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Abstract. Early detection of Denial of Service (DoS) attacks are given more emphasizing due to its 

adverse effects on disrupting the services of legitimate users. LDoS attack is one among the DoS category 

which floods the target at ideal rate to keep the connections open for longer duration.  Traditional defense 

measures are inadequate to filter due to its less traffic volume. The current works focus on either empirical 

studies or signal processing models to capture the behavioural characteristics of LDoS based on TCP’s 
congestion control and timeout mechanism but none carries out detection at a faster timestamp. Early 

detection solutions are the main focus as it could scale up the revenue losses in today’s online application 
issues. Hence our model is based on Simple Network Management Protocol (SNMP), through which the 

early detection of LDoS attacks is carried out. The relevant detection metrics are identified through 

theoretical validation of SNMP MIBs and existing dataset analysis. Experimental simulations illustrate the 

LDoS detection efficiency and the same has been validated for theoretically.  

1 Introduction  

Internet plays the vital role due to advanced computing 

technologies and digitized environment. It acts as the 

backbone without which the day-to-day activities turn 

out to be zero. The growth of technologies goes hand-

by-hand with the security disruptions. Distributed 

Denial of Service (DDoS) attack is a critical threat as it 

makes complete disruptions to the internet community 

by keeping its traces in the availability feature. During 

DDoS, the target is flooded with continuous bogus 

requests which occupy victim’s memory. The 
exhausted victim is unable to accept or respond to any 

kind of requests from legitimate users. Resources 

exhausted during such attacks include bandwidth of 

network, CPU cycles, and Server’s memory; interrupt 
processing capability and protocol structures. The 

current applications also face low spike attacks which 

produce the effect similar to DDoS high spike. LDoS 

attack is one among the category of DDoS family as it 

makes the TCP sessions engaged for longer duration by 

sending low spikes of traffic. A large traffic spike 

originating from attacker reaches the target at a slower 

rate meanwhile very few connections are established to 

escape from the time out mechanism and traditional 

defense strategies.  

 LDoS attack exploits the vulnerability in the 

congestion control mechanism of TCP by either 

periodically or continuously sending attack requests in 

short term or at constant rate. The time out mechanism 

of TCP congestion control is based on the time taken 

for receiving a complete request from the source. In 

general the Round Trip Time (RTT) is constant and 

ranges from 10 to 100s of milliseconds. In case of  

 

 

 

delayed request from the source, the Retransmission 

Time Out (RTO) operates on a longer time-scale.   

 Since the LDoS attacks poses very less volume of 

incoming traffic which mostly goes undetected by the 

traditional security defenses. Due to large incubation 

periods, the attack traffic mixes with the normal ones 

which make the traffic segregation and analysis part 

most difficult. If an online service gets disrupted either 

due to high spike or low spike DDoS, the trust among 

legitimate users and regular customers will be 

vanished.  Uninterrupted service is the success behind 

big online giants like Amazon, Flipkart, Snapdeal, etc. 

According to the latest Amazon report [1], even 100 

millisecond disruptions of its online services causes 

1% drop in the overall sales.  Hence early detection is 

the expected and needy solution to better address the 

issues faced in the current scenario. We aim to offer 

such solution by employing the features of Simple 

Network Management Protocol.     

 Numerous researches are ongoing to address the 

DDoS issues and to provide better solutions. The 

existing solutions are categorized under detection 

measures in general and detection measures based on 

hypothesis testing. 

2 Technical Backgrounds  

Low rate attack detection through information metrics 

[8] helps in measuring the difference in distance 

between the normal and attack traffic cases. 

Information metrics can quantify the differences in 

network traffic concerning various probability 

distributions. The generalized entropy metric and 

information distance metric are utilized in the process 
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of detecting low rate DoS attacks. The entropy metric 

can detect the attack seven hops earlier than the 

traditional Shannon metric. This approach outperforms 

the famous Kullback-Leibler divergence approach as it 

enlarges the adjudication distance and yields the 

optimal detection sensitivity. The information metric 

can effectively reduce the low rate DoS attacks with a 

clear reduction in the false-positive rate. The IP 

traceback algorithm can find all attacks as well as 

attackers within the own Local Area Network (LAN) 

and discards the incoming traffic. It also considers the 

attacks based on the category of insiders.  

