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ABSTRACT 

We report on a mathematical model for analyzing the effects of homogeneous-heterogeneous chemical reaction and slip velocity on the MHD 

stagnation point flow of electrically conducting micropolar fluid over a stretching/shrinking surface embedded in a porous medium. The governing 

boundary layer coupled partial differential equations are transformed into a system of non-linear ordinary differential equations, which are solved 

numerically using the MATLAB bvp4c solver. The effects of physical and fluid parameters such as the stretching parameter, micropolar parameter, 

permeability parameter, strength of homogeneous and heterogeneous reaction parameter on the velocity and concentration are analyzed, and these 

results are presented through graphs. The solute concentration at the surface is found to decrease with the strength of the homogeneous reaction, and 

to increase with heterogeneous reactions, the permeability parameter and stretching or shrinking parameters. Comparison between the previously 

published results and the present numerical results for various special cases has been done and are found to be an excellent agreement. 
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1. INTRODUCTION 

 
Micropolar fluid is a non-Newtonian fluid that belongs to a class of 

fluids with non-symmetrical stress tensor and is referred to as polar 

fluid. Micropolar fluids are fluids with internal structures in which 

coupling between the spin of each particle and the microscope velocity 

field is taken into account. They represent fluids consisting of rigid, 

randomly oriented or spherical particles suspended in a viscous 

medium, where the deformation of fluid particles is ignored. Micropolar 

fluid theory was introduced by Eringen (1966) in order to describe 

physical systems, which do not satisfy the Navier-Stokes equations. The 

equations governing the micro polar fluid involve a spin vector and a 

micro inertia tensor in addition to the velocity vector. The dynamics of 

micro polar fluids provides some practical applications, for example 

turbulent shear flow, the flow of colloidal suspensions, polymeric 

fluids, liquid crystals, additive suspensions, human and animal blood, 

analyzing the behaviour of exotic lubricants. The potential importance 

of micro polar fluids in industrial applications has motivated many 

researchers to extend the study in numerous ways to include various 

physical effects. The essence of the theory of micro polar fluid lies in 

particle suspension (Hudimoto and Tokuoka, 1969), liquid crystals 

(Lockwood et al., 1987); animal blood (Ariman et al., 1974a), exotic 

lubricants (Erigen, 1976), etc. An excellent review of the various 

applications of micro polar fluid mechanics was presented by (Ariman 

et al.,1974b), Hayat et al., 2016, Ramzan et al., 2016, Sajid et al., 

(2009a) investigated the exact analytic solution for the three thin film 

flow problems of a micro polar fluid. The main advantage of using a 

micro polar fluid model to study the boundary layer flow in comparison with 

other classes of non-Newtonian fluids is that it takes care of the rotation of the fluid 

particles by means of an independent kinematic vector called the micro-rotation 

vector was investigated by Sajid et al., (2009).        
The flow of a non-Newtonian fluid over a stretching sheet has 

attracted considerable attention during the last two decades due to its 

vast applications in industrial manufacturing such as hot rolling, wire 

drawing, glass fiber and paper production, drawing of plastic films, 

polymer extrusion of plastic sheets and manufacturing of polymeric 

sheets. For the production of glass fiber/plastic sheets, thermo-fluid 

problem involves significant heat transfer between the sheet and the 

surrounding fluid. Sheet production process starts solidifying molten 

polymers as soon as it exits from the slit die. The sheet is then collected 

by a wind-up roll upon solidification. To improve the mechanical 

properties of the fiber/plastic sheet we use two ways, the extensibility 

of the sheet and the rate of cooling. Crane (1970) was the first who 

reported the analytical solution for the laminar boundary layer flow past 

a stretching sheet. Several researchers viz. Gupta and Gupta (1977), 

Dutta et al. (1985), Chen and Char (1988) extended the work of Crane 

by including the effects of heat and mass transfer under different 

situations. 

Magneto hydrodynamic (MHD) is the science which deals with the 

motion of highly conducting fluids in the presence of a magnetic field. 

