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Abstract
In thermofluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved

walls, wavy plates, and cones play a major role in various industrial and process engineering systems. The thermal

buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat

transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest.

A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary

layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and

concentration. The Jeffery’s viscoelastic model simulated the non-Newtonian characteristics of polymers, which consti-

tutes a novelty of the present work. The transformed conservation equation for linear momentum, energy, and concen-

tration are solved numerically under physically viable boundary conditions using the finite-difference Keller box scheme.

The impact of Deborah number (De), ratio of relaxation to retardation time (k), surface suction/injection parameter (fw),

power-law exponent (n), buoyancy ratio parameter (N), and dimensionless tangential coordinate (n) on velocity, surface

temperature, concentration, local skin friction, heat transfer rate, and mass transfer rate in the boundary layer regime is

presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concen-

tration are increased slightly. Increasing k enhance velocity, however, reduces temperature and concentration slightly. The

heat and mass transfer rate are found to decrease with increase in De and increase with increasing values of k. The skin

friction is found to decrease with a rise in De, whereas it is elevated with increasing values of k. Increasing values of fw and

n decelerates the flow and also cools the boundary layer, i.e., reduces temperature and also concentration. The study is

relevant to chemical engineering systems, solvent, and polymeric processes.
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1 Introduction

In many fluids, the flow properties are difficult to explain

by a single constitutive equation like Newtonian model.

Geological materials and polymer solutions used in dif-

ferent industries and engineering processes are such fluids

which cannot be explained by Newtonian model. The

materials that cannot be explained using Newtonian model

are called non-Newtonian fluid models. In past few dec-

ades, due to the applications in industries, engineering, and

technology, non-Newtonian fluid flows have gained inter-

est of researchers. In such fluids, the shear stress and strain

rate relation is nonlinear. The non-Newtonian fluid models

are complicated and relate the shear stresses to the velocity

field [1]. Different non-Newtonian fluid models have been

discussed by different researchers including oblique

micropolar flows [2], Walter’s-B fluids [3], Jeffrey’s flows

[4], Williamson fluid [5], nanofluid [6], Maxwell flows [7],

Eyring–Powell flows [8], tangent hyperbolic flows [9],

Oldroyd-B fluid [10], and power-law fluid [11]. The clas-

sical Navier–Stokes theory does not describe sufficiently

the flow properties of polymeric fluids and colloidal sus-

pensions. Of the many non-Newtonian fluid models dis-

cussed in the literature, viscoelastic Jeffrey’s model is an

interesting non-Newtonian fluid model which uses the time

derivatives instead of converted derivatives and degener-

ates to Newtonian model at very high wall shear stress.

Also, the Jeffrey’s fluid model approximates well the rhe-

ological behavior of a wide range of industrial processes

such as biotechnological detergents, physiological sus-

pensions, dense foams, geological sediments, cosmetic

creams, syrups. Many researchers explored the industrial

and biological flow problems using Jeffrey’s model that

include Katini Ahmad et al. [12] investigated the magne-

tohydrodynamic mixed convection boundary layer flow

and heat transfer of Jeffrey fluid past an exponentially

stretching sheet. Saqib et al. [13] reported the applications

of Caputo-Fabrizio time-fractional derivatives to general-

ize the Jeffrey fluid past a vertical static plate. The effects

of thermophoresis on an unsteady two-dimensional laminar

incompressible mixed convective chemically reacting flow

of Jeffrey fluid between two parallel porous plates in the

presence of the induced magnetic field was considered by

Ojjela [14]. Hayat et al. [15] reported the Cattaneo–

Christov heat flux model flow of Jeffrey fluid past the

stretching surface. Bhatti et al. [16] explored the effects of

variable magnetic field on peristaltic flow of Jeffrey fluid in

a non-uniform rectangular duct which has compliant walls

using eigen function expansion method. Izani and Ali [17]

analyzed the effect of magnetic field on a boundary layer

flow and convective heat transfer of a dusty Jeffrey fluid

over an exponentially stretching surface using Runge–

Kutta–Fehlberg fourth–fifth method. Hayat et al. [18]

addressed the effects of homogeneous–heterogeneous

reactions of a two-dimensional stretched flow of Jeffrey

fluid in the presence of Cattaneo–Christov heat flux. An

analysis of the boundary layer flow and heat transfer in a

Jeffrey fluid containing nanoparticles was made by Hayat

et al. [19] using homotopy analysis method. They consid-

ered that the thermal conductivity of the fluid to be tem-

perature dependent. Narayana and Harish [20] analyzed the

chemical reaction and heat source effects on MHD flows of

Jeffrey fluid over a stretching sheet in the presence of

power-law form of temperature and concentration using

Runge–Kutta fourth-order scheme.

Javherdeh et al. [21] investigated the natural convection

flow past a moving vertical plate in porous medium sub-

jected to a transverse magnetic field assuming a power-law

variation in temperature and concentration. Rajneesh et al.

[22] reported the unsteady laminar convection flow of

Rivlin–Ericksen viscoelastic fluid model past an impul-

sively started vertical plate with variable surface temper-

ature and concentration using finite element method.

