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Abstract—Electroencephalogram (EEG) comprises valuable 

details related to the different physiological state of the brain. In 

this study, a framework is offered for detecting an epileptic 

seizure from EEG data recorded from normal subjects and an 

epileptic patient. This framework is based on discrete wavelet 

transform (DWT) analysis of EEG signals using linear and non-

linear classifiers. The performance of fourteen different 

combinations of two-class epilepsy detection is studied using 

naïve Bayes (NB) and k-nearest neighbor (k-NN) classifiers for 

the derived statistical features from DWT. It has been found that 

the NB classifier performs better and shows an accuracy of 100% 

for the individual and combined statistical features derived from 

DWT values of normal eyes open and epileptic EEG data 

provided by University of Bonn, Germany. It has been found that 

computation time of NB classifier is lesser than k-NN to provide 

better accuracy. So, the detection of an epileptic seizure based on 

DWT statistical features using NB classifiers are more suitable in 

real-time for a reliable, automatic epileptic seizure detection 

system to enhance the patient’s care and quality of life.  

 

 

Index Terms— Discrete Wavelet Transform (DWT), 

Electroencephalograms (EEG), Epilepsy, k-nearest neighbor  

(k-NN), and naïve Bayes (NB). 

 

I. INTRODUCTION 

Electroencephalogram (EEG) is an effective, low-cost, non-

invasive technique used in clinical studies to examine the 

electrical activity of the brain. EEG is one of the techniques to 

identify an abnormality of the brain. One of the chronic, 

non-communicable neurological disorders that can be studied 

from EEG is epilepsy. The neurological condition of the 

epilepsy is characterized by recurrent seizures, a momentary 

electrical disruption in the brain. These seizures may cause a 

disturbance in movement, control of bowel or bladder 

function, loss of consciousness or other disturbances in 

cognitive functions. 
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Traditionally, seizures are examined from 20 minutes 

recording of pre-seizure periods. However, long-term EEG 

recording is necessary in the case of infrequent epileptic 

seizure detection and it is time-consuming. Visual inspection 

of the EEG for seizure detection varies with the human 

expertise.  Therefore, an automatic diagnosis of an epileptic 

seizure is crucial in the clinical environments. Pattern 

recognition is one of the techniques in detecting epileptic 

seizure from EEG signals by extracting hidden patterns from 

the EEG. There are many feature extraction techniques, such 

as time-domain [1-4], frequency-domain [5-8], time-frequency 

domain [9-15], which researchers are attempting to extract the 

hidden patterns in the EEG signals. Researchers have 

attempted to use multi-fractional analysis based on generalized 

fractal dimensions(GFD) and DWT on classification of 

epileptic EEG signals [49][50]. Researchers have attempted 

various classifiers namely artificial neural network [16-19], 

support vector machines [8][20-23],k-nearest neighbor (k-

NN)[24,25],quadratic analysis[26], logistic regression[6,13], 

Naïve Bayes (NB) [13], decision tree [13, 27], Gaussian 

mixture model [2, 25], adaptive neuro-fuzzy inference systems 

[20, 31], mixture of expert model [28-30], surrogate data 

analysis [32, 33], learning vector quantization [34], Markov 

modeling [35] to classify the epileptic seizure abnormality 

from the EEG data.   

   All the above pattern recognition approaches focus on 

improving the classification accuracy with the various 

combinations of feature extraction and classification technique 

in the detection of an epileptic seizure. Therefore, the pattern 

recognition classification accuracy depends upon the type of 

features, a number of features and the classifier [36]. The 

objective of this study is to identify the most efficient pattern 

recognition method for reliable seizure detection. 

 In this paper, we make an attempt to obtain improved 

classification accuracy with less number of features for 

fourteen different combinations of data sets using linear naïve 

Bayes and non-linear k-NN classifier. This study examines 

publicly available five EEG datasets A, B, C, D & E provided 

by Department of Epileptology at University of Bonn, 

Germany [37]. Three statistical features i.e., mean absolute 

value (MAV), Standard deviation (SD) and Average power 

(AVP) were derived from D3-D5 and A5 of DWT 

coefficients. The derived features are studied using NB and k-

NN classifiers to identify the output as an epileptic seizure or 

not. It is found that the NB classifier performs better in terms 

of all the individual and combined statistical features when 
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compared to the k-NN classifier for the normal eyes open and 

epilepsy data sets and gives an accuracy of 100%. The k-NN 

performs better with the SD and SD&MAV for the normal 

eyes open and epilepsy data sets.   