The motion of the conducting fluid across the magnetic field generates 

electric currents which change the magnetic field and the action of the 
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magnetic field on these currents gives rise to mechanical forces which 

modify the flow of the fluid. The Magneto hydrodynamic (MHD) 

character of fluid especially in physiological and industrial processes 

seems too much important. Such consideration is useful for blood 

pumping and magnetic resonance imaging (MRI), cancer therapy, 

hyperthermia etc. Abo-Eldahab and Ghonaim (2003) investigated 

convective heat transfer in an electrically conducting micropolar fluid at 

a stretching surface with uniform free stream. Wang et al., (2011) 

studied with the magnetohydrodynamic flow of a micropolar fluid in a 

circular cylindrical tube. Eldabe and Ouaf (2006) solved the problem of 

heat and mass transfer in a hydro magnetic flow of a micropolar fluid 

past a stretching surface with Ohmic heating and viscous dissipation 

using the Chebyshev finite difference method. 

Hiemenz (1911) first reported the stagnation point flow towards a flat 

plate. It is worthwhile to note that the stagnation flow appears whenever 

the flow impinges to any solid object and the local fluid velocity at a 

point MHD stagnation point flow of a micropolar fluid over a stretching 

surface with heat source (called the stagnation-point) is zero. Chiam 

(1994) extended the works of Hiemenz (1911) replaced the solid body a 

stretching sheet with equal stretching and straining velocities and he 

was unable to obtain any boundary layer near the sheet. Whereas, 

Mahapatra and Gupta (2001) reinvestigated the stagnation-point flow 

towards a stretching sheet considering different stretching and straining 

velocities and they found two different kinds of boundary layers near 

the sheet depending on the ratio of the stretching and straining 

constants. The study of a steady two-dimensional stagnation point flow 

of a micropolar fluid over a stretching sheet when the sheet was 

stretched in its own plane and the stretching velocity was proportional 

to the distance from the stagnation point was examined by Nazar et al. 

(2004). The resulting coupled equations of nonlinear ordinary 

differential equations were solved numerically. Hayat et al. (2009a) 

investigated the two-dimensional Magneto hydrodynamic (MHD) 

stagnation-point flow of an incompressible micropolar fluid over a 

nonlinear stretching surface. Hayat et al. (2009b) analyzed the steady 

two dimensional MHD stagnation point flow of an upper convected 

Maxwell fluid over the stretching surface. The governing nonlinear 

partial differential equations were reduced to ordinary ones using the 

similarity transformation. The homotopy analysis method (HAM) was 

used to solve these equations. Bhattacharyya (2013) investigated the 

boundary layer stagnation-point flow of Casson fluid and heat transfer 

towards a shrinking/stretching sheet. Yacos et al. (2011) have been 

investigated melting heat transfer in boundary layer stagnation-point 

flow toward a stretching/shrinking sheet in a micropolar fluid.  