Farhad et al. [23] studied the unsteady magnetohydrody-

namic flow of Brinkman nanofluid past a vertical porous

plate with variable surface velocity, temperature, and

concentration using Laplace transform technique. Hari and

Patel [24] reported the unsteady laminar convective MHD

flow of radiating chemically reactive second-grade fluid

over an infinite vertical porous plate in the presence of heat

generation/absorption and thermodiffusion using Laplace

transform technique. Kandasamy et al. [25] presented the

effects of chemical reaction on boundary layer flows past a

porous wedge in the presence of heat radiation and suction

or injection. They employed the power-law variation to

both wall temperature and concentration. Hussain and

Hossain [26] studied the laminar convection flows past a

vertical permeable heated flat plate with variable surface

temperature and species concentration using Keller box

method.

To the authors’ knowledge, no studies have been com-

municated with regard to viscoelastic laminar convection

flows of vertical permeable cone with variable temperature

and concentration. In the present paper, a non-similar

mathematical model is presented for the steady, laminar

convection flows of viscoelastic Jeffrey’s fluid past a ver-

tical permeable cone with ramped wall temperature and

concentration. The Keller box finite-difference scheme is

employed to solve the normalized boundary layer equa-

tions. The effects of the emerging thermophysical param-

eters, namely Deborah number (De), ratio of relaxation to

retardation time (k), power-law exponent (n), wall mass

flux, i.e., suction/injection parameter (fw), and Prandtl

number (Pr) on velocity, temperature, concentration, skin

friction (surface shear stress function), heat, and mass
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transfer rate characteristics are studied. The present study

finds applications in polymeric manufacturing processes,

heat exchanger technology nuclear waste simulations,

nuclear engineering, thermal fabrication of paint sprays,

water-based rheological gel solvents, and low-density

polymeric materials in process engineering industry.

2 Mathematical model

The natural convection boundary layer flow of incom-

pressible viscoelastic fluid from a vertical permeable cone,

as shown in Fig. 1, is considered. Both cone and the vis-

coelastic fluid are maintained initially at the same tem-

perature and concentration. The Fourier’s law is considered

for heat conduction. The influence of thermal relaxation is

neglected. Viscous dissipation, thermal stratification, and

dispersion are also neglected. The flow is considered to be

laminar and steady. The temperature and concentration of

the fluid are raised instantaneously. With vertex of the cone

is placed at the origin, the x–coordinate is measured along

the surface of the cone and the y–coordinate is measured

normal to it. The acceleration due to gravity g acts verti-

cally downward. Fluid suction or injection, i.e., lateral wall

mass flux, is imposed at the surface of the cone, and the

surface of the cone is held at a variable temperature and

concentration proportional to the power of the distance

along the slant surface, i.e., Tw xð Þ ¼ T1 þ Bd1x
n and

Cw xð Þ ¼ C1 þ Bd2x
n, where B, d1, d2 are constants and n

is the power-law exponent. The Jeffrey’s model accurately

captures the physical characteristic of certain polymers

[27, 28]. The Cauchy stress tensor, S, of a Jeffrey’s vis-

coelastic fluid [29] is given by:

T ¼ �pI þ S;

S ¼ l
1þ k

ð _cþ k1€cÞ ð1Þ

where a dot above a quantity denotes the material time

derivative, _c is the shear rate, l is the dynamic viscosity, k
is the ratio of relaxation to retardation time, and k1 is the

retardation time. The shear rate and gradient of shear rate

are further defined in terms of velocity vector, V, as:

c
: ¼ rV þ rVð ÞT ð2Þ

c
:: ¼ d

dt
c
:ð Þ: ð3Þ

With the Boussinesq approximation boundary layer

approximations, the governing equations take the form:

o ruð Þ
ox

þ o rvð Þ
oy

¼ 0 ð4Þ

u
ou

ox
þ v

ou

oy
¼ m

1þ k

o2u

oy2
þ k1 u

o3u

oxoy2
� ou

ox

o2u

oy2
þ ou

oy

o2u

oxoy
þ v

o3u

oy3

� �� �

þ gb T � T1ð Þ þ gb� C � C1ð Þ½ � cosA
ð5Þ

u
oT

ox
þ v

oT

oy
¼ a

o2T

oy2
ð6Þ

u
oC

ox
þ v

oC

oy
¼ Dm

o2C

oy2
: ð7Þ

The appropriate boundary conditions are:

At y ¼ 0; u ¼ 0; v ¼ �Vw; T ¼ Tw xð Þ
¼ T1 þ Bd1x

n; C ¼ Cw xð Þ ¼ C1 þ Bd2x
n

As y ! 1; u ! 0; v ! 0; T ! T1; C ! C1

ð8Þ

where u and v are the velocity components in x and y

direction, respectively, r xð Þ ¼ x sinA is the local radius of

the truncated cone, A is the half angle of the cone, b is the

coefficient of thermal expansion, b* is the coefficient of

concentration expansion, T and C are the temperature and

concentration of the fluid, respectively, m is the kinematic

viscosity, a is the thermal diffusivity, Dm is the species

diffusivity, Vw is the transpiration velocity of the fluid.