II. EEG DATA SEGMENTATION 

The open source epileptic data of the University of Bonn, 

Department of Epileptology, Germany, consists of five EEG 

data sets A to E for the duration of 23.6 sec from 100 single 

channels [37]. The data sets A and B correspond to EEG 

recordings of five normal subjects with their eyes in an open 

state and closed state. The data set C recorded before the 

epileptic attack at hemisphere hippocampal formation, data set 

D recorded from an epileptogenic zone and the data set E 

recorded during an occurrence of epilepsy within an 

epileptogenic zone. The data were recorded with 128-channel 

amplifier system, digitized with a sampling rate of 173.61 Hz.  

In this work, each channel data consist of 4097 samples is 

segmented into 8 equal data segments of size 512 and 

discarding the last data. Therefore, a total of 800 data 

segments is obtained for each data set from 100 single 

channels. Statistical features are derived from discrete wavelet 

transform coefficients of each data segment for identification 

of epileptic seizure using pattern recognition techniques. 

Fig.1. shows sample EEG signals for set A to E.  

 
Fig. 1.  Sample EEG signal for A to E 

III. STATISTICAL FEATURES FROM DISCRETE WAVELET 

TRANSFORM (DWT) CO-EFFICIENT 

EEG time series signals are non-stationary and may 

comprise more quantity of information apart from the high 

frequency oscillations due to electromagnetic interference, 

very low frequency artifacts from eye blinks, muscle 

movements,etc.,.Signal analysis based on fast Fourier 

transform (FFT) is not capable of capturing frequency 

information with the time of events [38].The time-frequency 

representation of time series signals is an attractive method to 

capture relevant frequency information at low frequencies 

along with relevant time information at the high-frequencies 

[39]. The wavelet transform (WT) is one such technique based 

on the multi-resolution analysis; decompose the signals into 

different frequency bands. This WT characteristic is useful in 

analyzing the epileptic seizure signal because the EEG signals 

contain low-frequency information with long time periods and 

high-frequency information with short time periods [39]. The  

 

WT could be continuous wavelet transform (CWT)/ discrete 

wavelet transform (DWT). The drawback of CWT is the high  

redundancy. However, with DWT, it is easier to decompose 

the signal into different levels using filter bank consisting of a  

group of filters. The wavelet decomposition of the signal x[n], 

using five level can be decomposed using filter bank as shown 

in Fig.2. Each level consists of filters with a down-sampler by 

2.   

In the initial stage, the signal x[n] is passed through high-

pass filter h[n] and low-pass filter g[n] and the outputs of 

filters are regarded as first level detailed co-efficient, D1 and 

approximation(A1) correspondingly.  D1, A1 represents the 

frequency content of an original signal. The approximation 

coefficient at every level is decomposed and the process has 

been repeated to get the subsequent levels of coefficient such 

as D2, A2, D3, A3, D4, A4, D5 and A5. At each stage of the 

decomposition, the filtering doubles the frequency resolution 

and down- sampling halves the time resolution.  
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Fig. 2.  Five level wavelet decomposition of the EEG signal 

Daubechies 4(db4) wavelet function is chosen for five-level 

decomposition of epileptic EEG data into different frequency 

bands [30]. Figures 3 and 4 show the wavelet output for 

seizure-free and epilepsy signal. Most of the useful frequency 

component required to identify seizure from EEG signals are  

 

in the decomposition levels D3, D4, D5, and A5 [14]. So, the 

statistical features derived from these sub-bands alone can be 

applied to the NB and k-NN classifier to identify the epileptic 

seizure signal and the remaining coefficients (D1&D2) are not 

taken into account for obtaining the statistical features. 

Fig. 3.  Wavelet output for normal EEG signal 

 

 
Fig. 4.  Wavelet output for epilepsy EEG signal 
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Four statistical features were derived from D3-D5 and A5 

[14].So, we also consider third to fifth level detailed 

coefficients (D3-D5) and the approximation (A5) in this work. 