The combined heat and mass transfer problems with chemical 

reactions are of importance in many processes, and therefore have 

received a considerable amount of attention in recent years. In 

processes, such as drying, evaporation at the surface of a water body, 

energy transfer in a wet cooling tower and the flow in a desert cooler, 

the heat and mass transfer occurs simultaneously. Many chemically 

reacting systems involve both homogeneous and heterogeneous 

reactions, with examples occurring in combustion, catalysis, 

biochemical systems, crops damaging through freezing, cooling towers, 

fog dispersion, hydrometallurgical processes etc.  The interaction 

between the homogeneous reactions in the bulk of fluid and 

heterogeneous reactions occurring on some catalytic surfaces is 

generally very complex, involving the production and consumption of 

reactant species at different rates both within the fluid and on the 

catalytic surfaces. A simple mathematical model for homogeneous-

heterogeneous reactions in stagnation-point boundary-layer flow was 

initiated by Chaudhary and Merkin (1995(a)). They modeled the 

homogeneous (bulk) reaction by isothermal cubic kinetics and the 

heterogeneous (surface) i reaction was assumed to have first-order 

kinetics. Later Chaudhary and Merkin (1995(b)) extended their 

previous work to include the effect of loss of the autocatalyst. They 

studied the numerical solution near the leading edge of a flat plate. A 

model for isothermal homogeneous-heterogeneous reactions in 

boundary layer flow of a viscous fluid flow past a flat plate was studied 

by Merkin (1996). Effects of homogeneous and heterogeneous reactions 

in flow of nanofluids over a nonlinear stretching surface with variable 

surface thickness was reported by Hayat et al., (2016) and observed 

that the homogenous and heterogeneous parameters have opposite 

behaviors for concentration profile.	Ziabakhsh et al. (2010) studied 

the problem of flow and diffusion of chemically reactive species over a 

nonlinearly stretching sheet immersed in a porous medium. Chambre 

and Acrivos (1956) studied an isothermal chemical reaction on a 

catalytic in a laminar boundary layer flow. They found the actual 

surface concentration without introducing unnecessary assumptions 

related to the reaction mechanism. The effect of flow near the two-

dimensional stagnation point flow on an infinite permeable wall with a 

homogeneous-heterogeneous reaction was studied by Khan and Pop 

(2010). They solved the governing nonlinear equations using the 

implicit finite difference method. It was observed that the mass transfer 

parameter considerably affects the flow characteristics. Melting and 

homogeneous/heterogeneous reactions effects in nanofluid flow by a 

cylinder are addressed by Hayat et al., (2016).  It is found that 

maximum heat transfer and minimum thermal resistance for base fluid 

suspended multi-wall carbon nanotubes (MWCNTs) when compared 

with other nanofluids.	The behavior of homogeneous parameter K on 

concentration profile is sketched for water and kerosene oil base fluids 

by Hayat et al., (2016).  It is analyzed that the concentration field is 

decreasing function of homogeneous parameter K for base fluids water 

and kerosene oil. In fact higher values of homogeneous reaction 

parameter correspond to larger chemical reaction which consequently 

reduces the concentration distribution. Hayat et al., (2016) developed 

numerical analysis for homogeneous-heterogeneous reactions and 

Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-

Eyring fluid by a stretching cylinder and noticed that the flow 

accelerates for large values of Powell-Eyring fluid parameter.	Hayat et 

al., (2016) disclose the effects of homogeneous–heterogeneous 

reactions and melting heat phenomenon in the Magnetohydrodynamic 

second grade fluid flow. Heat transfer is tackled with heat 

generation/absorption. Khan and Pop (2012) studied the effects of 

homogeneous-heterogeneous reactions on the viscoelastic fluid toward 

a stretching sheet. They observed that the concentration at the surface 

decreased with an increase in the viscoelastic parameter. 

Flow through porous media has various physiological applications 

such as the flow of blood in the micro-vessels of the lungs which may 

be treated as a channel bounded by two thin porous layers (Misra and 

Ghosh (1997)). It is realized that fluid slips at the walls in certain 

physiological and engineering situations. The no slip boundary 

condition is a core concept in fluid dynamics in which the fluid and the 

boundary move with same velocity. Beaver and Joseph (1967) were the 

first to propose slip boundary condition. The boundary condition 

proposed by Beaver and Joseph was simplified by Saffman (1971). The 

existence of slip phenomenon at the boundaries and interfaces has been 

observed in the flows of rarefied gases, physiological flows, hypersonic 

flows of chemically reacting binary mixture etc. Also, flows with slip 

occur for certain problems in chemical engineering, for example, flows 

through pipes in which chemical reactions occur at the walls, certain 

two-phase flows and flows in porous slider bearings. Haliza Rosali et 

al. (2012) studied a micropolar fluid flow towards a permeable 

stretching or shrinking sheet in a porous medium. Mhd Flow and Heat 

Transfer through a Porous Medium over a Stretching/Shrinking Surface 

with Suction was analyzed by F. Ahmad1 et al. (2015). Homogeneous-

heterogeneous reactions in micropolar fluid flow from a permeable 

stretching or shrinking sheet in a porous medium was studied by Shaw 

et al. (2013). 

 At the macroscopic level, it is well accepted that the boundary 

condition for a viscous fluid at a solid wall is one of no-slip, i.e., the 

fluid velocity matches the velocity of the solid boundary. While the no-

slip condition has been processed experimentally to be accurate for a 

number of macroscopic flows, it remains an assumption that is not 

based on physical principles. In many practical applications, the particle 
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adjacent to a solid surface no longer takes the velocity of the surface. 

The particle at the surface has a finite tangential velocity. It slips along 

the surface. The flow regime is called a slip-flow regime, and this effect 

cannot be neglected. The study of magneto-micro polar fluid flows in 

the slip-flow regimes with heat transfer has important engineering 

applications, e.g., in power generators, refrigeration coils, transmission 

lines, electric transformers, and heating elements. Mahmoud and 

Waheed (2010) performed a theoretical analysis to study heat transfer 

characteristics of magneto hydrodynamic mixed convection flow of a 

micro polar fluid past a stretching surface with slip. Hayat et al., (2016) 

