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ABSTRACT

To address the shortcomings of modern wastewatatntient, Ecological Sanitation
(EcoSan) has been advocated as a sustainable elppmaromote closed—loop flows of
resources and nutrients from sanitation to aguceltin this study, we discuss the rationale
behind its conception and provide a state—of—thereariew on the subject. Through an
exhaustive literature analysis of EcoSan systetadhistorical developments and programs
implemented worldwide we (i) validate the potent@pplicability and feasibility of
decentralized, source—based sanitation and (iiicddpndamental problems in EcoSan
systems design that have stalled its adoption avidgyation. Specifically, we focus on urine
diversion to demonstrate its potential to elegasdparate, collect and concentrate products
that we require (nutrients) and those that we wish regulate (pathogens and
micropollutants). Since recent research effortsehéaeen devoted to the technological
recovery of nutrients from human urine, we belitvat we are witnessing a paradigm shift
within a paradigm shift as it represents a chamgenphasis from ‘split—stream collection
and reuse’ to ‘split—stream collection, resourceovery and safe reuse’. Our analysis of
various nutrient recovery technologies for humaneaumndicates that provisioning of urine—
diverting toilets tends to reduce sanitary risksyaver, to contain and completely eliminate
these risks continued research effort is needecertasion and implement integrated
technological pathways that ensure simultaneousemiitrecovery, pathogen inactivation and

reduction of pharmaceuticals and active substances.



1. Introduction

For a long time, the international agenda has weglethe aspects of sanitation and
health in its push for (sustainable) developmenis hot surprising to note that, 36% of the
global population still lacks access to improveditsgion facilities [1,2]. At the other end of
this spectrum lies the issue of clean drinking wai® nearly 1 billion people still depend
upon unimproved sources to satisfy their daily sel]. The continued failure to address
these problems has significantly altered the glblealth burdens, effects of which have been
well recognised and documented [4-6]. Certainlypvting and improving access to
sanitation, a precondition for human development vigl; however, the problems
surrounding sanitation extend far beyond its meo¥ipioning which has otherwise been the

focus of sanitation outreach programs.

The design and operation of conventional Wastewateatment Plants (WWTPS) is
grounded in a philosophy that considers human é&a® ‘waste’ that require treatment and
removal from the built environment. The primaryaitijves of these systems are to (i) ensure
minimal exposure of humans to such wastes by agan effective barrier (toilets) and
(i) facilitate appropriate disposal of these wastbrough end—of-pipe technologies [7].
When it leaves the human body, excreta, despitegbpathogenic is a point source of
potential disease transmission. It is through tee af a sewage network that transports
wastes to centralised WWTPs [8] that has openedeuppathways and magnified the scale
of contamination ‘beyond the toilet’. In additionm the linearity in flow of (waste) resources
these systems promote, essential drawbacks of ‘'mod@&NTPs also include poor financial
sustainability, high energy requirements and watensity, sensitivity to discharge loads
and inadequate final treatment which in turn becomeector of diseases [9]. The ultimate
disposal of the treated wastes in landfills andvater bodies only adds to the already high

environmental burden and externalities [1,7].



Hence, linearity, methodological reductionism aedwential uniformity appear to be
characteristic attributes of the conventional apphoto socio—economic developmental
issues including that of sanitation [10]. It is @sely this cognition that fails to consider
humans (and their actions) as being part of a cexpphon-linear, dynamic and
interconnected system. Today, while we live in ean@& high environmental consciousness
we also live in times of great uncertainty of tlepercussions of our past and present actions
[11]. Yet, our current systems attempt to addreeptroblems in sanitation, health, water and
agriculture in isolation; most of our on—going effoin these sectors are geared to seek
specificity in the implemented and/or proposed tohs thereby failing to realise any

synergistic benefits.

On the other hand, contemporary levels of food pctidn have been aided largely by
the continuous application of industrial, fossiefusourced fertilisers [14]. However, the
mobilisation of significant amounts of plant—reeuirnutrients for fertiliser production has
interfered with the functioning of global biogeoatieal cycles. Cordell et al. look towards
phosphorous, 90% of which is sourced for food potidn to depict a likely peak in its
global output by 2030 and an accelerated deplei@neafter [15,16]. Two fundamental
aspects that shape the present (and future) globdlsecurity are: (i) the anticipated rise in
global population coupled with higher disposabledehold incomes in developing countries
will increase the demand for quantity and qualityood [12]; and (ii) a likely economic and
physical scarcity of natural resource due to limitger its extraction will constrain
agricultural production [13]. Hence, ensuring lotegm soil fertility to sustain food
production in a resource—scarce scenario (declingygthetic fertilizer production)
undoubtedly necessitates the envisioning of appesmanarkedly different than those in
place today. To this effect, source—separationceaination and recirculation of human

wastes (urine and faeces) from the built to thenaaienvironment where it can be used as a



crop fertilizer has been advocated as a sustaimsdilgion to the issues surrounding the
nexus of sanitation, water, heath, and agriculfu7@. Conceptual complexity in line with a
circular systems approach and holism could theeebs accomplished agriculture (food

security) is introduced into the sanitation—wateath equation.