Further, only three statistical features namely mean absolute 

value, average power, and standard deviations are derived 

from the coefficients of DWT. The following statistical 

features are derived from the coefficients of the DWT using 

the mathematical equation (1)-(3).  

 

(i)Mean absolute value (MAV): 

 Mean absolute value is a measure of frequency information 

of the signal. This can be calculated using equation (1): 

𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1      (1) 

 

(ii) Average power (AVP):  

 This is another feature provides information about the 

frequency content of the signal and the mathematical 

expression is given below: 

            𝐴𝑉 =  
1  

𝑁
∑ |𝑥𝑖|

 𝑁
𝑖=1    (2) 

 

 (iii) Standard deviation (SD): 

 Standard deviation represents the amount of change in the 

frequency of the signal and calculated using the equation (3) 

               =
1

𝑁 1
 ∑ (𝑥𝑖   )

 𝑁
𝑖=1       (3) 

Where, 

𝑥𝑖 – an i
th

 sample of EEG data in a segment.  

  -  mean of the segment.  
  – Length of segment 

 

IV. CLASSIFICATION 

 

The statistical features derived from DWT are applied to the 

classifiers. The purpose of the classifier is to identify, epilepsy 

abnormality in EEG data by linear/non-linear mathematical 

approach. In this work, the classifiers used are naïve Bayes 

and k-nearest neighbor, to identify epileptic seizure EEG data 

for the individual and combined statistical features derived 

from DWT with a different combination of data sets A to D 

with E. The performance of NB and k-NN classifiers is 

assessed with the DWT based statistical features to detection 

the epileptic seizure abnormality.    

 

A. Naive Bayes classifier 

  A naive Bayes is a probabilistic classifier which is based on 

Bayesian theory with assumptions of each feature of a 

particular class is independent of any other feature. 

Occurrence/particular absence estimation for NB model is 

based on maximum likelihood [40].The NB classifier requires 

less training data for classification and the classification is 

performed as given below :    

  Let D be a training set for n-classes with attribute vector    

and associated class labels. The attribute   belongs to the class 

with highest posterior probability and is given using Eq. (4)  

 

        ( 𝑖|  )   (  |  )    for                 (4) 

where 

                ( 𝑖|  ) =
 (  |  ) (  )

 ( )
                                        (5) 

By Bayes theorem. 

Where   

  ( 𝑖) are the class prior probabilities.  

  ( ) is the prior probability of   . 

 ( 𝑖|  ) is the posterior probability. 

              (  | 𝑖) is the posterior probability of    conditioned 

on  𝑖 . 
 

  As,  (  ) is constant for all classes, only the numerator of 

 ( 𝑖|  ) need to be maximized. If the class prior probabilities 

are unknown, then P( 1) =  (  ) =  =   (  )  and 

  ( | 𝑖) is maximized. Otherwise, the class prior probabilities 

can be calculated by    ( 𝑖) =| 𝑖  | | |, where | 𝑖  | is the 

number of a training set of the class   𝑖  in  . 

  To reduce the computation in an estimation of   ( | 𝑖) , the 

classifier adopts the attributes that are independent 

conditionally of each other. Thus, 

 

           ( | 𝑖) =∏ ((  | 𝑖)

 

 =1

     ( )                                              

 

        = ( 1| 𝑖)   (  | 𝑖)    (  | 𝑖)     (7) 

 

  The probabilities   ( 1| 𝑖)  (  | 𝑖)    (  | 𝑖)   are 

determined from the training set and       represent the value 

of an attribute for the data set  . 