presented the effect of Partial slip effect in flow of magnetite Fe3O4 

nanoparticles between rotating stretchable disks. Bakr (2011) analyzed 

Chemically Reacting Unsteady Magneto hydrodynamic Oscillatory Slip 

Flow of a Micropolar Fluid in a Planer Channel with Varying 

Concentration. Hayat et al., (2016) analyzed that larger values of first 

order slip velocity parameters and magnitude of second order slip 

velocity parameters correspond to lower velocity. With an increase in 

slip velocity parameters, stretching velocity is partially transferred to 

the fluid so velocity profiles decrease.  The Effects of Chemical 

Reaction, Hall, and Ion-Slip Currents on MHD Micropolar Fluid Flow 

with Thermal were studied by S.  S. Motsa1  and  S.  Shatey  (2012). 
Hayat et al., (2016) studied the MHD three-dimensional flow of 

nanofluid with velocity slip and nonlinear thermal radiation.  Hayat et 

al., (2016) looks	 at	 the	 influence	 of	 an	 inclined	magnetic	 field	 on	peristaltic	 transport	 of	 hyperbolic	 tangent	 nanofluid	 in	 inclined	channel	 having	 flexible	 walls.	 Alireza et al. (2013) presented an 

analytical solution for MHD stagnation point flow and heat transfer 

over a permeable stretching sheet with chemical reaction. 

 

2. MATHEMATICAL FORMULATION 
 

Let us consider the steady two-dimensional stagnation point flow of 

viscous, incompressible and electrically conducting micropolar fluid 

over a stretching sheet embedded in a porous medium. The Cartesian 

coordinate system is used with the x-axis along the sheet and the y-axis 

normal to the sheet. Two equal but opposite forces are applied to the 

stretching sheet so that the surface is stretched, keeping the position of 

the origin unaltered. A magnetic field B0 is applied perpendicular to the 

sheet. It is assumed that the magnetic Reynolds number is much less 

than unity so that the induced magnetic field is negligible in comparison 

to the applied magnetic field. Keeping the origin fixed, it   is assumed 

that the surface is stretched/shrunk with a linear velocity UW(x) = Uwx, 

where UW is a constant with UW > 0 for a stretching sheet, UW < 0 for a 

shrinking sheet and UW =0 for a static sheet.  Also, we consider a 

simple model for the interaction between a homogeneous-

heterogeneous reaction involving the two-chemical species A and B in a 

boundary layer flow proposed by Chaudhary and Merkin (1995a,1995b) 

of the following form:  

2 3 ,A B B   Rate = 2

ck ab                                   (1) 

,A B  Rate = sk a                                                    (2) 

Where a and b are concentrations of chemical species A and B 

respectively, and kc, ks are the constants. It is assumed that the ambient 

fluid moves with a velocity ( ) ,eu x U x

 

where U
is a constant, in 

which there is a uniform concentration a0 of reactant A and in which 

there is no auto catalyst B over a flat surface. Under these assumptions 

and boundary layer approximations the steady two-dimensional 

stagnation point flow of micropolar fluid towards a stretching sheet 

embedded in a porous medium is described by the following equations:   

 Continuity Equation 

0
u v

x y

 
 

 
                                                                                (3) 

Linear Momentum Equation 
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Angular Momentum Equation  
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                                                  (5) 

Energy Equation  
2

2

2A c

a a a
u v D k ab

x y y

  
  

  
                                                     (6)      

Species Equation  
2

2

2A c

b b b
u v D k ab

x y y

  
  

  
                                                     (7)    

where u and v are the velocity components in the x and y directions 

respectively, 
eu is the velocity outside  the boundary layer, 

 
is the 

dynamic viscosity,
 eff

 
is the effective dynamic viscosity, k

 
is the 

vortex viscosity,  is the density of the fluid, N is the micro rotation, 

 is the electrical conductivity,, 
0B is the uniform magnetic field, 

1k is the permeability of the porous medium, 
j

U






is the micro 

inertia per unit mass,  is the spin gradient viscosity defined as 

1
,

2

pK
j 

 
  

 
p

k
K


 is the material or micropolar parameter, DA is the 

diffusive species coefficient of A and DB is the diffusive species 

coefficient of B. 