 Low rate shrew based DoS attacks [9] are detected 

through the TCP congestion control window behavior. 

The shrew based DoS attacks are threatening for real-

time applications as it can easily throttle TCP flows 

through a very low attack cost. By capturing the 

adjustment behaviors of the TCP’s congestion control 
window, the combined effect of the attack pattern 

concerning the network environment is realized.  

 Empirical evaluation of the information metrics 

[10] attempts to detect the low and high rate DoS 

attacks in the networked environment. The empirical 

evaluation is carried out for the metrics namely Hartley 

entropy, Shannon entropy, Renyi’s entropy, 
generalized entropy, kullback-Leibler divergence and 

generalized information measure in the process of 

detecting both low and high rate DoS attacks. These 

metrics help greatly in the differentiation of network 

traffic data and facilitates the process of building an 

optimal model. For illustrating the efficiency and 

effectiveness of the metrics related to DoS through the 

data sets MIT Lincoln Laboratory, CAIDA, and 

TUIDS.  

 Robust RED algorithm [11] is applied for detecting 

low rate DoS attacks. The RED algorithm maximizes 

the TCP throughput and attempts to filter, detect attack 

packets before the adoption of a normal RED algorithm 

for attack flows. The RRED algorithm claims the 

incoming flow as an attack only if the majority packets 

in the flow are sent within the short duration after a 

packet drop. RRED is efficient in suspecting both TCP 

and UDP based flow in the case of detecting low rate 

DoS attacks. 

 CPR based approach is used for the detection and 

filtering of the LDoS attack as they intend to cause 

network congestion. An incoming flow with 

Congestion Participation Rate (CPR) higher than the 

expected threshold is declared as suspicious and all the 

subsequent packets are dropped. The effectiveness of 

CPR is quantified through the average CPR distance 

for the normal and attack flows. This approach is more 

effective in terms of comparison with the existing 

Discrete Fourier Transform (DCT) technique in the 

process of detecting the LDoS attacks. A major 

difference in differentiating the TCP flows is that the 

normal TCP flows usually avoid the network 

congestion as it poses the TCP congestion control 

mechanism whereas the LDoS attack traffic introduces 

network congestion to degrade the network 

performance. In extreme cases, the LDoS attack 

throttles all normal TCP incoming flows and the 

aggregate value of the attack is very closer to the 

bandwidth of the network. CPR approach works well 

as it doesn’t drop any packet and no network 
congestion is observed.  

 Low rate DoS detection based on network 

multifractal [12] considers the characteristics of 

network traffic in the process of detecting DoS attack. 

LDoS sends periodic pulse sequences with a low-

frequency relative to form aggregation flows at the 

victim side. LDoS attacks, in general, are harder to 

detect as it poses the low rate property. For 

characterizing and analysing the network traffic, 

mathematical models are used for exploring the 

complex multifractal structure. Even though the LDoS 

attacks are slow, it contributes to the multifractal 

characteristics of network traffic.  

 The Multifractal Detrended Fluctuation Analysis 

Algorithm (MF-DFA) identifies the changes in the 

multifractal characteristics in small quantity for 

detecting the LDoS. Through the wavelet analysis 

process, the singularity, bursty nature of network 

traffic is captured and estimated using the Holder 

exponent. The difference values of Holder exponent 

between the normal and LDoS attack traffic are 

distinguished. The difference value is used as the basis 

for differentiating normal flow with the attack ones.  

 The dynamic time warping approach is used for 

robust and accurate identification of DDoS attacks. 