  To estimate the class label of    ,  ( | 𝑖) ( 𝑖) is evaluated 

for each class  𝑖.The classifier identifies the class label of 

attribute    is   𝑖 based on the condition given below:  

 ( | 𝑖) ( 𝑖)   ( |  ) (  )  for             .     (8) 

 

B. k-nearest neighbor Classifier 
  The k-nearest neighbor classifier is a nonparametric, 

nonlinear and relatively simple classifier [41].This method 

works intensively for larger training sets. It is based on 

similarity measure among the training and test set. The „n’ 

attributes are categorized by the data sets. Each set is a point 

in n-dimensional space and the training sets form the n-

dimensional pattern space. A test/unknown data set is assigned 

to the class based on nearby     data sets of training.  The data 

sets „nearness‟ is measured using Eq. (9) 

 

             (  ) =  √∑ ( 1𝑖    𝑖 )
   

𝑖=1                            (9) 

 

Where  

           1𝑖 = ( 11  1 …  1 ) and   𝑖 = (  1    …    ) 
 

The values of each attribute can be normalized before doing 

the calculation on                   (ED). As an alternative 

to taking the single nearest data set, the classifier normally 

takes a majority vote from the k-nearest neighbors. The value 

of k, the number of neighbors that gives the minimum error 

rate has been chosen as 2.  
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V. RESULTS AND DISCUSSION 

In this study, fourteen different classification combinations, 

such as A-E, B-E, C-E, and D-E, AB-E, AC-E, AD-E, BC-E, 

CD-E, ABC-E, ACD-E, BCD-E and ABCD-E were used in 

order to identify the epileptic signal from EEG signal. This 

study aims to investigate comparison of the classifier for the 

identification of epilepsy from the EEG signals. The purpose 

of this study is to improve the classification accuracy with less 

number of features to identify the epilepsy abnormality from 

EEG data. EEG pattern recognition has been studied based on 

MAV, AVP, SD derived from wavelet sub-band frequencies 

D3-D5 and A5.The performance of k-NN & NB is studied 

with equal training and testing data sets. 

For two-class classification, most of the researchers studied 

set A and set E and obtained accuracy in the range of 90 to 

100% [5] [42-44] [13-15] [25-27] [31-35]. Researchers also 

classified set E with set B and achieved accuracy of 82.88% 

[44] & 92.5% [15]. Similarly set E is classified with set C and 

found the accuracy of 88.5%[44] & 100%[15] and with set D, 

the accuracy range of  79.94 % to 97% [15][44-46] is 

achieved. Researchers also studied two-class identification by 

considering different data sets combinations from A to D with 

E. The summary of accuracy with the different data sets 

combination for two-class identification is shown in Table 1. 
 

TABLE I ACCURACY OF TWO-CLASS IDENTIFICATION FOR 

DIFFERENT COMBINATION OF DATA SETS A TO D WITH E 

         Combinations Accuracy 

(%) 

References 

AB - E 
CD- E 

BCD - E 

 
ACD - E 

 

ABCD – E 
 

      AC- E,AD - E,BC - E, 

          BD - E,ABC - E 

100 
97.67 

94 

98.22 
96.65 

98 

94-100 
 

Not reported 

[48] 
[45] 

[15] 

[47] 
[12] 

[34] 

[11,13,15,34,42,48] 
 

Reported in this 

work 

 

The feature table shows the range of mean and standard 

deviation for 12 statistical features derived from D3, D4, D5 

and A5 coefficients is presented in Table 2. The mean and 

standard deviation of epileptic seizure data set are 

considerably higher than other data sets such as normal(eyes 

open),normal (eyes closed),inter-ictal for entire 12 statistical 

features. The one-way ANOVA test is done with these 12 

features for 14 different data sets combination to confirm that 

these features are significant for classification. From the test, it 

is observed that variance of between-class is higher than the 

variance of within-class and p-value <0.0001 indicates that 

these are significant features for identifying epileptic 

abnormality from the EEG signals.  

Table 3 shows the performance of NB classifier for 

individual and combined statistical features such as MAV, SD 

and AVP. For the data set A-E, the highest accuracy is 100% 

for individual and combined statistical features. In using data  

 

 