Hence, in this paper, we provide a state—of—there@rew on ecological sanitation and
source—separation of human waste (Fig. 1). Duregréview, the broader question whose
answer we seek is whether we can indeed creat@asanisystems that safely recycle value—
added, nutrient—rich products between urban andl areas, in quantities that ease their

application, and in forms that are plant—available.

2. Human ‘wastes’ or ‘resources’: Characterizing ¢hpotential

The physical and chemical composition of variowsctions of human excreta have
been the focus of several thematic areas of rdsemduding waste treatment and
management, nutrition, physiology and medicine, tavasclamation for space travel, etc.
Tables 1 and 2 enlist the various properties artdemii concentrations for human urine and
faeces. The quantity, physical characteristics ahdmical composition of the excreta
fractions are likely to be influenced by factorsluding age, gender, diet, protein, fibre and
calorie intake [17], geographical location, incomesels and socio—cultural factors [18].
Wolgast [19] reported that an average individuadretes around 500 kg of urine and 50 kg
of faeces (dry matter content of 20%) each yeah watal nutrient composition of excreta
(faeces + urine) as follows; 5.7 kg N, 0.6 kg P aritikg K. However, 90% of thet—N, 60—
65% oftot—P and 50—-80% of K are partitioned by the humarylzodl excreted in the urine.
Elsewhere, Jonsson et al. [20] estimated that ¥keage annual per capita urine production
was 500 L. On a wet weight basis, Faechem et 8].diktinguished the faecal production in

developing countries (130-520 g persaii’) and, North America and Europe (100-200



g persont d ). More recently, in a survey of three case studgafions across South
Thailand, Schouw et al. [21] observed the per eagdily production rates for urine and
faeces to be 0.6-1.2 L and 120-400 g, respectiaipnd agreement of the data was seen
with a comparable Viethamese case study where &dgdr et al. [22] estimated the
production of urine as 0.82—1.2 kg persdit and faeces as 130—140 g persdr. Further,
Schouw et al. [21] also found that the per cap#didychutrient loading of the excreta was 7.6—

79gN,16-1.7gP,18-2.7gK,and 1.0-1.1 g S.

In terms of its chemical composition and fertilgiability, human urine is a nitrogen—
rich aqueous solution wherein, urea contributesatd& 75-90% of the tot—N in urine
[23,24]. Important to note is the fact that 97% tbé total volume of human urine is
comprised of water [25]. Although the P/N and K/&tios in urine are relatively lower in
comparison with synthetic fertilizers, the abildaf/the phosphates and potassium compounds
to be readily water soluble (and hence, plant—aisée) upon application by virtue of their

ionic form counters this to some extent [26].

Karak and Bhattacharya [27], through a review a&fesch concerning the elemental
composition of urine illustrate that its heavy nhetancentration is low. Vinneras and
Jonsson [28] also remark, since our consumptidmeal’y metals (in food) itself is low, our
bodies excrete low concentrations of these subssana fact, the major contribution of
heavy metals to the environment comes not from muexareta but effluent flows such as
dyes, chemicals, ore processing, etc. In conttiastuse of synthetic (mineral) fertilizers has
been well correlated with the contamination of saihd water resulting in considerably high
concentrations of heavy metals in crops and livedsteed [29-31]. Since particularly high
levels of Cd, Pb, Cu, Co, Mn and Zn having beerontepl, researchers have called for
precautionary measures and regulations againsmtbese of mineral fertilizers in lieu of

their potential toxicity [29]. In addition, Aoun etl. [32] have recently illustrated that the



processing and manufacturing of phosphate ferntgize also a major contributor to locally

elevated levels of heavy metal concentrations.