Vw[ 0 stands for suction, i.e., mass flux removal from the

boundary layer through the cone wall into the cone, and

Vw\ 0 stands for injection, i.e., blowing of fluid through

the surface of the cone. Here the suffix w refers to surface

conditions on the surface of the cone (wall) and! refers to

free stream conditions. We introduce the stream functionW

defined by the Cauchy–Riemann equations, ru ¼ ow
oy

and

rv ¼ � ow
ox
. The mass conservation Eq. (4) is automatically

g

O (leading edge)y, , v

x, , u

Inverted permeable cone

A

r

Viscoelastic fluid

Flow

Fig. 1 Geometric illustration of problem
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satisfied. The following dimensionless variables are intro-

duced into Eqs. (5)–(8):

n ¼ xVw

mGr1=4x

; g ¼ y

x
Gr1=4x ; w ¼ mrGr1=4x f þ n

2

� �
;

h n; gð Þ ¼ T � T1
Tw � T1

; / n; gð Þ ¼ C � C1
Cw � C1

Pr ¼ m
a
;

Sc ¼ m
Dm

; Gr ¼ gb Tw � T1ð Þx3 cosA
m2

;

De ¼ k1m
ffiffiffiffiffiffiffiffi
Grx

p

x2
; N ¼ b� Cw � C1ð Þ

b Tw � T1ð Þ

ð9Þ

Here n—tangential coordinate, g—radial coordinate, h and

/—the dimensionless temperature and concentration

respectively, Grx—Grashof number, f—dimensionless

stream function, Pr—Prandtl number, Sc—local Schmidt

number, and De—Deborah number.

The resulting momentum, energy, and concentration

boundary layer equations take the form:

f 000

1þ k
þ 7þ n

4
ff 00 � 1þ n

2
f 0ð Þ2þnf 00 þ hþ Nuð Þ

þ De

1þ k

� 1� n

2
f 0f 000 þ 3nþ 1

4
f 002

� 7þ n

4
ff iv � nf iv

0
BB@

1
CCA

¼ n 1� nð Þ
4

f 0
of 0

on
� f 00

of

on
� De

1þ k

�

f 0
of 000

on
� f 000

of 0

on
þ f 00

of 00

on
� f iv

of

on

� ��

ð10Þ

h00

Pr
þ 7þ n

4
fh0 þ nh0 � nhf 0 ¼ n 1� nð Þ

4
f 0
oh
on

� h0
of

on

� �

ð11Þ

/00

Sc
þ 7þ n

4
f/0 þ n/0 � n/f 0 ¼ n 1� nð Þ

4
f 0
o/
on

� /0 of

on

� �

ð12Þ

The corresponding dimensionless boundary conditions

are as follows:

At g ¼ 0; f ¼ 0; f 0 ¼ fw; h ¼ 1; / ¼ 1

As g ! 1; f 0 ! 0; f 00 ! 0; h ! 0; / ! 0
ð13Þ

Here primes denote the differentiation with respect to g.
The skin friction coefficient Cf, heat transfer rate, Nux and

mass transfer rate, Shx are defined as:

Cf

2Gr
3=4
x

¼ f 00ðn; 0Þ ð14Þ

Nux

Gr
1=4
x

¼ �h=ðn; 0Þ ð15Þ

Shx

Gr
1=4
x

¼ �/=ðn; 0Þ ð16Þ

3 Computational finite-differences Keller
box solutions, result and discussion

The implicit finite-difference Keller box technique [30] is

employed to solve the nonlinear eighth-order system of

coupled boundary layer Eqs. (10)–(12) subject to boundary

conditions (13). The Keller box technique is very popular

and has been employed by many researchers that include

Subba Rao et al. [31] for polymer flows from a horizontal

cylinder, V.R. Prasad et al. [32] for micpolar flows, Beg

et al. [33] for multi-physical magnetohydrodynamic flows,

Bhuvanavijaya et al. [34] for second-grade flows, Abdul

gaffar et al. [35] for third-grade model, Vasu et al. [36],

Amanulla et al. [37]. The Keller box scheme is more

efficient, powerful and accurate than the other numerical

method in case of boundary layer flows which are para-

bolic in nature. This technique is unconditionally

stable and achieves exceptional accuracy, converges

quickly and provides stable numerical meshing features.

The Keller box technique involves the following four

stages:

1. Reduction in the Nth-order partial differential equation

system to N first-order equations

2. Finite-difference discretization.

3. Quasilinearization of nonlinear Keller algebraic

equations

4. Block tridiagonal elimination of liner Keller algebraic

equations.

Stage 1 Decomposition of Nth-order partial differential

equation system to N first-order equations

Equations (10)–(12) subject to the boundary conditions

(13) are first cast as a multiple system of first-order dif-

ferential equations. New dependent variables are

introduced:

u x; yð Þ ¼ f 0; v x; yð Þ ¼ f 00; q x; yð Þ ¼ f 000; s x; yð Þ ¼ h; h0

¼ t and g x; yð Þ ¼ /with g0 ¼ p

ð17Þ

These denote the variables for velocity, temperature and

concentration, respectively. Now Eqs. (13)–(15) are solved

as a set of eight simultaneous differential equations:

f 0 ¼ u ð18Þ

u0 ¼ v ð19Þ

v0 ¼ q ð20Þ

g0 ¼ p ð21Þ

s0 ¼ t ð22Þ
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v0

1þ k
þ 7þ n

4
fv� 1þ n

2
u2 þ nvþ sþ Ngð Þ

� De

1þ k
1� n

2
uq� 1þ 3n

4
v2 þ 7þ n

4
fq0 þ nq0

� �

¼ n
1� n

4
u
ou

on
� v

of

on
� De

1þ k

�

u
oq

on
� q

ou

on
þ v

ov

on
� q0

of

on

� ��
ð23Þ

t0

Pr
þ 7þ n

4
ft þ nt � n us ¼ n

1� n

4
u
os

on
� t

of

on

� �
ð24Þ

p0

Sc
þ 7þ n

4
fpþ np� n gu ¼ n 1� nð Þ

4
u
og

on
� p

of

on

� �

ð25Þ

where primes denote differentiation with respect to the

variable, g. In terms of the dependent variables, the

boundary conditions assume the form:

At g ¼ 0; u ¼ 0; v ¼ fw; s ¼ 1; g ¼ 1

As g ! 0; u ! 0; v ! 0; s ! 0; g ! 0
ð26Þ

Stage 2 Finite-Difference Discretization

A two-dimensional computational grid is imposed on

the n-g plane as depicted in Fig. 2. The stepping process is

defined by:

g0 ¼ 0; gi ¼ gi�1 þ hj; j ¼ 1; 2; . . .; J; gJ � g1
n0 ¼ 0; nn ¼ nn�1 þ kn; n ¼ 1; 2; . . .;N

ð27Þ

where kn is the Dn-spacing and hj is the Dg-spacing. If gnj
denotes the value of any variable at gj; n

n
� �

, then the

variables and derivatives of Eqs. (18)–(23) at

gj�1=2; nn�1=2
� �

are replaced by:

g
n�1=2
j�1=2 ¼ 1

4
gnj þ gnj�1 þ gn�1

j þ gn�1
j�1

� �
ð28Þ

og

og

� �n�1=2

j�1=2

¼ 1

2hj
gnj � gnj�1 þ gn�1

j � gn�1
j�1

� �
ð29Þ

og

on

� �n�1=2

j�1=2

¼ 1

2kn
gnj � gnj�1 þ gn�1

j � gn�1
j�1

� �
ð30Þ

The finite-difference approximation of Eqs. (18)–(24)

for the mid-point gj�1=2; nn
� �

, are:

h�1
j f nj � f nj�1

� �
¼ unj�1=2 ð31Þ

h�1
j unj � unj�1

� �
¼ vnj�1=2 ð32Þ

h�1
j vnj � vnj�1

� �
¼ qnj�1=2 ð33Þ

h�1
j gnj � gnj�1

� �
¼ pnj�1=2 ð34Þ

h�1
j snj � snj�1

� �
¼ tnj�1=2 ð35Þ

1

1þ k
vj � vj�1

� �
þ 7þ n

4
þ a

1� n

4

� �

hj

4
fj þ fj�1

� �
vj þ vj�1

� �
þ n

hj

2
vj þ vj�1

� �

� 1þ n

2
þ a

1� n

4

� �
hj

4
uj þ uj�1

� �2

þ hj

2
sj þ sj�1 þ N gj þ gj�1

� �� �

� De

1þ k
1� n

2

hj

2
uj þ uj�1

� �
qj þ qj�1

� �

þ De

1þ k
hj

4

1þ 3n

4
þ a

1� n

4

� �
vj þ vj�1

� �2

� De

1þ k
7þ n

4
þ a

1� n

4

� �
1

2
fj þ fj�1

� �
qj � qj�1

� �

� De

1þ k
n qj � qj�1

� �

� ahj
2

1� n

4
f n�1
j�1 vj þ vj�1

� �
þ ahj

2

1� n

4
vn�1
j�1 fj þ fj�1

� �

þ ahjDe
1þ k

1� n

4
un�1
j�1 qj þ qj�1

� �

� ahjDe
1þ k

1� n

4
qn�1
j�1 uj þ uj�1

� �

þ aDe
1þ k

1� n

4
f n�1
j�1 qj � qj�1

� �

� aDe
1þ k

1� n

4
q0ð Þn�1

j�1 fj þ fj�1

� �
¼ R1½ �n�1

j�=12

ð36Þ

Keller box cell 
Stepping direction 
directionoelastic 

Fig. 2 Keller box computational cell
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1

Pr
tj � tj�1

� �
þ 7þ n

4
þ a

1� n

4

� �

hj

4
fj þ fj�1

� �
tj þ tj�1

� �
þ n

hj

2
tj þ tj�1

� �

� hj

4
nþ a

1� n

4

� �
uj þ uj�1

� �
sj þ sj�1

� �

þ ahj
2

1� n

4
sn�1
j�1=2 uj þ uj�1

� �

� ahj
2

1� n

4
un�1
j�1=2 sj þ sj�1

� �

� ahj
2

1� n

4
f n�1
j�1=2 tj þ tj�1

� �

þ ahj
2

1� n

4
tn�1
j�1=2 fj þ fj�1

� �
¼ R2½ �n�1

j�1=2

ð37Þ

1

Sc
pj � pj�1

� �
þ 7þ n

4
þ a

1� n

4

� �
hj

4
fj þ fj�1

� �

pj þ pj�1

� �
þ n

hj

2
pj þ pj�1

� �

� ahj
4

nþ a
1� n

4

� �
uj þ uj�1

� �
gj þ gj�1

� �

þ ahj
2

1� n

4
gn�1
j�1=2 uj þ uj�1

� �

� ahj
2

1� n

4
un�1
j�1=2 gj þ gj�1

� �

� ahj
2

1� n

4
f n�1
j�1=2 pj þ pj�1

� �

þ ahj
2

1� n

4
pn�1
j�1=2 fj þ fj�1

� �
¼ R3½ �n�1

j�1=2

ð38Þ

where we have used the abbreviations

a ¼ nn�1=2

kn
ð39Þ

R1½ �n�1
j�1=2¼ �hj

1

1þ k
v0ð Þn�1

j�1=2þ
7þ n

4
� a

1� n

4

� �
fvð Þn�1

j�1=2þnvn�1
j�1=2 þ sn�1

j�1=2 þ Ngn�1
j�1=2

� �

� 1þ n

2
þ a

1� n

4

� �
un�1
j�1=2

� �2
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1þ k
1� n

2
uqð Þn�1

j�1=2

þ De

1þ k
1þ 3n

4
� a

1� n

4

� �
vn�1
j�1

� �2

� De

1þ k
n q0ð Þn�1

j�1=2
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1þ k
7þ n

4
� a

1� n

4

� �
fq0ð Þn�1

j�1=2

2
6666666666664
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7777777777775