 

set B-E, the highest accuracy of 99.25% is obtained with 

individual features such as SD and AVP and with combined 

features such as MAV+SD and MAV+SD+AVP.  For the data 

set C-E, the highest accuracy of 99.62% is attained in using 

individual AVP feature. For the data set D-E, the highest 

accuracy of 95.12% is obtained with individual MAV feature 

and with combined SD+AVP features. For the data set AB-E, 

the highest accuracy of 99.16% is obtained in using SD and 

with MAV+SD and MAV+SD+AVP. In data set AC-E, the 

highest accuracy of 99.58% is attained with AVP and 

MAV+AVP features. In the data set AD-E, the highest 

accuracy of 96.66% is obtained in using individual MAV 

feature. For the data set BC-E, the highest accuracy of 98.25% 

is obtained in using SD and in data set BD-E, the highest 

accuracy of 96.5% is achieved in using MAV+SD and 

MAV+AVP. In the data set CD-E, the highest accuracy of 

98.75% is obtained in using MAV+SD and in data set ABC-E, 

the highest accuracy of 98.68% is obtained with only 

individual features such as MAV and SD. In the data set 

ACD-E, the highest accuracy of 97.31 %is obtained with only 

individual MAV and SD features.  For the data set BCD-E, the 

highest accuracy of 95.1% is attained in using MAV+SD and 

finally in the data set ABCD-E, the highest of 95.85% is 

achieved in using individual MAV feature. So from the Table 

3, it is clear that the improved result can be attained in NB 

classifier in using either individual or combined statistical 

features derived from DWT coefficients. 

Table 4 shows the performance of k-NN classifier for 

individual and combined statistical features such as MAV, SD 

and AVP. For the data set A-E, the highest accuracy is 100% 

for individual SD and combined MAV+SD features. In using 

data set B-E, the highest accuracy of 98.25% is obtained with 

individual MAV feature and with combined SD+AVP 

features.  For the data set C-E, the highest accuracy of 97.25% 

is attained in using individual SD feature and combined 

MAV+SD. For the data set D-E, the highest accuracy of 

95.62% is obtained with individual MAV feature and with 

combined SD+AVP features. For the data set AB-E, the 

highest accuracy of 98.83% is obtained in using MAV and in 

data set AC-E, the highest accuracy of 99.33% is attained 

MAV+SD features. In the data set AD-E, the highest accuracy 

of 97.08% is obtained in using individual MAV feature. For 

the data set BC-E, the highest accuracy of 97.33% is obtained 

in using MAV+SD and in data set BD-E, the highest accuracy 

of 96.33% is achieved in using MAV feature. In the data set 

CD-E, the highest accuracy of 96.08% is obtained in using SD 

feature and in data set ABC-E, the highest accuracy of 98% is 

obtained with MAV+ SD feature combination. In the data set 

ACD-E, the highest accuracy of 97.06 %is obtained with only 

individual SD feature.  For the data set BCD-E, the highest 

accuracy of 96.37% is attained in using SD feature and finally 

in the data set ABCD-E, the highest of 97.1% is achieved in 

using individual SD feature. So from the Table 4, it is clear 

that the improved result can be attained in k-NN classifier in 

using either individual or combined statistical features derived 

from DWT coefficients. 
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TABLE 2 FEATURE TABLE WITH RANGE OF MEAN±STANDARD   DEVIATION FOR 12 FEATURES 

 

 

 

Feature 

No. 
Features 

Normal    

(eyes open) 

Normal        

(eyes close) 
Inter-ictal Inter-ictal  

Epileptic 

seizure 
p-value 

1 MAV_d3 13.85±3.75 27.22±11.31 8.77±5.37 9.92±6.045 102.5±71.88 

p<0.0001 

for 14 

data sets 
with 12 

features 

2 MAV_d4 13.58±3.43 24.98±11.12 14.041±6.28 17.63±11.02 127.87±75.21 

3 MAV_d5 10.83±2.87 12.79±4.1 17.42± 7.52 21.55±18 115.45±68.62 

4 MAV_a5 28.12±15.04 32.77±18.59 36.409±16.46 44.22± 38.43 86.579±56 

5 SD_d3 18.3±4.99 35.95±14.65 11.64±7.085 15.03±12.27 142.01±97.47 

6 SD_d4 17.89±4.61 33.33±14.89 18.6± 8.34 24.81±18.33 164.63±92.09 

7 SD_d5 14.13±3.78 16.65±5.28 22.89±10.05 29.5± 27.72 144.99± 83.87 

8 SD_a5 24.08±8.52 24.08±8.46± 36.54±16.87 46.53± 47.56 102.47±68.31 

9 AVP_d3 358.91±189.54 1504.6±1336.9 185.34± 279.7 375.88±992.43 29602±4007.7 

10 AVP_d4 340.97±173.22 1330±1324.7 414.75±411.6 949.65±2187 35508±3824.9 

11 AVP_d5 213.85±114.33 304.72± 197.48 624.01± 565.78 1635.6±5571.1 27998±3118 

12 AVP_a5 1325±1274 1762.6±1693.1 2292±1905.1 5100.4±1458.6 16015±2182 

 

