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Abstract

Alarge surface to volume ratio and easily accessible active reaction sites are key attributes for a good
gas sensing material. Herein, we report synthesis, characterisation and humidity sensing properties of
phase pure 420 nm thick low temperature (350 °C) polycrystalline V,Os thin films deposited on
quartz substrate by ultrasonic nebulized spray pyrolysis of aqueous combustion mixture
(UNSPACM). The thin films were characterized by x-ray diffraction, Raman spectroscopy, atomic
force microscope, field emission scanning microscope, transmission electron microscope, UV-visible
spectroscopy and XPS. The highly porous and nanocrystalline characteristic of V,Os thin films
synthesized by this technique provide large surface to volume ratio and easily accessible active reaction
sites making it a prominent material for gas sensing applications. The fabricated humidity sensor
based on V,05 thin films exhibited high sensitivity with good stability and reproducibility at room
temperature. The sensor exhibited high sensitivity of 90.8% at 76% RH with response time of 35-60 s
and recovery time of 7-54 s. We believe this method provides means for large-scale synthesis of V,05
thin films for several gas sensing applications.

1. Introduction

Several oxides of vanadium such as V,0s, VO,, V,03, and VO exist with unique and interesting properties due
to the existence of vanadium in different stable oxidation states (V>" to V). Among them, V,Os, the most
stable oxide, has attracted great interest owing to its layered structural nature, large optical band gap, good
thermal stability, chemical stability and excellent electrochromic and thermoelectric characteristics [1-3]. V,05
isknown to be an n-type [2, 4, 5] semiconducting material. It crystallizes in Pmmn space group of orthorhombic
crystal system having lattice parameters ofa = 11.510,b = 3.563 and ¢ = 4.369 A [6]. The 2D layered structure
consists of layers weakly bound by the electrostatic forces along c axis of unit cell where each unit cell possesses
two formula units [2, 6, 7]. Layers build up from VO5 square pyramidal units sharing edges thereby making
double chains along b-direction [6, 8, 9] Chains are linked at the corners forming octahedrally coordinated VO
with different vanadium-oxygen distances emanating from three distinct oxygens; terminal V-O (1.58 A)
doubly bound oxygen along c-direction, doubly V-O, and triply V-Oj; coordinated (1.77-2.02 A) bridging
oxygen in basal plane and weak V-O (2.79 A) bonds between the layers [6, 7]. The spacing between the layers
provides favorable sites for the intercalation of several species [10] into V,05 making it a favorable material for
numerous applications like gas sensing [ 11, 12], lithium-ion batteries [ 13] and catalysis [ 14]. Different synthesis
techniques like atomic layer deposition [2], spray pyrolysis [15-20], sol-gel [21], spin coating [22], chemical
vapor deposition [3], sputtering [23], pulsed laser deposition [24] and electron beam evaporation [25] are being
employed to synthesize V,Os thin films on different substrates. Generally, V,0s thin films deposited ata
substrate temperatures <300 °C are amorphous [1]. Crystallization temperature as well as thin film properties
like optical band gap have been found to depend on growth method and nature of substrate (amorphous or
crystalline) [1, 26]. Highly porous materials [27] most especially metal oxides [28] in thin film form have been
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found to exhibit high humidity sensitivity owing to large surface to volume ratio [29, 30] and easy tunability of
their optical and electronic properties [31]. Humidity sensors are employed in monitoring and regulating
ambient humidity which plays a key role in our daily lives [27, 32]. They are used in numerous fields such as
agriculture, semiconductor fabrication, food processing, drug manufacture and storage, preservation of
antiques and paintings, cryogenic processes, packaging and regulation of humidity levels in living rooms
[27,33-37]. A semiconducting material possessing large surface to volume ratio coupled with easily accessible
redox reaction sites is desirable for gas sensing application [31, 38]. The 2D layered nature and the spacing
between layers in V,0s provide favorable sites for the intercalation of several species into it, making V,0s an
appealing material for numerous sensing applications.

