Header menu link for other important links
X
Effect of Plasma Fluorination in p-Type SnO TFTs: Experiments, Modeling, and Simulation
Kadiyam Rajshekar, , Hsu Hsiao-Hsuan, Cheng Chun-Hu,
Published in Institute of Electrical and Electronics Engineers (IEEE)
2019
Volume: 66
   
Issue: 3
Pages: 1314 - 1321
Abstract

With experimental and numerical simulation, we report the origin of the performance enhancement in p-type SnO thin-film transistors (TFTs) due to fluorine plasma treatment (FPT). To study the effect of fluorination, using the reactive-ion-etching process, the devices are treated at various plasma powers upto 60 W. It is observed, through X-ray photoelectron spectroscopy and XRD measurements, that the plasma fluorination modifies the defect/trap states of SnO channel and SnO/Hf02 interface. These effects are introduced through density of state (DOS) model for SnO in numerical simulations, to understand the routes of electrical performance improvement. It is observed that the attributes of donor-like band-tail state and acceptor-like Gaussian defect states (Sn vacancies) are modified in overall DOS due to plasma fluorination. The treated device shows excellent electrical performances with high I ON /I OFF ratio of ∼10 7 and low substhreshold swing of ∼100 mV/dec and field-effect mobility (μ FE ) of 2.13cm 2 V -1 s- 1

About the journal
JournalData powered by TypesetIEEE Transactions on Electron Devices
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers (IEEE)
ISSN0018-9383
Open Access0