 

 
   TABLE 3 PERFORMANCE OF NB CLASSIFIER FOR INDIVIDUAL AND COMBINED STATISTICAL FEATURES 

 

Data sets MAV+ 

SD 

+AVP 

MAV+

SD 

MAV+

AVP 

SD 

+AVP 

MAV 

 

SD AVP 

A-E Accuracy (%) 100 100 100 100 100 100 100 

Sensitivity (%) 100 100 100 100 100 100 100 

Specificity (%) 100 100 100 100 100 100 100 

B-E Accuracy (%) 99.25 99.12 99.25 99 99 99.25 99.25 

Sensitivity (%) 99.49 99.74 99.49 99.49 99.49 100 99.49 

Specificity (%) 99 98.51 99 98.51 98.5 98.52 99 

C-E Accuracy (%) 99.5 99.5 99.5 99.12 99.12 99.5 99.62 

Sensitivity (%) 99.25 99.25 99.2 99.24 99.24 99.25 99.5 

Specificity (%) 99.74 99.74 99.74 99 99 99.74 99.74 

D-E Accuracy (%) 91.37 93.75 92 95.12 95.12 90 87.12 

Sensitivity (%) 95.59 94.41 96.67 95.23 95.23 93.95 97.14 
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Specificity (%) 87.87 93.10 88.18 95.01 95.01 86.69 80.61 

AB-E Accuracy (%) 99.16 99.16 99.1 99.08 98.75 99.16 99.08 

Sensitivity (%) 98.02 98.02 98.02 98.02 97.5 98.02 98.02 

Specificity (%) 99.74 99.74 99.74 99.62 99.37 99.74 99.62 

AC-E 

 

Accuracy (%) 99.5 98.16 99.58 99.5 99.25 99.41 99.58 

Sensitivity (%) 98.76 97.25 99 98.76 98.99 98.51 99 

Specificity (%) 99.87 98.62 99.87 99.87 99.37 99.87 99.87 

AD-E Accuracy (%) 95.75 96.5 95.66 93.66 96.66 95.58 92.58 

Sensitivity (%) 94.17 93.65 94.16 94.26 94.11 93.92 96.14 

Specificity (%) 96.52 97.97 96.4 93.4 97.97 96.39 91.19 

BC -E 

  

Accuracy (%) 97.75 97.91 97.66 97.66 97.58 98.25 97.16 

Sensitivity (%) 98.69 98.7 98.43 98.43 98.68 99.47 98.15 

Specificity (%) 97.3 97.54 97.3 97.3 97.06 97.67 96.7 

BD-E 

Accuracy (%) 91.66 96.5 96.5 90.75 91.91 91.67 90.83 

Sensitivity (%) 92.98 93.87 93.87 93.65 92.2 93.35 96.47 

Specificity (%) 90.44 97.85 97.85 89.64 91.79 90.98 88.85 

CD-E 

Accuracy (%) 95.75 98.75 98.62 93.58 96.75 95.41 92.58 

Sensitivity (%) 94.4 97.5 97.48 94.73 94.13 93.89 96.41 

Specificity (%) 96.44 99.16 99 93.08 98.1 96.15 91.09 

ABC-E 

Accuracy (%) 98.62 97.56 97 98.56 98.68 98.68 98.25 

Sensitivity (%) 97.25 93.28 94.22 97 98.21 97.25 96.96 

Specificity (%) 99.08 99.07 97.92 99.08 98.84 99.16 98.67 

ACD-E Accuracy (%) 97.18 94.18 93.31 95.93 97.31 97.31 94.75 
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Sensitivity (%) 94.04 91.37 91.26 94.19 93.01 93.64 94.88 