3. An ecological sanitation approach

Ecological Sanitation (EcoSan) is a concept foatad through an approach that
integrates various schools of thought such as leirceconomy, general systems theory,
industrial ecology, biomimicry and life—cycle thing [7]. It claims to address the
aforementioned shortcomings in our systems of atniit and food production by initiating a
paradigm shift in the way we perceive and managedmwastes [33]. EcoSan seeks to blur
the comprehension of two human constructs, ‘regsirand ‘wastes’ by contending that,
human excreta are in fact resources of a natudé dhat circulates biological nutrients. By
making a case for resource recycling through tleenption and reuse of human excreta as
fertilizers, EcoSan demonstrates a closed loop adetlogy for reintroducing resources and
nutrients from wastewater back into agricultureheat than letting them diffuse into
freshwater bodies which has otherwise been the noday. In effect, it seeks to advocate a
philosophy of handling and using materials thatehbgen, until now, assumed to be wastes
that need to be discarded, treated and/or dispdssaSan’s guiding principles favour the
creation of tailored, location and context—specsi@nitation solutions; this is guided by the
understanding that technologies are only end—pants ‘means to an end’ to achieve the
broader goal of creating improved sanitation s@wvi¢ience, EcoSan does not encourage the

adoption of any specific sanitation technology [9].

3.1. EcoSan and source separation of wastes

The working strategy and distinguishing featureEzoSan are the concept of source
separation, split—stream collection and individuaehtment of various wastewater fractions,

viz. urine (yellowwater), faecal matter (brownwateblackwater (urine + faeces) and



greywater (excreta—free household wastewater).|[bavdhe separation of these streams at
source, i.e., households, the technological solutimployed is ‘urine diversion’ through the
use of a diverting toilet [34]. These toilets tadvantage of human physiology which
separately excretes faeces and urine; the tolletsrayineered so as to facilitate the collection
of urine in a front end bowl and faeces in the feaded bowl [35,36]. These toilets are
available in various modules wherein, both/eitheménof the two receptacles of the diverting
bowl can or cannot be flushed with water and basedhis functionality, a urine diverting

toilet (UDT) may also be categorized as a Urinedmsion Dry Toilet (UDDT).

The rationale for source—separation seems obvaiusast in the present times as there
is growing recognition that human urine, which ciimite to less than 1% of the total
wastewater volumetric flow accounts for more th@@68of thetot—N and more than half of
its tot—P andtot—K [28,33,37]. Besides, collection of the dry fastieat contains most of the
pathogens separate from the urine reduces thefipktential transmission of water—borne
diseases [4,5]. By elegantly preventing the miohthese waste fractions diverting toilets, in

essence, allow concentration of both nutrientselag pathogenat source.

Drawing upon the concept of ‘waste design’ propdsgtienze [38], source separation
can be considered a waste segregation step as théability to render better control over
various process parameters that influence the iafiity of wastewater treatment. By
modelling a process that integrates urine diversuith conventional WWTPs, Wilsenach
and van Loosdrecht [39] demonstrate that, by redu80% of the urine volumetric flow to a
conventional WWTP reduces the N—loads for treatngnt-2—3 g ", at higher rates of
diversion, the WWTP could in fact achieve an enesggplus. Similarly, Ng et al. [40] have
shown that reducing the discharge of urine byzitig lesser volumes of flush water reduces
environmental externalities and is an economidalypurable option for ensuring long—-term

water security in Singapore. Comparing the enetgpaver, Tidaker et al. [41] in their



modelling of a local Swedish recycling and wast@wv#teatment scenario that included both
capital expenditure and operating costs depictat tirine separating systems use the least
amount of primary energy. Recently, Gao et al. [#2pugh an input—output analysis of five
different toilets design installations in rural @&i concluded that UDTs outperformed
conventional toilets both economically as well asowverall environmental performance.
Similar findings were also reported by Lam et 4B][in their life cycle simulations for rural

sanitation systems in Tianjin, North China.

The applicability and feasibility of diverting tets as an alternative to conventional
sanitation systems seems to be well establishet i§hevident through the number of
installations of diverting toilets across the wotlds includes the sale of over 300,000 UDTs
by the Sweden—based company, Separ&B [44], the large—scale rural and peri—urban
sanitation programme in Durban, South Africa wheiftompasses 75,000 UDDTs serving
nearly 450,000 inhabitants [45], or the CommunityeLTotal Sanitation WASH program
implemented in Liberia which provided access to rowpd sanitation for over 100,000
people [46], as well as UDDT installation of arol@D in Bolivia [47], approximately 1000
each in Kenya, Burkina Faso and Uganda [48], 57/Sofala province, Mozambique, close to
800 double vault bench—type UDDTSs built near LinyeRwtaria del PefiSAC [49], and the

500 pit latrines at the Farchana refugee camp sd@48].