 The corresponding boundary conditions are  

( ) ,w

u
u u x N

y
 

 


,wv v
 

A,D ,s

u a
N n k a

y y

 
  

    

DB s

b
k a

y




    

at     y = 0 

( ),eu u x
   

0,N    0 , 0a a b     as y                                  
(8)

                

Where 
wv is the constant mass flux with 

wv  <   0 for suction and 

wv >0 for injection (blowing) respectively; N is the slip velocity 

coefficient and n is a constant ( 0 1n  ). Here n = 0 represents the 

strong concentration (Guram and Smith, 1980), and n = 1 represents the 

turbulent boundary layer flow (Peddieson, 1972). The case n = 1/2 

indicates the vanishing of the antisymmetrical part of the stress tensor 

and denotes weak concentration (Ahmadi, 1976), which is the case 

considered in the present study.  

Now, introducing the following transformation 

0 0

, ( ), ( ), ( ) , ( )
U U a b

y U xf N U x p g h
a a

      
 
 

 
          
                (9)                 

Where  is the similarity variable and ( , )x y  is the stream 

function.  The velocity components are defined by 

, .u v
y x

  
  

 
    

Substituting (9) into the Equations (4) -(7) and (8), we get the following 

set of ordinary differential equations 

  21 1 ( ) (1 ) (1 ) 0p pK f ff f K p M f D f              
            

 (10) 

1 (2 ) 0
2

p

p

K
p fp f p K p f

 
         

 
                                    (11)                 
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21
0g fg kgh

Sc
                                                 (12)                                                                                        

2 0h fh kgh
Sc

                                                    (13)                                                            

The corresponding boundary conditions are  

(0) , (0) (0),p(0) (0),vf S f S f nf       ( ) 1, ( ) 0f p             (14)   

(0) (0), (0) (0),s sg K g h K g    ( ) 1, ( ) 0g h               (15)

 where the primes denote the differentiation with respect to , 
2

0B
M

U


 

 is the magnetic parameter, 

1

e ff
D

U k

 



 is the permeability 

parameter, 

A

Sc
D


  is the Schmidt number, 

2

0ck a
K

U

  is a measure of 

the strength of the homogeneous reaction, B

A

D

D
   is the ratio of the 

diffusion coefficient, wS
U





 is the suction parameter ( 0S   

represents impermeable, 0S  represents suction and 0S  represents 

the injection or blowing), w

e

u

u
 

is the stretching parameter 

( 0  represents the shrinking surface, 0  represents the 

stretching  surface and 0  represents the forced convection flow 

towards the stagnation point on a static surface, 
vS N U   is the 

slip parameter, 
1

2Res
s

A

k l
K

D



  is a measure of the strength of the 

heterogeneous reaction and Re
U l


 is the Reynolds number. It is 

assumed that the diffusion coefficients of chemical species A and B to 

be of a comparable size. This argument provides us to make further 

assumption that the diffusion coefficients DA and DB are equal i.e., 

1  and thus: 

( ) ( ) 1.g h                                    (16) 

 

Now Esq. (12) and (13) reduces to 

21
(1 ) 0g fg kg g

Sc
                                     (17) 

With the boundary conditions  

 (0) (0), ( ) 1.sg K g g                                    (18) 

Also the quantity of physical interest in this problem is the skin friction 

coefficient which is defined by 
2 / 2

w
fC

U





                                                    

where  

0

.w

y

u

y
 



 
                                                       

                      (19) 

 

Using the similarity variables in Eq. (19), we get  

 
1

2Re 1 (0)
2x f

KC f                                   (20)    

Where ( )
Re e

x

xU x


 is the local Reynolds number.  

 

3. SOLUTION OF THE PROBLEM 

 

The set of equations (12) to (13) were reduced to a system of first-order 

differential equations and solved using a MATLAB boundary value 

problem solver called bvp4c. This program solves boundary value 

problems for ordinary differential equations of the 

form  ' , , ,y f x y p a x b   , by implementing a collocation method 

subject to general nonlinear, two-point boundary conditions 

 ( ), ( ),g y a y b p . Here p is a vector of unknown parameters. Boundary 

value problems (BVPs) arise in most diverse forms. Just about any BVP 

can be formulated for solution with bvp4c. The first step is to write the 

ODEs as a system of first order ordinary differential equations. The 

details of the solution method are presented in Shampine and Kierzenka 

(2000). 