When the affected TCP flow enters into timeout and 

starts to retransmit the packets, the LDoS attack will 

send a small burst to force the TCP flows to enter into 

the RTO again. This results in very low transmission 

bandwidth for the TCP flows. When an attack is 

identified through the dynamic warping approach, the 

count of affected TCP flow is minimized, sufficient 

resource protection is done for the affected flows and 

behavioural analysis based prediction is carried out. 

This method has very low false positives and false 

negatives and efficient in the process of isolating 

legitimate users with the attacker. 

3 Characterization of LDoS Attack  

In LDoS, the attacker sends low traffic spikes at a very 

low frequency in order to hide its presence in the 

network. Complete analysis of attack pattern and 

characteristics plays a vital role for yielding a 

prominent and proactive solution. Representation of 

LDoS is depicted as in below Fig 1. LLDoS indicates 

the duration of attack pulse, SLDoS is the beginning of 

attack, RLDoS is the rate of requests received during 

attack and FLDoS represents the frequency of attack. 

The attack strength ASLDoS is represented as below.  

ASLDoS = RLDoS X LLDoS/FLDoS   (1) 

The range of ASLDoS is very small in the case of 

normal traffic whereas it varies significanlty during 

attack traffic. The general behvarioural inhibitence of 

DDoS least helps in the LDoS detection procedure. 
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Fig. 1. Representation of LDoS 

On receiving the low traffic spikes, the TCP’s timeout 
delay gets increased from its initial value. In general, 

the delay is increased to facilitate proper connectivity 

and to prevent connection breakdown for the 

requesting client. 

As per RFC 6298 standard [2], the RTO 

calculation for TCP is achieved through its two states 

SRTT (Smoothed Round-Trip Time) and RTTVAR 

(Round Trip Time Variation). The clock granuarity is 

assumed as G seconds. Initially the RTO is updated as 

1 second till the RTO measurement is estimated. 

 

RTO =SRTT+max(G,K*RTTVAR)                (2) 

 

For the first measurement of RTO value, 

RTTVAR=R and SRTT=R/2. For the subsequent RTO 

measurements the values :(1-β)*RTTVAR+β*|SRTT-

R| . In case of abnormal behaviour, where the ACK is 

not received from the sender within the depicted RTO 

value, then the RT gradual increase in RTO is depicted 

in Fig 2. 

 

Fig. 2. TCP Retransmission Strategy 

 

 
For better understanding, TCP’s deterministic re- 

transmission strategy is exhibited. The RTO will be set 

for each and every incoming request.  

 
        RTOmin where LDoS = 0 

      Total (t) = 2* RTOmin where LDoS = 1 (3) 

 

In general, the requests arises in a network is modeled 

as a Poisson distribution where the events are random 

[3]. ‘n’ number of arrivals in a time interval ‘t’ is 
considered. The arrival rate is represented as ‘ƛ'.  

P (n_t) = (ƛt)^n e^(-ƛt)/n!    (4) 

A modulation of the above assumption could be 

done from the little’s formula as few days network will 
be congested where it will not be the case for all times. 

In such cases, a network system could be modelled as 

(R_a,R_t). ‘Ra’ is the average number of reqeusts in 
the system and ‘Rt’ is the amount of time spent by each 

request in the system and ‘ƛ’ is the arrival rate.  
 

R_a = ƛ R_t    (5) 

 

The little’s theorem [4] could be applied to either 
a whole system or part of a system as both serves the 

purpose. In the case of LDoS attack, the parameters 

affected network metrics could be packet transmission 

time, propagation delay, average queueing delay and 

average number of packets received. Estimating all 

these metrics values helps in faster attack detection as 

well helps to analyse the performance issues raised 

during LDoS. All the packets are considered as 

requests as we are employing the SNMP for anlaysing 

the incoming traffic. SNMP captures all incoming 

requests which are further considered for a detailed 

analysis. The various system parts considered for a 

bried analysis are listed as below 

 
 Transmitter / Sender 

 Transmission Line 

 Buffer/ Memory 

 Transmitter / Sender + Buffer/ Memory 

 
‘D_tr’ is the request transmision time. The average 
number of requests at transmitter is depicted as ‘D_tr' 
or þ for link utilization.  ‘D_r’ is the propagation delay. 
The average number of requests on the fly is ƛ D_r.  
‘Dq' is the average queuing delay. The average number 
of requests in memory is ƛ Dq. Finally the average 
number of requests is illustrated by the equation þ + ƛ 
Dq. 