Furthermore, based on suitability and adaptabiityvarious options for ecological
sanitation, for a given context, location and sdt smcio—economic and cultural
circumstances, recommendations have been already pet forward that allow the
identification of an appropriate sanitation teclogy. Detailed procedures are now available
for the design, construction, installation and ofearious parts of the diverting toilet and the
overall system. Besides, guidelines on safe soseparation, storage and re—use have

already been published [20,50-59].



3.2.  Implementing, adopting and validating EcoSan systems and programmes

When looking towards the implementation of EcoSaigmmmes, it is prudent to draw
a distinction between studies that address fieleBda application of the technology itself
and the studies that deal with recording user ptimes, attitudes, experiences and
willingness to adopt these new systems that we @eo Through a technological
perspective, several investigations have dealt thighapplication of source—separated wastes
as fertilizers, at various scales of implementaf66-68]. Based on the results of these
studies some broad observations can be drawnorigitoning the soil with human excreta
enhances crop productivity when compared to thérab(no treatment); (ii)) ammonia losses
from urine depend on the manner in which it is agrand introduced in the soil and can be
minimized through practices such as harrowing [BB,{ii) nutrients present in excreta are
either plant available or are become plant-avalabler time as compounds with low
solubility such as inorganic P (> 95%tof—P) [71] (iii) yields of excreta—fertilised plarase
similar to that obtained when mineral fertilisere added in the same ratio; however, the
yield is sensitive to N-loading from urine whichaigast—acting liquid fertilizer [20]; and (iv)
the attraction towards urine largely stems fromeagpsuch as low capital investments, ease
of infrastructural retrofitting, demonstrated in@se in crop yields, the promise of an
essentially ‘free’ and sustainable supply (‘ubigiitof nutrients and simultaneous

improvement of sanitary hygiene through use of iing toilets [72].

Ever since its conception in the early 1990s, Eoc8d its underlying principles have
been implemented as pilot projects in diverse gmugcal settings [48,73-81]. These
projects have contributed significantly towards tevelopment of alternative sanitation
systems while reiterating the underlying assumptdrnthe geographical applicability of
EcoSan. These studies have spanned across intisstfizountries like Germany [82],

Sweden [81], Netherlands [83] and Denmark [76], rgying markets like India [7], China
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[84] and South Africa [85], N-11 countries suchthse Philippines [86], Indonesia [77],
Turkey [78] and Pakistan [87] as well as develofinder—developed nations including
Nepal [75], Malawi [88], Burkina Faso, Kenya, Taniea and Mozambique [48]. The
problems encountered and highlighted when implemgréind using these systems have

been discussed in Section 3.3.

On the contrary, through a socio—economic and @lltlens, studies have been
conducted to record and analyze the user perspetdivEcoSan. The end application of
EcoSan systems rests with users who need to benceavto shift away from their current
practices and adopt these new systems of sanitddidiization and food production; hence,
they are the ultimate determinants of its prolifiera potential and subsequently affect the
timing, nature and extent of the change in paradigat EcoSan systems seek to effect.
However, sociological investigations on the subjemte been relatively few as also pointed
out by Judit Leinert in her recent review where shaes, I' know of four questionnaire
surveys addressed to the general public and four to the farmers that elicited their acceptance
of reusing human urine in agriculture’ [89]. A survey on urine separation systems across
seven European countries on urine diversion inddccétat more than two thirds of the users
liked the idea and were satisfied with its perfonee and would buy urine—fertilized food
[90]. Further, a study analysing the perceptiod®f Swiss farmers indicated that 57% liked
the idea of using urine—based fertilizers with 428ting they would be willing to buy such
products if manufactured; however, a widely raigetcern among the farmers was the
concentrations of micropollutants and hormones ha fertilizer [91]. Andersson [72],
analysing the attitude of Ugandan farmers repadftatithe support for urine fertilization was
due to its ability to ensure food and economic ggcgiven that they have few other options
for soil nutrient management; in contrast to thasSwarmers however, the farmers did not

consider risks from pharmaceuticals to be sigmnificaRecently, Ishii and Boyer [92]
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promoting universities as ‘excellent testbeds’ $twdying and introducing urine diversion
observed that, 84% of their respondents indicatet they would demand for source
separation systems to be installed in their haflsresidence; however, this declined
significantly when the participants were askechéyt would be willing to pay/contribute for
it themselves. Similar observations on the attisudieconsumers with respect to willingness
to pay have been made earlier by Pahl-Wostl e{98l]. In contrast, Lamichhane and
Babcock [94] reported that more than 60% of thest tsample of 132 people from the
University of Hawaii indicated their willingness fmay an extra $50 to install a diverting
toilet. Other studies on the subject include thos€ordova and Knuth [95] in Mexico, as
well those reporting negative user attitudes swiMagivhisa and Olowoyo [96] in South
Africa and Mariwah and Drangert [97] in Ghana wheagidents accepted that excreta can be

used as fertilizers although they themselves wetevilling to do so.