ð40Þ

R2½ �n�1
j�1=2¼ �hj

1

Pr
t0ð Þn�1

j�1=2þ
7þ n

4
� a

1� n

4

� �	

ftð Þn�1
j�1=2þntn�1

j�1=2 � n� a
1� n

4

� �
usð Þn�1

j�1=2


 ð41Þ

R3½ �n�1
j�1=2¼ �hj

1

Sc
p0ð Þn�1

j�1=2þ
7þ n

4
� a

1� n

4

� �	

fpð Þn�1
j�1=2þnpn�1

j�1=2 � n� a
1� n

4

� �
ugð Þn�1

j�1=2


 ð42Þ

The boundary conditions are:

f n0 ¼ un0 ¼ 0; sn0 ¼ 1; gn0 ¼ 1; unJ ¼ 0; vnJ ¼ 0; snJ ¼ 0; gn0
¼ 0

ð43Þ

Stage 3 Quasilinearization of Nonlinear Keller Alge-

braic Equations

If we assume f n�1
j ; un�1

j ; vn�1
j ; qn�1

j ; gn�1
j ; pn�1

j ; sn�1
j ; tn�1

j

to be known for 0� j� J, then Eqs. (30)–(37) constitute a

system of 8J ? 8 equations for the solution of 8J ? 8

unknowns f nj ; u
n
j ; v

n
j ; q

n
j ; g

n
j ; p

n
j ; s

n
j ; t

n
j , j = 0, 1, 2…, J. This

nonlinear system of algebraic equations is linearized by

means of Newton’s method, as described by Takhar et al.

[38].

Stage 4 Block tridiagonal Elimination Solution of Linear

Keller Algebraic Equations

The linearized system is solved by the block elimination

method, since it possess a block tridiagonal structure. The

bock-tridiagonal structure generated consists of block

matrices. The complete linearized system is formulated as

a block matrix system, where each element in the coeffi-

cient matrix is a matrix itself, and this system is solved

using the efficient Keller box method. The numerical

results are strongly influenced by the number of mesh

points in both directions. After some trials in the g-direc-
tion (radial coordinate) a larger number of mesh points are

selected whereas in the n direction (tangential coordinate)

significantly less mesh points are utilized. gmax has been

set at 10 and this defines an adequately large value at which

the prescribed boundary conditions are satisfied. nmax is set
at 3.0 for this flow domain. Mesh independence is achieved

in the present computations. The numerical algorithm is

executed in MATLAB on a PC. The method demonstrates

excellent stability, convergence, and consistency, as elab-

orated by Keller [30].

Table 1 Values of Nu for various values of n with De = 0 = k,
N = 0.5, fw = 1.0, Sc = 0.6, n = 0.5

n Nu

Hossain and Paul [42] Present

0.0 0.24584 0.24583

0.1 0.25089 0.25088

0.2 0.25601 0.25600

0.4 0.26630 0.26629

0.6 0.27662 0.27661

0.8 0.28694 0.28693

1.0 0.29731 0.29730

2.0 0.35131 0.35130
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4 Results and discussion

The influence of various engineering parameters of an

incompressible viscoelastic Jeffrey’s fluid past vertical

permeable cone with ramped wall temperature and con-

centration is analyzed numerically. Comprehensive results

are obtained and are presented in Tables 1 and 2 and

Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11. The influences of dif-

ferent thermophysical parameters, viz., De, k, n, N, Pr, Sc,
fw, n, are examined. The prescribed default parameter

values are: De = 0.1, k = 0.2, n = 0.5, N = 0.5, Pr = 0.71,

Sc = 0.6, fw = 1.0. Table 1 presents the numerical values

of heat transfer rate are compared with Hossain and Paul

[38] for different values of n for Pr = 0.1, N = 0.5,

(a)

(b)

(c)

Fig. 3 a Influence of De on

Velocity Profiles. b Influence of

De on Temperature Profiles.

c Influence of De on

Concentration Profiles
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fw = 1.0, Sc = 0.6 when De = 0.0 = k (Newtonian case)

and are found to be in excellent agreement. Table 2 pro-

vides the results for the influence of Buoyancy ratio

parameter (N), Schmidt number (Sc), Prandtl number (Pr),

and suction/injection parameter (fw) on skin friction (Cf),

heat transfer rate (Nu) and mass transfer rate (Sh) for dif-

ferent values of n. An increase in N is seen to increase skin

friction, heat transfer rate and mass transfer rate. A sig-

nificant reduction in Cf is observed with increasing Sc. A

slight decrease in Nu is seen with increasing values of Sc

whereas Sh is enhanced. Increasing Sc implies to a

decrease in species mass diffusivity. For Sc\ 1, the spe-

cies diffusion rate exceeds the momentum diffusion rate

and vice versa for Sc[ 1 And for Sc = 1, both diffusion

(a)

(b)

(c)

Fig. 4 a Influence of k on

Velocity Profiles. b Influence of

k on Temperature Profiles.

c Influence of k on

Concentration Profiles
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rates are the same and the momentum and concentration

boundary layer thicknesses are the same in the regime. The

Nu is greater with increasing Pr values and lower with

smaller Pr, as presented in Table 2. But Cf d and Sh are

lowered for an increase in Pr. The parameter Pr indicates

the ratio of momentum diffusion to the thermal diffusion.