Specificity (%) 98.24 95.03 93.89 96.47 98.81 98.57 94.71 

 

BCD-E 

Accuracy (%) 93.56 95.1 95 93.43 94.43 93.87 93.18 

Sensitivity (%) 91.36 90.12 90.98 92.5 91.68 91.94 94.49 

Specificity (%) 94.19 97.25 95.89 93.69 95.27 94.43 92.85 

ABCD-E 

Accuracy (%) 95.25 91.8 91.8 94.9 95.85 95.6 94.4 

Sensitivity (%) 90.88 92.41 93.94 91.38 89.92 90.83 92.6 

Specificity (%) 96.25 91.58 89.96 95.67 97.31 96.72 94.76 

 
        

             TABLE 4 PERFORMANCE OF  k-NN CLASSIFIER FOR INDIVIDUAL AND COMBINED STATISTICAL FEATURES 

 

Data sets MAV+ 
SD 

+AVP 

MAV+
SD 

MAV+
AVP 

SD 
+AVP 

MAV 
 

SD AVP 

A-E Accuracy (%) 99.87 100 99.87 99.87 99.87 100 99.87 

Sensitivity (%) 100 100 100 100 100 100 100 

Specificity (%) 99.75 100 99.75 99.75 99.75 100 99.75 

B-E Accuracy (%) 97.87 97.87 97.87 98.25 98.25 97.62 97.87 

Sensitivity (%) 100 100 100 99.48 99.48 100 100 

Specificity (%) 95.92 95.92 95.92 97.07 97.07 95.46 95.92 

C-E Accuracy (%) 95.5 97.25 95.5 95.25 95.25 97.25 95.5 

Sensitivity (%) 96.42 97.25 96.42 95.25 95.25 97.48 96.42 

Specificity (%) 94.6 97.25 94.6 95.25 95.25 97.01 94.6 

D-E Accuracy (%) 93.87 94.5 93.87 95.62 95.62 94.75 93.87 

Sensitivity (%) 93.54 93.41 93.54 94.4 94.4 94.3 93.54 

Specificity (%) 94.2 95.6 94.2 96.91 96.91 95.2 94.2 
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AB-E Accuracy (%) 98.58 98.53 98.58 98.58 98.83 98.41 98.58 

Sensitivity (%) 100 100 100 100 99.48 100 100 

Specificity (%) 97.91 97.91 97.91 97.91 98.51 97.67 97.91 

AC-E 

 

Accuracy (%) 97 99.33 97 97 96.83 98.16 97 

Sensitivity (%) 96.42 98.51 96.42 96.42 95.25 97.48 96.42 

Specificity (%) 97.27 99.74 97.27 97.27 97.62 98.5 97.27 

AD-E Accuracy (%) 95.91 96.33 95.91 95.91 97.08 96.5 95.91 

Sensitivity (%) 93.54 93.41 93.54 93.54 94.4 94.3 93.54 

Specificity (%) 97.11 97.84 97.11 97.11 98.47 97.61 97.11 

BC -E 

  

Accuracy (%) 96.5 97.33 96.5 96.5 96.25 97.16 96.5 

Sensitivity (%) 96.85 97.42 96.85 96.85 94.71 97.65 96.85 

Specificity (%) 96.33 97.29 96.33 96.33 97.01 96.93 96.33 

BD-E 

Accuracy (%) 94.91 95.5 94.91 94.91 96.33 95.5 94.91 

Sensitivity (%) 93.35 92.25 92.4 93.35 94.05 94.13 93.35 

Specificity (%) 95.67 97.58 95.65 96.67 97.48 96.16 95.67 

CD-E 

Accuracy (%) 94.58 95.75 94.58 94.58 95.33 96.08 94.58 

Sensitivity (%) 92.4 97.42 96.85 92.4 92.15 93.58 92.4 

Specificity (%) 95.65 98.18 97.53 95.65 96.96 97.35 95.65 

ABC-E 

Accuracy (%) 97.37 98 97.37 97.37 97.18 97.87 97.37 

Sensitivity (%) 96.85 92.25 92.4 96.85 94.71 97.65 96.85 

Specificity (%) 97.53 98.39 97.09 97.53 98 97.94 97.53 

ACD-E 

Accuracy (%) 95.93 96.8 95.98 95.93 96.5 97.06 95.93 

Sensitivity (%) 92.4 92.28 92.5 92.4 92.17 93.58 92.4 
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Specificity (%) 97.09 97.57 96.53 97.09 97.98 98.24 97.09 