At the very least, these studies stand testametitietdact that people are certainly
open to the idea of source separation and nutmecycling and perhaps, it would be
erroneous to overestimate the extent of the phadpénst the reuse of excreta. Besides, these
studies continue to provide valuable insights thdtice the risk of potential failure and allow
alternative sanitation systems to be tailored ter usquirements such as the demand for
grainy urine—based fertilizer by Swiss farmers [@i]better system aesthetics in Mexico
[95], or the identification of problems like pipéobkages and issues with user—compliance
such as improper flushing habits [90]. The joinr@lepment of technologies by the research
sector, manufacturer and user thus appears totdleirviensuring the successful adoption of
technologies that necessitate significant behaviooodification and adoption of

environmentally—sound behaviour.
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3.3. Urinediversion, the gaps and problems

Source separation and reuse of waste fractions hadeto encounter and address
several issues and may be not be entirely ecolibgisaund as we presume they were. At
the outset, we must acknowledge that human urina fast—acting liquid fertilizer that
requires careful application and regulation, theesigce of which, can cause volatilisation of
intrinsic ammonia (a greenhouse gas), increasecenductivity, salinity and pH; poor agro—
productivity or in some instances, crop failure3,@8l,98]. Hu et al. [99] recently emphasized
this by observing that the use of organic liquidilieers would ‘most likely lead to increased

atmospheric emissions of ammonia resulting in &cation of soil and water.

More importantly, life cycle cross—comparisons witbnventional WWTPs [41,100]
indicate that significantly large volumes of uriaee required to provide a fertilising effect
equivalent to synthetic fertilisers. Large volunmexessitate additional investment for urine
collection, handling, storage and transportatiofatmlands which tends to reduce systemic
efficiency and cost savings vis—a—vis conventi@yatems. A major challenge in closing the
sanitation cycle lies in the logistics of connegtifarmers (nutrient sinks) with citizens
(source of nutrients) that use decentralized (imesa@ases, semi—decentralized) sanitation
systems; in trying to provide the farmers with hgewized and standardized fertilizer

products [101] that ensure sustained reprodugilmfitcrop yield enhancements.

In addition, UDTs are connected to tanks that sémoeind 300-500 L of urine. During
pipe transport and storage, bacterial urease @amedohydrolase) catalyses the hydrolysis of
intrinsic urea (Eq. 1). The implications of ureatyare (i) it completely converts urea into
carbon dioxide and ammonia that subsequently Visksi (pKa = 0.09018 + 2729.92°F
[102]; (ii) it elevates the pH, and reduces theepttl reusability of N in post—storage

applications; (iii) elevated pH triggers the prepon of struvite (MgNHPOy- 6 H,O) and

13



calcite (CaC@ which creates blockages in the odour traps apdlipes [103]; and (iv) it

results in the physico—chemical and microbial gtcation of the urine during storage [104].
NH, (CO)NH, +2H,0 - NH,+NH, + HCO; @

A further concern in UDTs is cross—faecal contarnomaof the relative sterile and
source—separated urine. Inactivation studies witteupoint towards significant pathogenic
risk due to the persistence of, among others, faseeols, Enterococcus, Escherichia cali,
Salmonella, helminth ova such aéscaris, rotavirus and bacteriophages, [105-108]. In a
study that analysed 15 different storage tankswed&n and Australia, faecal sterols were
found to cross—contaminate 22% of the samplesanugiper portion and 37% of the samples
from the sludge [109]. Nyberg et al. [108] arguattmicrobial persistence also extends to the
application of excreta in soils which creates farthisease transmission pathways. Due to
these factors, the WHO [59] recommends that, fodpction and raw consumption of crops,
urine has to be stored for at least 6 months R0°C) before application to ensure ‘high’
level of pathogen inactivation. Besides, the gdi@ation, behaviour and potential negative
effects of micro—pollutants and pharmaceuticaldess in source—separated human urine are
not well understood. In light of this scientific eertainty, Larsen et al. [37] invoke the
‘precautionary principle’ over application of feiger products from EcoSan systems. Even if
we choose to not consider the socio—cultural itiobs against the use of human excreta
which Jewitt [110] observes to be an obvious ashedering the spread of EcoSan, there
appear to be other fundamental concerns with ré$pebe technological and system design
aspects of EcoSan systems. As the narrative addytedelucidates, these flaws in system
design have stalled the proliferation of nutriestycling. Nonetheless, EcoSan does provide
an efficient way to separate, collect and concémtpaoducts that we require (nutrients) and

those that we wish to regulate (pathogens, mictofaoits, heavy metals).
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4. Technologies for nutrient recovery: progress, gagusd opportunities