For Pr[ 1, momentum diffusion dominates the heat

diffusion and vice versa for Pr\ 1. Higher Pr values

implies to a lower thermal conductivity of the polymer

fluid. As Pr is the only non-dimensional parameter that

categorizes thermofluid properties, Pr should be varies in

order to generalize the solutions of denser fluids such as

water-based solvents and very low-density spray paints

[39]. With greater Pr, velocity reduces and hence skin

(a)

(b)

(c)

Fig. 5 a Influence of n on

Velocity Profiles. b Influence of

n on Temperature Profiles.

c Influence of n on

Concentration Profiles
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friction also decreases, thereby increasing the correspond-

ing momentum boundary layer thickness. If Pr\ 1, then

the thermal diffusion rate compared with momentum dif-

fusion rate will be greater. A lower Prandtl number (Pr =

0.71, i.e., gas) implies that the fluid will possess higher

thermal conductivity (and an associated thicker thermal

boundary layer structure) so that heat can diffuse away

from the fluid to the cone surface faster than for higher

Prandtl number fluid (Pr = 7.0, i.e., liquids associated with

thinner boundary layers). Therefore, lower Prandtl number

fluids will achieve significantly larger temperatures in the

boundary layer. Higher Prandtl number fluids possess

lower thermal conductivities causing less thermal energy to

be diffused from the fluid to the cone surface and resulting

(a)

(b)

(c)

Fig. 6 a Influence of N on

Velocity Profiles. b Influence of

N on Temperature Profiles.

c Influence of N on

Concentration Profiles
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in lower temperatures. The heat transfer rate from the cone

surface to the fluid is therefore greater with larger Prandtl

number and lower with smaller Prandtl number, as shown

in Table 2. Increasing fw is seen to reduce skin friction and

heat transfer rate, whereas mass transfer rate is enhanced.

Figure 3a–c illustrates the impacts of De on velocity

f 0ð Þ, temperature hð Þ and concentration /ð Þ distributions.

Velocity (Fig. 3a) is reduced significantly with an increase

in De values. De arises in connection with higher-order

derivatives in the momentum boundary layer Eq. (13).

Hence, the parameter De expends a significant influence on

(a)

(b)

(c)

Fig. 7 a Influence of fw on

Velocity Profiles. b Influence of

fw on Temperature Profiles.

c Influence of fw on

Concentration Profiles
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shearing characteristics of the polymer flows. From the

definition, De is the ratio of characteristic time to the

timescale of deformation. For a fixed value of the charac-

teristic time, there may be different values of the time scale

of deformation and hence there can be various values for

De in case of the same polymer. For De[ 1.0, elasticity

dominates and for De\ 0.5, viscosity dominates. For high

values of De, the polymers act highly oriented in one

direction, stretched, and the fluid behaves as purely elastic.

However, in case of small De values, the polymer acts as a

simple viscous fluid. Figure 3b, c shows a very slight

increase in temperature and concentration with an increase

(a)

(b)

(c)

Fig. 8 a Influence of n on

Velocity Profiles. b Influence of

n on Temperature Profiles.

c Influence of n on

Concentration Profiles
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in De values. Similar trends were observed by Hayat et al.

[40]. De arises in connection with many higher-order

derivatives in the momentum boundary layer Eq. (13).

Therefore, it is intimately associated with the shearing

characteristic of the polymer flow. In polymer flows, for

higher De values the polymer become highly oriented in

one direction and stretched, and this occurs when the

polymer takes longer to relax in comparison with the

deforming rate of the flow. Further from the cone surface, it

is observed that there is a slight increase in the velocity,

i.e., the flow is accelerated with increasing De. With

greater distance from the solid boundary, the polymer is

assisted in flowing even with higher elastic effects. Clearly

the responses in the near-wall region and far-field region

(a)

(b)

(c)

Fig. 9 a Influence of De on

Skin Friction. b Influence of De

on Local Nusselt number.

c Influence of De on Local

Sherwood number
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are very different. Though De dose not arise in the thermal

boundary layer Eq. (14), there is a strong coupling of this

equation with the momentum equation. The momentum

Eq. (13) strongly couples the momentum field to the tem-

perature field. With greater elastic effects, it is anticipated

that thermal conduction plays a greater role in hear transfer

in the polymer.

Figure 4a–c depicts the effects of the ratio of relaxation

to retardation time, k on velocity f 0ð Þ, temperature hð Þ and
concentration /ð Þ distributions. Clearly, from Fig. 4a we

can observe a significant increase in linear velocity with

greater k values. However, the temperature and concen-

tration as seen Fig. 4b, c, respectively, decrease slightly

with greater k values. The parameter, k, arises in many

(b)

(c)

(a)Fig. 10 a Influence of k on Skin

Friction. b Influence of k on

Local Nusselt number.

c Influence of k on Local

Sherwood number
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terms in the momentum boundary layer Eq. (13). There-

fore, this parameter exerts a tangential influence on the

flow characteristics. Increasing relaxation time increases

the momentum boundary layer whereas decreases both

thermal and mass diffusion. Therefore, the flow of polymer

is considerably accelerated with an increase in relaxation

time (or decrease in retardation time). For greater

relaxation times, the thermal boundary layer thickness is

reduced, whereas with greater relaxation times, the

momentum boundary layer thickness is decreased only

near the cone surface, whereas further away it is enhanced

as the flow is strongly accelerated in this regime.

