources of
target places may cause negative using experiences. But further
uses will probably allow eliminating such issues accordingly.

• As there are many different types of mobile devices and hardware
components to be used for the IoHT system, there may be need
for more compatibility tests.
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• The system seems to be running well enough for different mobile
devices with different operating systems (iOS, and Android), there
will be still need for software updates to include specific mobile
devices with unique features, and using functions.

• If the developed system runs over a wider network of feder-
ate, similar systems of IoHT, further tests on i.e. resource use,
scalability, and data security may be required.

• Although the security side of the IoHT system seems success-
ful, it will be always requiring to track latest hacking/attacking
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Fig. 14. Completion rate for each task at the usability test.
Fig. 15. Average difficulty feedback for each task at the usability test.
Table 10
Data security tests for the developed IoHT system.

Scenario Number of tries Result Reason

Synthetic heart sound data import 9 Successful: 0 Tangle proof/user authentication
Unsuccessful: 9

Synthetic training data import 5 Successful: 0 Tangle proof/user authentication
Unsuccessful: 5

Malicious user creation 4 Successful: 0 Tangle proof/user authentication
Unsuccessful: 4

Penetration via central system 8 Successful: 1 Windows vulnerability/lack of update
Unsuccessful: 7 Tangle proof/Time out/up-to-date OS/encrypted data

Penetration via mobile device 6 Successful: 0 Up-to-date mobile OS/encrypted data

Unsuccessful: 6
methods and keep the system up-to-date in terms of defensive,

alternative approaches.
46
Considering the obtained findings–results and the potential of the de-
veloped system, some suggestions for further research can be explained
as follows:



O. Deperlioglu, U. Kose, D. Gupta et al. Computer Communications 162 (2020) 31–50

5

W
s
p
t
t
s
u
s
t
s
r
t
i

f
F
d
m
n
m
d
m
T
s
u
o
o
c
u
a
e
s
u
b
s
u
t

G
i
i

A

t
Y
t

D

c
i

R

• Because the developed system seems to be blending some critical
research points of medical: diagnosis, IoT usage, and data secu-
rity, it has a great potential for long use. On the other hand, there
is still opportunities for further, alternative research to contribute
the associated literatures of smart technologies and the medical.

• There is a great interest in using IoHT systems and it seems
doctors/medical staff are ready to use such systems for improving
their using experiences. So, it is important to focus more on
developing IoHT systems under the wide umbrella of IoT.

• Nowadays, there is a serious pandemic: COVID-19 so that re-
search in medical has more importance for urgent solutions,
thanks to smart technologies. The system developed in this study
can be modified to be used for COVID-19 diagnosis. That can
be achieved by adjusting only several features (i.e. processing
medical image, optimizing AEN parameters/architecture). In this
sense, IoHT systems have great importance for combating COVID-
19.

• Such systems of IoHT may need employment of some detailed
using modules, which can make the system adaptive to different
user characteristics and even work-load. Also, it may be good to
include Explainable Artificial Intelligence infrastructure for better
variations of IoHT systems.

• Except from the mentioned points, the system ensures many
future work development potentials. These have been expressed
in detail under the future works discussed in the next section.

. Conclusions and future work

Characteristics of the PCG vary according to the state of the heart.
hen there is a problem with the heartbeat function, the heartbeat

ignal seems distorted. For this reason, classification studies ensure a
reliminary diagnosis phase helping to determine if further examina-
ion is required or not. In this sense, roots of that research belong
o the automatic classification of heart sounds. By considering past
tudies showing effectiveness and speed of deep learning, AEN was
sed for heart disease diagnosis, as in the context of a secure IoHT
ystem. The IoHT approach was designed for providing a practical, real-
ime diagnosis tool for doctors. Furthermore, it was aimed to achieve a
ecure data communication infrastructure as today’s IoT systems vitally
equire that. Thanks to the system infrastructure, it has been possible
o improve effectiveness and efficiency of heart health related analyses,
n the context of a mobile, smart network of daily-life devices.

In order to evaluate the whole IoHT system and the diagnosis in-
rastructure by the AEN, a comprehensive evaluation period was done.
irstly, the AEN model has been tested in two different heart sound
atasets. Heart diseases classified in the Pascal dataset are normal,
urmur, extrasystoles. On the other hand, Physio dataset classifies
ormal and abnormal heartbeats. Although the difference, the AEN
odel gave successful and effective results for two different heart sound
ata sets. The findings were also compared with different classification
ethods including techniques of AEN, ANNs, SVM, CNN, and DNN.
he classification applications with AEN provided the highest accuracy,
ensitivity and specificity rates among other classification methods
sed over the same, most commonly used data sets. That means the
btained results are not as a chance and it is also seen that the number
f categories in the output class does not affect the results for the
lassification by AEN. Thus, it is clear that an AEN model can be
sed as a practical and efficient method for detecting heart conditions
nd classifying heart diseases for preliminary diagnosis. Following the
valuation works done for the AEN model, effectiveness of the IoHT
ystem was evaluated by 12 doctors from different hospitals. That eval-
ation phase included usability-tests as well as the using experiences
y doctors in real cases. Additionally, a brief cost analysis for the IoHT
ystem was also provided accordingly. As general, findings from the
sability-tests pointed positive thoughts on effectiveness and success of

he IoHT system. Except from the feedback for data security aspects,
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the IoHT system has been tested with some alternative attacks and the
system was generally able to reject any data manipulations.

Thanks to the positive results-findings achieved in this study, the
authors have already planned some future works. In this context, ad-
ditional improvements for building a modular IoHT system (as a more
advanced clinical decision support system), which is able to diagnose
all kind of diseases and employ additional tasks will be developed in
the future. Also, adding alternative diagnostic and treatment methods
(with especially deep learning techniques), and performing additional
works to test security level are among other future works. It is also
remarkable that contributive feedback-comments by the doctors will
be considered for further improvements over the IoHT system. Finally,
as the COVID-19 issue was threatening the humankind while writing
that content, the authors have decided to run additional future works
including addition of accessibility features (i.e. voice command since
the authentication already allows voice analyze), in order to ensure less
physical interaction with the system. Furthermore, improvements for
the data security side will be checked often as the near future seems to
be rising a digital world with more sensitive data.
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