Over the last decade, the research focus in Ech&ashifted from studies that validate
the potential of human excreta for fertilizationstadies that identify and realize the recovery
of nutrients and resources from source-separatethhiexcreta. Since we consider EcoSan
itself to be an alternative paradigm, this changedevotion of research efforts by the
scientific community appears to be a paradigm shitthin a paradigm shift as it represents
change in emphasis from ‘split—stream collection aause’ to ‘split-stream collection,
resource recovery and safe reuse’. By simultangounshpping the chemical/nutrient
composition of various potential fertilizer prodsidtom eco—sanitation systems against their
suitability for production of crops, Winker et dlL07] illustrate how urine is the ‘most
promising’ and ‘well investigated’ product from $usystems. Hence the focus in this study
too will be towards recovery technologies for humaime. Several investigations have
reported the development of technologies that eéglysharness nutrients from human urine

to yield usable end—products [111-119] (Fig. 1).

An approach favoured by many researchers has beevits (MgNH,PO,- 6 H,0)
precipitation where significant P and some N as {NHas been recovered [103,114,120-
123]. However, the process is contingent on extexddition of Mg as MgO, MgS©7H,O
or MgChk-6H,0 which elevates the pH, reduces the solubility (B10,)>, induces
supersaturation and spontaneous precipitation.ddyralling the dosage of Mg&bH,O and
the pH of urine, it is possible to precipitate eithpotassium magnesium phosphate or
magnesium ammonium phosphate. Complete P recoe@rype attained by the precipitating
either of these compounds [124]. Nevertheless, teex Et al. [125] note, the recovery of
ammonium through struvite precipitation may be dsfly and other macronutrients may not
be recovered; the authors, using the case of sititiiepal also emphasized that the struvite

allows harnessing only 13% monetary value of uasa fertilizer.
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Technologies used in water treatment have alsodf@pplication in nutrient recovery
from urine. For instance, Dodd et al. [115] demmatst] the ozonation of hydrolysed urine
for nutrient recovery which also allowed depletiohindicator micropollutants. Through
adsorption procedures, Ganesapillai et al. [118bvered urea using coconut shell based
activated carbon while Lind et al. [121] used cptimlite and wollastonite for nitrogen
fixation after struvite precipitation. N recoveriirough stripping operations has been
performed as standalone or with other operatiomt $1$ absorption, struvite precipitation,
evaporation, etc. [112]. Dewatering hydrolysed @y forward osmosis was demonstrated
by Zhang et al. [118] although N recovery from tpi®cess is poor. Recently, biological
nitrification in combination with alkaline stabiaion and distillation as investigated by
Udert and Wachter [116] illustrated near completéeovery although process energy
requirements were found to be 4-5 times of conueati wastewater treatment. Other
advocated technologies studied include volume temlu¢chrough freezing—thawing [126] as
well as drying [127], ion—exchange with targetedrdeovery [117,128] and anaerobic

treatment [111].

The analysis of literature on nutrient cycling $ltates that, although these technologies
have been influenced by ecological consideratitimsy demonstrate variable efficiency in
recovery of the major nutrients (NPK) from urinénc& many of these processes have been
engineered to optimise certain parameters theydairovide integrated nutrient recovery; in
their review of existing technologies, Maurer et @I12] reiterate this observation. For
instance, N removal through struvite precipitatierrelatively poor in comparison to the
recovered P [121]; persistent pathogen build—up been recognized in the precipitated
struvite in spite of post—separation air dryingtioé cake [129]. Recently, Ishii and Boyer
[130] also stressed the need for continued researctutrient recovery technologies ‘beyond

struvite precipitation’. Besides, in an audit of fidllet designs (with and without urine
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diversion), Starkl et al. [101] observed that, daedized treatment processes such as
anaerobic digestion, dehydration, and compostinge hproven to be insufficient and