Figure 5a–c presents the influence of power-law index n

on velocity f 0ð Þ, temperature hð Þ, and concentration /ð Þ

(a)

(b)

(c)

Fig. 11 a Influence of n on Skin

Friction. b Influence of n on

Local Nusselt number.

c Influence of n on Local

Sherwood number
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distributions. It is observed that as n increases, the linear

velocity of the fluid (Fig. 5a) decreases considerably.

Figure 5b presents the responses of n on temperature pro-

files. The temperature profiles are decreased significantly

with an increase in n. Also, the concentration is decreased

slightly (Fig. 5c) with the increasing values of n. The non-

isothermal index relates to the variation in cone surface,

i.e., wall temperature and concentration. For n[ 0, the

wall temperature increases with distance from the leading

edge, and for n\ 0, wall temperature decreases. The wall

is isothermal if n = 0. The non-isothermal index arises in

the primitive wall temperature and concentration of Eq. (8)

and features in numerous terms in Eqs. (13)–(15). As the

wall temperature increases, the relative difference of wall

and fluid temperature increases. Non-isothermal wall index

is clearly an important parameter adjusting the thermal

flow characteristics. Increasing positive non-isothermal

index therefore manifests in a deceleration in boundary

layer flow and a corresponding increase in momentum

(hydrodynamic) boundary layer thickness and a reduction

in thermal boundary layer thickness. Note that only

positive non-isothermal index is considered (the case of

n\ 0, physically represents progressive cooling of the

cone surface from the leading edge and this is not relevant

here).

Figure 6a–c illustrates the effects for velocity f 0ð Þ,
temperature hð Þ, and concentration /ð Þ for various values

of N. An increasing N is seen to found to significantly

enhance the velocity, whereas a significant decrease in both

temperature and concentration is seen to for various values

of N.

Figure 7a–c illustrates the profiles for velocity f 0ð Þ,
temperature hð Þ, and concentration /ð Þ for different values
of fw. Increasing fw strongly decelerates the flow, i.e.,

velocity is reduced. The boundary layer thickness is

reduced and suction causes the boundary layer to adhere

closer to the wall. Temperatures are also decreased, as

observed in Fig. 7b; with increasing values of fw in the

boundary layer regime, there was a strong decrease in

thermal boundary layer thickness. There is a strong

reduction in concentration values with increase in fw val-

ues, as shown in Fig. 7c. As seen in all the graphs, only the

Table 2 Values of Cf, Nu and Sh for various values of N, Pr, Sc, fw and n (De = 0.1, k = 0.2, n = 0.5)