 

4 Attack Modelling of TCP Variants 

Detection solution for LDoS is achieved by 

considering the current variant of TCP adopted in 

today’s Internet scenario and majority of websites. 
Among the other prevalent TCP variants, BBR [4],[5], 

[6], [7] is the dominant as it is adopted in most of the 

websites inclusive of Google cloud and Amazon Web 

Services (AWS). Our solution is modelled by assuming 

the constraints specific to behav-ioural characteristics 

of BBR. It attempts to provide solu-tions on the basis 

of traffic delivery and latency of roundtrips.  BBR 

adopted in Amazon CloudFront effectively increased 

the performance gain upto 22% on aggregate 

throughput across various networks and regions. The 

performance gains rely on quality, capacity and 

distance of the connectivity. The congestion indicators 

of TCP BBR are Current Bandwidth Estimate (BWE) 

and RTTmin which is depicted in below cases. Rrate 

indicates the response rate of BBR TCP connections, 
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Bqu is the bottleneck queue utilization, tcp is the transit 

capacity, Basr is the base sending rate, Ba is available 

bandwidth. 

 
Case 1: Primary Congestion Response 

 ↓BWE → ↓Rrate       (6) 

 

Case 2: Recovery Mode 

Count (Rdata) = Count (REQack)     (7) 

 

Case 3: Core State (PROBE_BW) Bqu = tcp 

BWE = Basr     (8) 

Cwnd = 2X BWE X RTTmin   (9) 

 

Case 4: Exhausted Bandwidth 

↓Ba → ↓Rrate |↑Bqu | ↓BWE   (10) 

↑Ba → ↓Bqu     (11) 

 
TCP BBR addresses the bottleneck adopting the 

solutions based on the above computations. If the Ba 

falls, BWE will not represent it in the first 10 RTT’s. 
The increased sending rate of BBR raises the Bqu and 

fall in BWE to match the returning ACK’s rate. 
Similarly, the Bqu falls with the rise in Ba. Adopting 

SNMP in the above context, attempts to eliminate the 

congestion at primary level. The Rrate, REQack could 

be obtained based on the TCP specific SNMP MIB’s 
tcpPassiveOpens, tcpCurrEstab and tcpActiveOpens 

respectively. Through SNMP, by comparing the 

incoming and response counter values, LDoS attack 

traffic could be detected. To enhance the detection 

accuracy and minimize time constraint, the additional 

required parameters could be better validated based on 

outcomes of real time data set analysis. 

5 Detection metrics based on Dataset 
Analysis  

 

To understand the behavioural characteristics and 

traffic pattern of Denial of Service attacks, a complete 

analysis of the existing data set is important. To carry 

out the same, the KDD-99, NSL-KDD data set are 

chosen as it is one of the standard bench-marked data 

set. Out of the overall 41 features, the incoming 

frequency count is a derived one which plays a vital 

role in DoS detection. In order to achieve a complete 

traffic distinction between attack and normal traffic, 

additional parameters need to be explored. Hence the 

EDGAR (Electronic Data Gathering, Analysis, and 

Retrieval) data set is considered. Differentiation of 

normal traffic with Denial of Service is the expected 

outcome of the analysis, based on which the mitigation 

measures could be tested by generating the synthetic 

data set.   

 The Division of Economic and Risk Analysis 

(DERA) has assembled information on internet search 

traffic for EDGAR filings through SEC.gov generally 

covering the period February 14, 2003 through June 

30, 2017.The data is intended to provide insight into 

the usage of publicly accessible EDGAR company 

filings in a simple but extensive manner. 