invariably necessitate significant user maintenance

Furthermore, with regards to the concentrationharmaceuticals and micropollutants,
it would be prudent to consider that human urinetaios far lesser concentrations of these
compounds than wastewater or farm manure and ex[¥8i]. Moreover, as Rehman et al.
[132] observe, the most significant contributioerfbe, risk) of active pharmaceuticals to the
environment stems from the pharmaceutical industglf; this is especially true for densely
populated developing countries where pharmaceugioadiuction has grown tremendously
but not commensurate with efficiency or extent fffuent treatment. Indeed, Larsson et al.
[133] demonstrated that ‘treated’ effluent from astewater plant that served 90 (bulk) drug
manufacturers in Hyderabad, India contained thgh'&st level of pharmaceuticals reported
in any effluent’ with detected levels of ciproflmia (28-31 mg [*) exceeding levels of
ECsp toxicity for bacteria by orders of magnitude. Thathors also raised concern of
enhanced risk from development of anti—biotic f@sise in pathogens as the treatment plants
operations involved mixing human sewage with thegdnanufacturer’s effluents. This only
goes to substantiate the case for implementingrsime-based decentralized sanitation
systems which at the very least allow localizedcemtration of pollutants that we wish to
target and eliminate. Of course, this also beggtlestion as to why EcoSan systems must be
judged against standards of treatment that cuoemiralized treatment plants themselves do
not meet. While not advocating for relaxing regolias for EcoSan systems or setting a lower
benchmark, it does point towards factors such astutional resistance against changes to
conventional systems. More importantly, concernsroactive substances provide further
opportunities for researchers working with EcoSgstesns to ensure that post—diversion

processes are compliant with regulatory requirement
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Hence, the realization of a closed loop sanitasigstem that aspires to reutilize human
urine hinges considerably over post—urine diversiparations. It is in these steps that there
lies an opportunity for substantial value creatfthrough the processing and production of
urine—based fertilisers) as well as risk minimiaati(through pathogen inactivation and
micro—pollutant elimination). While we tend to reguthese risks through the provisioning of
(urine—diverting) toilets, for us to contain andrehate them, continued research effort to
envision and implemenintegrated nutrient recovery technologies. To accelerate the
proliferation of urine diversion and adoption ofcdatralized sanitation system, we believe
that, it is imperative for us to devise ‘integrdtéechnological pathways for post—urine
diversion operations that simultaneously providarr@mplete nutrient (NPK) recovery,
pathogen elimination and reduction of pharmacelstiead active substances in line with

regulatory requirements.
5. Conclusions

This review pointed out two significant factors tthll shape the research in EcoSan
systems over the coming years; (i) realization iotegrated’ treatment of post—urine
diversion waste fractions as these steps harbeumttst potential for value creation and risk
minimization; and (ii) addressing issues with phaceuticals, pathogens and micro—
pollutants in source—separated wastes by idengfnd implementing ecologically—sound
treatment processes that ensure ‘safe reuse’ desvas fertilisers. Along these lines, we
believe that, EcoSan and its non—technology ceguiding principle should be restricted
only to the design of the user interface and theicehof the toilet. This stems from the
understanding that, although there is need tortadmitation systems to a particular set of
circumstances and conditions, a specific set ofdganous technological solutions are also

required to ensure that we do end up safely clagiadoop on sanitation.
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Surely, the call and the rationale for changes he turrent paradigm of waste
management must be incontestable as there sedmsetwough evidence to demonstrate that
everything is not right with the way we manage hamastes. EcoSan and nutrient recovery
technologies are perhaps inevitable changes tavélyewe perceive, manage and reuse our
wastes. The pace and extent of its adoption andemgntation however are aspects that

remain to be seen.
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Table 1 Physico—chemical properties and nutrient compmsitf human urine

Parameter Value References
pH 8.9-9.2 [134]
6.3-6.9 [123]
5.8-6.4 [135]
6.5-6.8 [128]
5.6 +0.4 [125]
8.25-8.55 [136]
6.2-6.6 [123]
8.9-8.96 [24]
5.6-6.8 [121]
9.0 [137]
9.2 [65]
6.2 [103]
9.0-9.1 [138]
EC 14.4-16.4 mS cmh [135]
22.6 +6.3 mS cm [125]
160 mS crt [139]
270 mS crt [69]
13.4-19 mS cm [24]
47.2 mS cmt [65]
CcOoD 7660 + 4630 mg T [125]
4-11¢g* [140]
8.5 g persortd™ [141]
3723 g personyr* [142]
Tot-K 0.76-0.92g ! [134]
966-1,446 mg I* [135]
0.027-0.036 g persord™ [143]
1870 + 976 mg I* [125]
800-1000 mg T* [104]
1.1-1.3 g persohd™ [144]
129t [69]
2.4 g persontd™ [141]
0.87-1.15g [24]
0.7-3.3gL! [140]
2g Lt [65]
0.75-2.61gL [145]
300 mg L [57]
2200 g m® [103]
0.78-2.5 g persotd™ [146]
Tot-P 0.24-0.28¢g [134]
1.8¢gL* [123]
0.45-0.71 g persotu™ [143]
150-275 mg [* [104]
0.4 g persorid™ [144]
350 mg L [69]
0.9 g persortd™ [141]
280-400 mg [* [123]
0.20-0.21 gt [24]
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PO,~P