N Sc Pr fw n = 1.0 n = 2.0 n = 3.0

Cf Nu Sh Cf Nu Sh Cf Nu Sh

- 0.2 0.6 1.0 0.8 0.1398 2.5404 1.5371 0.0713 3.5419 2.1318 0.0425 4.5364 2.7249

- 0.1 0.1754 2.5442 1.5388 0.0912 3.5428 2.1321 0.0532 4.5383 2.7256

0.0 0.2109 2.5481 1.5408 0.1113 3.5450 2.1342 0.0655 4.5406 2.7260

0.25 0.2987 2.5580 1.5467 0.1630 3.5468 2.1378 0.0976 4.5408 2.7365

0.5 0.3845 2.5679 1.5533 0.2147 3.5490 2.1452 0.1299 4.5498 2.7515

0.75 0.4681 2.5775 1.5600 0.2661 3.5559 2.1594 0.1621 4.5721 2.7844

0.5 0.6 0.5 0.8 0.5811 1.3365 1.5752 0.3554 1.7932 2.1412 0.2240 2.2783 2.7298

0.71 0.4702 1.8502 1.5617 0.2722 2.5266 2.1346 0.1672 3.2261 2.7290

1.5 0.3118 3.8115 1.5476 0.1704 5.3026 2.1326 0.1023 6.8019 2.7270

3.0 0.2411 7.5486 1.5419 0.1319 10.5588 2.1322 0.0799 13.5703 2.7263

5.0 0.2152 12.5373 1.5395 0.1190 17.5532 2.1298 0.0726 22.5693 2.7260

7.0 0.2051 17.5302 1.5386 0.1140 24.5463 2.1284 0.0697 31.5627 2.7243

0.5 0.6 1.0 0.8 0.3845 2.5679 1.5533 0.2147 3.5450 2.1321 0.1299 4.5383 2.7249

0.9 0.3512 2.7456 1.6594 0.1991 3.7299 2.2444 0.1227 4.7249 2.8385

1.0 0.3220 2.9248 1.7663 0.1855 3.9153 2.3572 0.1162 4.9121 2.9529

1.2 0.2735 3.2862 1.9815 0.1632 4.2862 2.5822 0.1055 5.2872 3.1826

1.3 0.2532 3.4681 2.0896 0.1540 4.4712 2.6937 0.1010 5.4742 3.2966

1.5 0.2189 3.8340 2.3070 0.1382 4.8401 2.9144 0.0934 5.8461 3.5211

0.5 0.25 1.0 0.8 0.5623 2.5987 0.7018 0.3675 3.5624 0.9144 0.2431 4.5890 1.1476

0.78 0.3427 2.5623 2.0027 0.1865 3.5466 2.7669 0.1115 4.5446 3.5408

0.94 0.3183 2.5595 2.4028 0.1709 3.5463 3.3311 0.1015 4.5438 4.2663

1.25 0.2887 2.5565 3.1775 0.1529 3.5450 4.4224 0.0901 4.5407 5.6705

1.75 0.2635 2.5539 4.4258 0.1385 3.5436 6.1782 0.0814 4.5380 7.9305

2.0 0.2557 2.5531 5.0497 0.1343 3.5434 7.0547 0.0789 4.5372 9.0588

 441 Page 16 of 19 Journal of the Brazilian Society of Mechanical Sciences and Engineering  (2018) 40:441 

123



case of wall suction was studied, i.e., fw[ 0. Although

boundary layer separation has not been identified in the

present regime, suction has been shown to delay this effect

in certain viscoelastic cone flow problems. Greater suction

evidently aids in adherence of the momentum boundary

layer to the cone surface which depresses flow momentum

and reduces velocity magnitudes. However, it did not

induce back flow since magnitudes are always positive.

The thickening of the momentum boundary layer simulta-

neously inhibits heat diffusion which leads to a plummet in

temperature, i.e., cooler boundary layers, and this is also of

relevance to optimized thermal processing systems.

Figure 8a–c presents the effects of velocity f 0ð Þ, tem-

perature hð Þ, and concentration /ð Þ for different values of
n. The parameter n also incorporates the local Grashof

number, Grx, and can be seen as a free convection

parameter as discussed in [41]. Clearly, it is observed that

the fluid velocity reduces with increase in values of n. The
location of the flow moves further along the cone surface

from the apex. And hence the buoyancy forces increases as

the momentum diffusion suppress, leading to a decrease in

the flow and a thicker boundary layer structure. Also, it is

seen that the temperature and concentration profiles are

also reduced for increasing values of n. Thus, the fluid is

cooled and the thermal boundary layer thickness is

decreased. As the suction is increased, more warm fluid is

taken away and thus the thermal boundary layer thickness

decreases. The tangential (streamwise) coordinate is an

inverse function of local Grashof number and is therefore

inversely proportional to thermal buoyancy force in the

regime. Therefore, with larger n values, buoyancy force is

progressively reduced which assists in promoting heat

transfer but counteracts the momentum development.

Figure 9a–c illustrates the profiles for De on skin fric-

tion coefficient, heat transfer rate, and mass transfer rate at

the cone surface. The dimensionless skin friction is reduced

for increasing values of De, owing to the increase in elastic

effects which also serve to reduce the boundary layer

thickness as the flow decelerates. Also, the heat transfer

rate and mass transfer rate are reduced substantially with

increasing De values. Therefore, momentum and thermal

and species diffusion inhibit with increasing elasticity

effect. A decrease in heat transfer rate at the wall implies

less heat is convected from the fluid regime to the cone

thereby heating the boundary layer. The mass transfer rate

decreases with increasing De values and furthermore

plummets with further distance from the lower stagnation

point.

Figure 10a–c depicts the response to k, on skin friction

coefficient, heat transfer rate, and mass transfer rate at the

cone surface. A significant increases in the skin friction is

observed at the cone surface for increasing values of k.
Also, a strong elevation in shear stress is observed with

increasing n values. Hence, the flow accelerates strongly

along the cone surface away from the lower stagnation

point. Heat and mass transfer rates also increase substan-

tially with increasing k values. As the relaxation time

increases, i.e., as the retardation time decreases, the poly-

mer flows become faster and result in the acceleration in

boundary layer flow, and heat and species concentration are

diffused.

Figure 11a–c presents the effects of the power-law

exponent, n, on the skin friction coefficient, heat transfer

rate, and mass transfer rate at the cone surface. The skin

friction is decreased with increasing values of n. Con-

versely, the heat transfer rate is increased with increasing

n as shown in Fig. 11b. Likewise, the mass transfer rate is

also increased significantly for n values as shown in

Fig. 11c. With greater wall temperature further from the

leading edge, the relative difference of wall and fluid

temperature is increased. This induces greater heat transfer

from the wall (cone surface) into the boundary layer and

boosts Nusselt number. The elevation in thermal diffusion

counteracts the momentum diffusion which leads to a

depression in surface shear stresses and therefore skin

friction.

5 Conclusions

A non-similar mathematical model has been presented for

buoyancy-driven, laminar convection boundary layer flows

of viscoelastic Jeffrey’s fluid from a vertical permeable

cone with ramped wall temperature and concentration. The

transformed boundary layer conservation equations with

prescribed boundary conditions have been solved using the

finite-difference Keller box technique. A comprehensive

assessment of different thermophysical quantities is dis-

cussed graphically. Excellent convergence and stable char-

acteristics are demonstrated by the Keller box scheme. The

present numerical code is able to solve nonlinear boundary

layer equations very efficiently and shows an excellent

promise in simulating transport phenomena in other non-

Newtonian fluids. It is therefore presently being employed

to study viscoplastic fluids which also represent other

chemical engineering working fluids in curved geometrical

systems.
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