The attack features are exactly understandable 

through the traffic patterns of the KDD data set but the 

normal requests which could be received per second 

from vari-ous IP addresses could not be retrieved from 

it as the data set does not contain the IP address 

column. The data set utilized for analysis is the most 

the recent year 2017 log record data set where it 

contains numerous factors particularly IP address, data 

and incoming time of request entry in seconds. These 

properties are utilized for further detailed analysis. 

Hence the U.S government data set EDGAR is used for 

observing the patterns of normal traffic. The detailed 

steps in the process of extracting requests based on the 

IP address and mapping it to the time scale are 

illustrated as below steps: 

 
• The dataset is isolated with the factors IP ad-

dress, date and time in seconds 

• Normalize the obtained data set for removing 

duplicates 

• Plot the incoming frequency of incoming IP ad-

dress Vs Time to identify the number of requests which 

arrives from the same IP address per second 

• Plot the distribution pattern based on the IP ad-

dress which in turn helps to distinguish the normal 

traffic with the attack one 

 
EDGAR dataset collection is achieved through 11 

variables which provides complete picture about the IP 

ad-dress and status code of incoming requests and few 

other important metrics which are chosen through the 

feature selection process. The frequency of incoming 

requests from the same IP address is calculated by 

observing the IP address of incoming requests 

concerning time. The various variables of EDGAR 

dataset are illustrated as below: 

 
• IP address of the incoming request 

• Date 

• Time 

• Zone 

• cik - index key associated with the requested 

document 

• Accession number of the document 

• Document file size 

• Apache status code for the incoming request 

• Referrer header 

• Crawler information 

• Browser information 

 
The identified detection metrics are mapped with 

the TCP BBR modes for estimating the current state of 

incoming connection requests. 

6 Experimental Testbed for LDoS  

In order to validate the finding from the real time 

EDGAR data set analysis, experimental test bed set up 

is done to generate the synthetic data set based on the 

input metrics Arrival Rate and Request Size. To carry 

out the validation procedure, TCP specific SNMP 

MIBs are monitored by performing the experimental 

4

ITM Web of Conferences 37, 01025 (2021) https://doi.org/10.1051/itmconf/20213701025

ICITSD-2021



set up of SNMP in a controlled environment as per the 

study. The set up involved 1 PC as Attacker, 1 PC as 

Normal user, 1 L2 switch and 1 PC as SNMP manager. 

SNMP agent is installed in both the attacker PC and 

Normal user PC for collecting the statistics. A test bed 

is set up for simulating the TCP-SYN attack and 

normal traffic requests. Any Web servers such as either 

Apache or XAMPP server will be handling requests in 

the victim system. 

 The test bed setup is connected to the D-Link 

DES-3528 switch. The switch could be managed 

through the serial port, telnet or web based 

management agent. The Com-mand Line Interface 

(CLI) is utilized for configuring and managing the 

switches through the serial port or telnet interfaces. 

This type is designed to provide the features fault 

tolerance, flexibility, port density, robust security and 

maximum throughput by providing the user-friendly 

management interface for the users. The test bed 

consists of one web server, an attacker, legitimate user, 

SNMP agent and SNMP manager system is depicted in 

Fig 3. 

 

 

 
 

 

Fig 3: LDoS Testbed 

 

6.1 Traffic Differentiation Based EDGAR Metrics 

on IP Frequency 

 

The frequency of incoming requests from the same 

host is an important metric for differentiating the DoS 

traffic with the normal one which is derived from the 

EDGAR data set. During the first observation of per 

second arrival rate, the incoming requests from the 

same IP address are not exceeding the maximum 

threshold of 10. The observations are repeated for 30 

days of the data set and the arrival rate of incoming IP 

addresses is monitored randomly to estimate the rough 

arrival rate of requests from the same IP address per 

second. All the 30 days results illustrate that the 

maximum requests which arise from the same IP 

address per second range between 10 to 40.  