 

4. RESULTS AND DISCUSSIONS 
 

The numerical computations have been carried out using the MATLAB 

bvp4c solver for several values of the physical parameters arised in the 

study then acquired results are presented in graphs. 
The variations of the velocity and concentration profiles are plotted 

as a function of η for some values of λ in Figures 1 and 2 for Kp = 0.1, χ 
= 0.1, Sc = 1, K = 1, s = 0.5, n = 0.5,      Ks = 1. In Fig.1, (i) for λ >0 

(stretching surface), the fluid velocity is becoming increasingly greater 

than the free stream. In this case the fluid velocity decreases with the 

value of η and converges at unity as per the condition. (ii) For λ=0 

(static surface), the fluid velocity initially is stationary, but with η value 

it increases in a non-linear way. (iii) For λ < 0 (shrinking surface), the 

fluid velocity is initially negative, but it increases with η, and after a 

certain value of η, it becomes positive. For the concentration profile in 

figure 2, all the curves are started from the origin and they increase 

nonlinearly with η to follow ‘S’ shape and finally reach unity according 

to the given condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Velocity profiles for some values of   

  

( )f   = -1.2, -0.5, 0.0, 1.0, 2.0, 3.0, 4.0 

 = -1.2, -0.5, 0.0, 1.0, 2.0, 3.0, 4.0 

g( )

  
Fig. 2 Concentration profiles for some values of    
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The variations of the velocity and concentration profiles are plotted for 

different values of M in Figures 3 and 4. In Fig.3, for λ >0 (stretching 

surface), the fluid velocity is becoming increasingly greater than the 

free stream. In this case the fluid velocity decreases with the value of η 

and converges at unity as per the condition. For λ< 0 (shrinking 

surface), the velocity decreases with the increase of magnetic parameter 

M for opposing, assisting and steady state cases.  That is because the 

application of a magnetic field in the y-direction to an electrically 

conducting fluid gives rise to a flow resistive force called the Lorentz 

force.  The concentration profile in figure 4, for λ >0 (stretching 

surface), the fluid concentration increases with increasing magnetic 

parameter M and opposite case is observed for λ< 0 (shrinking surface).  

All the curves are started from the origin and they increase nonlinearly 

with η to follow ‘S’ shape and finally reach unity. 

The solute velocity, however, increase with the permeability for 

stretching/shrinking parameters is observed from Fig.5.  A 

concentration profile for different values of permeability parameter is 

shown in Fig.6. For λ >0 (stretching surface), the fluid concentration 

decreases with increasing the permeability parameter D and opposite 

case is observed for λ < 0 (shrinking surface).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M = 0.0, 1.0, 2.0 

M = 0.0, 1.0, 2.0 

Fig. 3 Velocity profiles for some values of M  
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                      0.5    

M = 0.0, 1.0, 2.0 
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Fig. 4 Concentration profiles for some values of M  
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D = 0.0, 1.0, 2.0 

D = 0.0, 1.0, 2.0 

Fig. 5 Velocity profiles for some values of D  
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 D = 0.0, 1.0, 2.0 

Fig. 6 Concentration profiles for some values of D  
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                       2   
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Fig. 7 Velocity profiles for some values of Sv  
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The variations of the velocity and concentration profiles are plotted for 

different values of slip parameter (Sν) in Figures 7 and 8. In Fig.7, for λ 

> 0 the fluid velocity increases with the increase of slip parameter and 

an opposite effect is seen when λ < 0. The increase in the slip parameter 

has the tendency to reduce the friction forces which reduces the fluid 

velocity.  The fluid concentration enhances when Sν enhances for λ > 0 

and decreases for λ < 0 in Fig.8. 

The effect of heterogeneous and homogeneous reactions on the 

concentration profile are separately shown through Figures 9 and 11 for 

stretching sheet and Figures 10 and 12 for shrinking sheet respectively. 

It is evident that the concentration boundary layer of the reactants is 

increasing with η in both cases, and after a certain η value, they all 

coincide, i.e., after a certain η value, the homogeneous and 

heterogeneous reactions have no e�ect on the concentration of the 

reactants. This critical value of η (η∞) depends on the strength of the 

homogeneous reaction and increases with the value of K, but it does not 

depend on the strength of the heterogeneous reaction. A similar 

phenomenon is observed for the second solution. The graphs for these 

condition solutions with Ks = 0.2 and 1 coincide. It is observed that the 

first solution is more stable and converges more easily than the second 

solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Concentration profiles for some values of K for 
shrinking sheet  

K = 0.0, 2.0, 4.0, 6.0 
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Fig. 11 Concentration profiles for some values of Ks for 
stretching sheet  

Ks = 0.2, 0.4, 0.6, 0.8, 1.0 

g( )

  

 
                       2   

                      0.5    

 Sv = 0.0, 0.5, 1.0 

Fig. 8 Concentration profiles for some values of Sv  

  

g( )  