 

BCD-E 

Accuracy (%) 95.56 96.25 95.56 95.56 96.12 96.37 95.56 

Sensitivity (%) 92.5 92.28 92.5 92.5 91.83 93.62 92.5 

Specificity (%) 96.53 98.18 97.39 96.53 97.57 97.26 96.53 

ABCD-E 

Accuracy (%) 96.45 97 96.45 96.45 96.9 97.1 96.45 

Sensitivity (%) 92.5 93.2 93.35 92.5 91.83 93.62 92.5 

Specificity (%) 97.39 96.62 95.67 97.39 98.18 97.94 97.39 

 

It is observed from Table 5 that average accuracy of k-NN 

is 97.45% and it is 97.83% in using NB for the data sets 

combination. For the data set A-E, both NB and k-NN is best 

presented and attains 100% which is comparable with 

researchers[14][15][47][48].  

 
TABLE 5 HIGHEST ACCURACY ACHIEVED BY NB AND k-NN 

FOR THE DERIVED STATISTICAL FEATURES FROM DWT 

Data sets 
NB k-NN 

  Accuracy (%)   Accuracy (%) 

A-E 100 100 

B-E 99.25 98.25 

C-E 99.62 97.25 

D-E 95.12 95.62 

AB-E 99.16 98.83 

AC-E 99.5 99.33 

AD-E 96.66 97.08 

BC-E 98.25 97.33 

BD-E 96.5 96.33 

CD-E 98.75 96.08 

ABC-E 98.68 98 

ACD-E 97.31 96.8 

BCD-E 95.1 96.37 

ABCD-E 95.85 97.1 

 

 

 

 

It is evident from Table 3 and Table 4 that epileptic 

detection accuracy in case of NB with individual and 

combined statistical features are ranging from 95.1% to 100% 

whereas, in the case of k-NN, it is from 95.62 % to 100% for 

different data sets combinations.  

Using NB, the highest accuracy is attained for 9 data sets 

and k-NN provides highest accuracy for 4 data sets. The 

highest accuracies obtained for the data sets combinations AC 

- E, BC - E, ABC- E is 99.5%, 97.75%, 98.62% using NB 

classifier. Further, the highest accuracies for the datasets AD – 

E, BD – E using k-NN classifier is 95.91% and 93.35%, 

respectively. The program was written in MATLAB software 

package R2014b environment and run on 1.6 GHz HP CPU 

processor machine with 8GB of memory. 

We found that the accuracy obtained for normal eyes open 

and epileptic seizure EEG data sets using NB classifier is 

100% for all statistical feature combinations. Also, it has been 

observed that in the k-NN classifier, for the data sets (A-E) 

gives 100 % accuracy only with SD and MAV & SD  features 

of DWT frequency sub-bands D3-D5 and A5.The results are 

compared with the outperforming other pattern recognition 

methods as shown in Table 1. 

VI. CONCLUSION 

Pattern recognition approaches, in medical diagnosis 

systems, necessitate that the medical data to be inspected in 

lesser time with good accuracy. In this study, only three 

statistical features derived from EEG signals are vital for 

outstanding epileptic seizure detection. The NB and k-NN 

classifiers are used for identification of epileptic seizure from 

EEG signals. The results have been shown that the proposed 

pattern recognition technique could attain a higher accuracy of 

100% using NB classifier for normal eyes open and epileptic 

seizure EEG data sets for all individual and combined 

statistical features derived from DWT for the detection of an 

epileptic seizure. The study of the proposed technique is 

evident from the other pattern recognition approaches 

considered by the researchers for fourteen different 

combinations of data sets A to D with E and we confirm that 

the NB classifier achieves better accuracy for 9 data set 

combinations with less computation time and k-NN attains 
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better accuracy for 4 data sets for the detection of epileptic 

seizure abnormality. 
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