 Graphs are constructed for a peak day of traffic 

from 9 AM to 5 PM in order to analyse the maximum 

requests which arise from the same IP addresses in the 

interval of 1 hour from the time period of 9 AM to 5 

PM in a randomly chosen day of data. The obtained 

results are plotted with respect to the IP address and 

number of incoming requests depicted in Fig 4.  

 

 
 

Fig 4: Request frequency 9 AM to 10 AM 

 

Based on the incoming frequency analysis of the 

graphs based on the data collected from 9 AM to 5 PM, 

it is inferred that the count of requests which arrive 

from the same IP address reaches the maximum point 

of 34 in all the graphs. The analysis is done for the 

random 1-hour traffic data chosen for the 30 days 

statistics of the EDGAR data set and all the graphs are 

showing the same variation. Another interesting feature 

that has to be observed in the EDGAR analysis is that, 

even if the repeated requests arise from the same IP 

address, the request size is different for every 

individual request which is evident from the below 

graph. The overall incoming requests from the same IP 

address from 9 AM to 5 PM are represented in Fig 5. 

 

 
  

Fig 5: Request frequency from 9 AM to 5 PM 

 

 From the above graphs, it can be concluded that if 

the incoming request is normal, as per human 

behavioural and EDGAR analysis, a request of same 

size cannot be executed more than 5 by a normal user 

even if he tries to access the same file, for any scenario 

the request size will vary and it doesn’t remains the 
same. This contradicts the attack scenario, as the 

incoming attack request sizes follows the same size and 

the arrival rates of attack varies from the range of 100 

to 1 million as it merely depends on the capacity of the 

attacker system. 

 On observing the arrival rates of normal pattern of 

EDGAR, it ranges between 1 to maximum of 40 

requests and not exceeding the mentioned range. From 

this analysis, conclusion is drawn for differentiating the 

normal traffic with the attack one. The analysis of each 

1 hour traffic on every day is captured and analysis for 

a day is illustrated in the below Fig 6. It illustrates the 
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number of IP’s with the same number of request count 
for the randomly chosen 1 hour time period in a day of 

EDGAR data set. 

 

 
  

Fig 6: Maximum Request Count from various IP’s 

 

 The maximum request value arriving from 

multiple IP addresses irrespective of the requested 

content are based on the 78 observation in the 

stipulated time period. Repeating this observation for 

all 30 days of the randomly chosen time period for 

each day, the maximum incoming request pattern and 

behaviour of normal IP’s can be clearly understood. 
According to the observation, 96 are the maximum 

requests which arise from 107 IP addresses depicted in 

below figures. The graph is plotted by considering the 

IP address with respect to maximum request count for 

each day observed from the chosen time period. 

 It is concluded based on the observation of 

complete 30 days of EDGAR traffic, that if a request 

comes from a normal IP address, the maximum 

threshold from various IP addresses are not exceeding 

the range 373 and the number of requests per second 

from the same IP address is not exceeding the range of 

40. In order to strongly conclude the incoming traffic 

as either attack or normal, additional parameter request 

size also needs to be considered as according to the 

EDGAR analysis, even maximum of 40 requests from 

the same IP address is handled as it belongs to different 

request sizes. 

 From the overall observation, only 2 requests 

originate from the same IP for the same request size 

which is termed as normal as it is within the threshold 

5. Hence for traffic to be normal, the incoming request 

from the same IP should contain the various size of 

request else it will be distinguished as DoS attack 

traffic. The conclusions from the EDGAR dataset for 

attack distinction are carried out for the detection of 

LDoS attack. 

 

6.2 Traffic Differentiation based on SNMP Metrics 

 

We aim to address the above research gaps in the 

existing measures through the Simple Network 

Management Protocol (SNMP) [17][18]. The 

characterization of SNMP MIBs should be done 

initially which helps greatly to identify the purpose and 

importance of each. Based on the reference, the below 

SNMP MIBs are chosen. 

 The SNMP components, basic structure and the 

way of retrieving Management Information Base 

(MIB) variables are observed from the references. The 

MIBs relevant for LDoS detection are identified 

through the techniques theoretical validation and 

Linear Regression. 