K = 0.0, 2.0, 4.0, 6.0 

Fig. 9 Concentration profiles for some values of K for 
stretching sheet  

  

g( )  

Ks = 0.2, 0.4, 0.6, 0.8, 1.0 

Fig. 12 Concentration profiles for some values of Ks for 
shrinking sheet  
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The concentration of the reactants depends on the Schmid tnumber (Sc) 

and heterogeneous reaction parameter. The variation of the 

concentration with K for di�erent values of the Schmidt number is 

shown in Figures 13 and 14. The Schmidt number is the ratio between a 

viscous di�usion rate and a molecular di�usion rate. For a fixed 

molecular di�usion rate, with increase in Schmidt number, the viscous 

di�usion rate increases, which helps to increase the concentration of 

the fluid for both stretching and shrinking sheet. 

Figs.15 and 16 are aimed to shed light on the effect of suction 

( 0S   represents impermeable, 0S  represents suction and 

0S  represents the injection or blowing) on the velocity and 

concentration profiles.  From these, we observed that the velocity 

decreases with an increase in the suction parameter whereas 

concentration increases for stretching sheet this is due to the fact that 

the heated fluid is pushed towards the wall where the buoyancy forces 

can act to retard the fluid due to high influence of viscosity.  This effect 

acts to decrease the wall shear stress. The effect of the velocity and 

concentration profiles for different suction parameter S is shown in 

Figures 17 and 18. The velocity of the fluid increases due to increase of 

S, and this leads to an increase in the solute concentration for shrinking 

sheet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sc = 1.0, 2.0, 3.0, 4.0, 5.0 

Fig. 13 Concentration profiles for some values of Sc for 
stretching sheet 

  

g( )  

Fig. 14 Concentration profiles for some values of Sc for 
shrinking sheet 

Sc = 1.0, 2.0, 3.0, 4.0, 5.0 

  

g( )  

S = -2.0, -1.0, 0.0, 1.0, 2.0 

Fig. 15 Velocity profiles for some values of S for stretching 
sheet 

  

( )f 

S = -2.0, -1.0, 0.0, 1.0, 2.0 

Fig. 16 Concentration profiles for some values of S for 
stretching sheet 



g( )

S = -2.0, -1.0, 0.0, 1.0, 2.0 

Fig. 17 Velocity profiles for some values of S for shrinking 
sheet 
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Values of the dimensionless skin friction coefficient (0)f    for several 

values of S , suction parameter in the absence of micropolar parameter, 

magnetic parameter, permeability parameter and the slip velocity 

parameter are given in Table 1. The values reported by Katagiri 

(1971) using an iterative numerical quadratures and by Lok et al. 

(2007) using the Keller-box method were also included in this table. It 

is seen that the present results are in excellent agreement with both 

results obtained by Katagiri (1971), Lok et al. (2007) and Khan and 

Pop (2010). We notice that for an impermeable wall (S = 0) the values 

of (0)f  reported by Hiemenz (1911) is S = 1.233.  

 

Table 1 Comparison of (0)f  for several values of S in the absence of 

micropolar parameter, magnetic parameter, permeability parameter and 

the slip velocity parameter. 
 

S Katagiri 

(1971) 

Lok et al. 

(2007) 

Khan and 

Pop (2010) 

Present 

-3 0.329456 0.3295 0.32945 0.32945 

-2 0.47581 0.4759 0.47581 0.47581 

-1 0.756574 0.7567 0.75657 0.75657 

0 1.232588 1.2327 1.23259 1.23258 

1 1.889303 1.8895 1.88931 1.88931 

2 2.670006 2.6703 2.67006 2.67005 

3 3.526497 3.5268 3.52664 3.52664 

4 4.428673 4.4291 4.42895 4.42895 

 

Table 2, present the excellent correlation between previous 

literatures [Wang (2008), Ishak et al.  (2010), Rosali et al. (2012)] and 

the present study of the comparison of (0)f  for several values of  in 

the absence of micropolar parameter, magnetic parameter, permeability 

parameter, suction parameter and the slip velocity parameter for a 

stretching sheet. This investigation confirms that the existence and 

uniqueness of solution depends on the stretching/shrinking sheet 

parameter. 0   Represents the forced convection flow towards the 

stagnation point on a static surface.  It is clear that the skin friction is a 

decreasing function of . All values of the skin friction coefficient are 

positive for  <1, while they are negative when  >1.Physically, the 

negative values of the skin friction coefficient correspond to the surface 

exerting a drag force on the fluid and the opposite sign implies the 

inverse phenomenon. The skin friction coefficient is zero when   = 1 

regardless of the values of other parameters. This is because for   = 1, 

there is no shear stress at the surface as the surface and fluid move with 

the same velocity. 