Tot—N

NH;*—N

NOz—N

NHz-N

NH4*+NHz-N

CO(NHy),

0.2-3.7gL
07gL?t

388 +251 mg [
0.703+0.142 g1
2.03¢gL*
0.205¢g L*

740 g-P 1t
0.8-25¢gL
428-497gL
8glL?t

2.1-33g L
4.2-4.9 g persohd™
4gLt
11-13.9¢g*

11 g persortd™
1.78-2.61 g [*
1.8-17.5¢g

12 g

8.36 gL’
333-540 mg *
150 mg L*

438 + 207 mg !
0.765+0.177 gt
2.0-3.3¢gL"

0.12 g

480 g-N m®
1.12-1.73 g
857¢glLt
0.438+0.071 g1
45pg L™
0.01g*
32+0.17¢gL
0.48 g [*
340-530 mg
415+ 30 mM
200-730 mg [*
10-35 g persond™
4450 + 1730 mg I
21.4 9"

10 g L

0.27 £ 0.05 mol [*
9.3-23.3¢g [
7700 g—-N
85% of Tot—N
75-90% ofTot—N

[140]
[65]
[125]
[136]
[65]
[57]
[103]
[146]
[134]
[123]
[104]
[144]
[69]
[20]
[141]
[24]
[140]
[147]
[65]
[135]
[128]
[125]
[136]
[104]
[139]
[103]
[24]
[65]
[136]
[24]
[65]
[138]
[57]
[123]
[137]
[145]
[148]
[125]
[141]
[149]
[113]
[145]
[103]
[24]
[23]
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Table 2 Physico—chemical properties and nutrient composidf human faeces

Parameter Value Reference
pH 7.5 [150]
8-8.3 [137]
6.6 [17]
6.18-6.65 [151]
6.7-8.4 [152]
7.0-7.2 [153]
5.3+0.2 [154]
EC 3.3mScmt [17]
60.0 + 15.0 mmho cth [154]
COoD 64.1 g persond™" [141]
37-36 g persohd™ [140]
1668 g persond™" [155]
71 g persortd™ [17]
Tot-K 0.8-2.1 g persohd™ [156]
4.936 g kg' [157]
0.9 g persortd™” [141]
0.8-1.0 g persohd™ [111]
0.24-1.3 g persohd™ [140]
44 g kg* [150]
280 g persortyr™” [155]
280-540 g persohyr™* [142]
28.0 + 1.7 g-KO kg™ [154]
0.75-0.88 g persohd™ [146]
Tot-P 4.8-9.8 g kg [156]
1.83 g kg* [157]
0.5 g persortd™” [141]
0.3-1.7 g persohd™ [140]
3gkg* [150]
250 g persortyr?’ [155]
126-250 g persohyr™ [142]
3.59 g kg* [20]
0.9-2.7 g persohd™ [146]
11.0 + 2.0 g-FOs kg™ [154]
Tot-N 0.96 g persond™ [158]
0.25-4.2 g persohd™ [140]
18 g kg* [150]
710 g persortyr?’ [155]
0.9-4.9 g persohd™ [17]
1.5 g persortd™ [50]
630-710 g persohyr™ [142]
41.0+4.0gkd [154]
NH,—N 0.1-0.2 g persohd™ [141]
214 + 4 mM [137]
1.4-2.9 mmol o [153]
NOzN 829-1678ug kg™ [153]

* includes toilet paper use
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The rationale for sustainable sanitation
[1-9,12-15,33,38,59]

> Ecological Sanitation (EcoSan): origins and concegt
[7,9,20,28,33-36,38,44,51,53,55,56,58,59,73, 7511, 1144]

Nutrient composition and properties of excreta <
[17,19,21,23,24,27,65,69,136,140,141,145,146]

——> Agronomic value of source—separated wastes
[60-68,72]

Implementation & validation: EcoSan experiences =~ <——
[7,48,57,72-74,76-81,84,85,87,89,90,92,97,125]

—> Problems with EcoSan and urine diversion
[37,41,63,98,99,101,103-105,107-110,122,130]

Nutrient recovery from human urine: technologies <« |
[57,103,107,111-125,128,132]

> Closed-loop sanitation

Sanitation—Health—Water—Food nexus

Fig. 1. Schematic representation of the literature amalgelect articles) for EcoSan and nutrient recpftem
human urine.
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