 The metrics Request Size and Arrival Rate are 

fetched based on the real time data behaviour analysis 

of the KDD-99 dataset. To derive relation between the 

various attack distinction metrics for the LDoS attack 

traffic, the below ones are formulated. To have a 

detailed in depth analysis, the overall traffic, normal 

traffic, statistic traffic and attack traffic need to be 

represented which are denoted as  ov(t), n(t), s(t) and 

a(t).  The ov (t) could be expressed as 

 

ov (t) = n(t)+a(t)    (12) 

 

If the server is under normal traffic, then the 

representation is  

 

a(t) = 0     (13) 

 

Therefore ov(t) = n(t) 

 

 If the server is under attack, then there is a rapid 

increase in the value of a(t) to larger levels. For easy 

attack identification, a(t) value needs to be captured.  

Our proposed method helps to capture the value of a(t) 

through the Management Information Base (MIB) 

variables of Simple Network Management Protocol 

(SNMP). The related MIB’s are tcpActiveOpens, 
tcpPassiveOpens and tcpCurrEstab [14], [15], [16]. 

The attack detection algorithm is formulated as below. 

 

Algorithm 1:Attack detection 

 

Input: Analysis based on SNMP MIB’s 

            User requests: (R1, R2,..Rn) 

            Sent user requests: IP_ tcpActiveOpensi 

             Received user requests: IP_ tcpPassiveOpensi 

            Failed user requests: IP_ tcpAttemptFailsi 

            Established user requests: IP_ tcpCurrEstabi 

       Threshold: T  

            Sent user requests: IP_ ActiveOpensi 

Output: Categorization of traffic ‘LDoS’ or ‘Normal’  
  begin 

 if tcpActiveOpensi >= T 

  “Differerentiate incoming Traffic” 

 if tcpActiveOpensi != tcpPassiveOpensi && 

 tcpActiveOpensi != tcpCurrEstabi  

Perform IP similarity comparison  

 Compare consecutive IP’s (IPi, IPj) at T  
 if (IPi== IPj) 

  “LDoS traffic” 

 else 

  “Normal traffic” 

 endif 

 endif 

end 

The captured results for SNMP MIB’s from the 
experimental testbed are illustrated in the Fig 7, 8 and 

9. 
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Fig 7: Variation of Actual Requests Vs 

tcpPassiveOpens 

  

 
Fig 8: Variation of Actual Requests Vs tcpCurrEstab 

 
  

Fig 9: Variation of Time Vs Maximum requests 

 

 From the above, it is inferred that the during the 

nor-mal traffic, minimum variation exists between the 

SNMP MIB’s tcpActiveOpens and tcpCurrEstab as 30 
connections are established in 30 seconds. During 

attack traffic, there exists huge deviation between the 

chosen MIB’s as only single connection is established 
in 30 seconds. Hence by combining the detection 

measures tcpActiveOpens, tcpCurrEstab, Time and 

maximum requests validation, 98.7 % detection 

accuracy is achieved. The general features and 

characteristics of DoS and LDoS [20], [21], [22], [23], 

[24] are analyzed based on the literature to arrive at a 

conclusion of the defensive measures.   

 

7. Conclusion 

The SNMP based detection measure is accompanied 

with the metrics based on the real time analysis of 

EDGAR dataset which helps in accurate detection of 

LDoS attacks and yields 98.7%. Early detection is 

another important criterion which is achieved in 6.9 

seconds. The reseach gaps mentioned in the existing 

literature are examined carefully which paved way for 

the identification of an important metric tcpCurrEstab 

which helped to boost the accuracy. The chosen TCP 

specific SNMP MIB’s are effective in distinguishing 
the LDoS attack from the normal one which is 

demonstrated through the simulation tools deployed in 

the experimental testbed. Theoretical validation is done 

is incorporated for the the aforementioned SNMP 

MIB’s. The future work aims to analyse the real time 
log patterns to enhance the detection accuracy. 
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