 

Table 2 Comparison of (0)f  for several values of  in the absence of 

micropolar parameter, magnetic parameter, permeability parameter, 

suction parameter and the slip velocity parameter 

 

  Wang 

(2008) 

Ishak et al.

(2010) 
    Rosali et al. (2012)               Present 

Kp= 0, S 

= 0, D = 

0 

Kp = 1, S 

= 0.8, D 

= 0.5 

Kp= 0, S 

= 0, D = 

0    

Kp= 1, S 

= 0.8, D 

= 0.5 

0.0 1.232588 1.232588 1.232588 1.476217 1.232588 1.476217 

0.1 1.14656 1.146561 1.146561 1.353345 1.146561 1.353345 

0.2 1.05113 1.051130 1.05113 1.224482 1.05113 1.224482 

0.3 - - 0.946816 1.089841 0.946816 1.089841 

0.4 - - 0.834072 0.949614 0.834072 0.949614 

0.5 0.71330 0.713295 0.713295 0.803979 0.713295 0.803979 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2.0 -1.88731 -1.887307 -1.887307 -1.941163 -1.887307 -1.941163

3.0 - -4.276541 -4.276541 -4.260253 -4.276541 -4.260253

4.0 - -7.086378 -7.086378 -6.904439 -7.086378 -6.904439

5.0 -10.26475 -10.26479 -10.26479 -9.837608 -10.26479 -9.837608

 

From Table 3 it is clear that as the micro polar parameter or the 

magnetic parameter increases both (0)f    and g(0) increases. As the 

diffusion coefficient and Schmidt number increases both (0)f    and 

g(0) remains constant. As 
 
increases a tremendous decrease is seen 

in (0)f 
, a reverse effect is seen when a slip parameter increases. 

Homogeneous and heterogeneous reactions do not effect  (0)f   and 

g(0). Here n = 0 represents the strong concentration and n = 1 

represents the turbulent boundary layer flow. The case n = 1/2 indicates 

the vanishing of the anti-symmetrical part of the stress tensor and 

denotes weak concentration which is the case considered in the present 

study.  

 

Table 3 The values of skin friction coefficient and dimensionless 

concentration
 
for various values of Kp, M, D, Sc, ,  and Sv Ks, K and 

n. 

 
Kp M D Sc S  Sv Ks K n )0(f  (0)g  

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.2533 0.5472 

2.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.1128 0.5509 

1.0 1.0 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.1947 0.5487 

1.0 0.5 1.0 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.3064 0.5459 

1.0 0.5 0.5 2.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.2533 0.6653 

1.0 0.5 0.5 1.0 1.0 2.0 0.2 1.0 1.0 0.5 -1.3623 0.6153 

1.0 0.5 0.5 1.0 0.5 3.0 0.2 1.0 1.0 0.5 -2.6734 0.5738 

1.0 0.5 0.5 1.0 0.5 2.0 1.0 1.0 1.0 0.5 -0.6138 0.5308 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 2.0 1.0 0.5 -1.2533 0.3747 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 2.0 0.5 -1.2533 0.5274 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 1.0 -1.4587 0.5420 

 

CONCLUSIONS 

 

The present analysis investigates the effect of the homogeneous and 

heterogeneous chemical reaction and slip velocity on MHD stagnation 

flow of a micropolar fluid flow through a permeable 

stretching/shrinking sheet embedded in a porous medium. The 

momentum and concentration equations were transformed into a set of 

S = -2.0, -1.0, 0.0, 1.0, 2.0 

Fig. 18 Velocity profiles for some values of S for shrinking 
sheet 

g( )  
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coupled nonlinear differential equations using similarity 

transformations and solved numerically by Matlab bvp4c package. We 

discussed the effects of the governing parameters on the fluid flow and 

concentration characteristics. A new feature that emerges from our 

results It is found that these solutions terminate at   = 0 with values 

given in Table 1. The concentration profiles g(g) appear to be similar in 

shape for different values of  , K and Ks. There is an excellent 

correlation between previous literatures and the present study. 
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