This work presents synthesis, characterization, and humidity sensing properties of high-quality low
temperature (350 °C) polycrystalline V,Os thin films synthesized by UNSPACM, a simple, large area and cost-
effective deposition technique. The technique besides being cheap, is scalable, compatible, flexible and yields
highly porous films suitable for gas sensing applications due to its enhanced surface to volume ratio. It also
provides easy way to dope any element in any stoichiometry of interest through solution [15] without having the
need for complex equipment and with no vacuum or special substrate requirements. It further provides an
advantage over other reported spray pyrolysis techniques [15, 16, 18-20] by combining solution combustion
synthesis (SCS) and spray pyrolysis methods. The self-propagating elevated temperature reaction characteristic
of SCS aids complete conversion of precursors into products resulting into high quality thin films [39]. Taking
into consideration large area deposition of the films and scalable deposition of V,0s5 thin films through
UNSPACM for industrial applications is less exploited coupled with excellent sensing properties of V,Os, it
becomes useful to investigate humidity sensing properties of low-cost large area V,0s thin films deposited by
this technique. The as-synthesized V,0s5 thin films were used to fabricate humidity sensor and its sensing
properties were studied using an in-house built sensing setup. The V,05 films exhibited enhanced sensitivity,
stability, fast response and recovery times towards humidity at ambient conditions without going for tedious
complex and complicated lithographic designs and with no special substrate requirement.

2. Experimental

2.1. Synthesis

Porous V,0s thin films were deposited on pre-cleaned quartz substrate at 350 °C by UNSPACM. Precursor
solution (aqueous combustion mixture) was made by taking stoichiometric amounts of vanadyl nitrate
(oxidizer) and urea (fuel) dissolved in few ml of distilled water. Vanadyl nitrate was obtained by adding few drops
of concentrated nitric acid in ammonium metavanadate. Measurements were done ensuring maximum
exothermicity whereby the ratio of oxidizer to fuel was one [39]. Reaction scheme leading to the formation of
V,0s5 is as shown below.

The precursor solution was taken into specialized glass setup and nebulized using 2.5 MHz frequency
ultrasonic nebulizer (Mystique Air Sep USA). The schematic of the setup is given elsewhere [40]. N, gas kept ata
flow rate of 1000 sccm was used to carry ultrasonically nebulized mist into the substrate keptat 350 °C. The
droplets pyrolyzed immediately upon reaching the hot substrate. Film deposition was done for 10 min. V,05
forms when droplets reach the hot substrate owing to the high exothermic and self-propagating nature of the
reaction.

2.2. Characterization

Structural analysis of thin films was done using x-ray diffraction X’Pert-PRO PANalytical instrument with
Cu-Ka radiation (1.5418 A) at a scan rate of 2° per minute. Phase formation was further confirmed from Raman
spectra of the thin films measured at room temperature in 50—1100 cm ' range (Horiba JobinYvon HR-Raman-
123 microPL spectrometer at 532 nm wavelength). Morphology and microstructure of thin films was
investigated by Inspect F50 field emission scanning electron microscope and JEOL 2100 F transmission electron
microscope operated at 20 and 200 keV respectively. Surface roughness of the films was measured using non-
contact mode A.P.E Research A100-AFM atomic force microscope. Veeco Dektak 6 M surface profilometer was
used to measure the film thickness. Optical characterization of the thin films was done by Perkin Elmer-Lambda
750 UV-Vis-NIR spectrophotometer. The chemical electronic states of thin films were analyzed by x-ray
photoelectron spectroscopy (XPS) measurements conducted using axis ultra DLD (from Kratos) high resolution
instrument with automatic charge neutralization equipped with MgKa radiation (1253.5 eV). XPS data was
fitted using XPS Peak41 software [41].
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Figure 1. Schematic diagram of an in-house built humidity sensing setup.

2.3. Humidity sensing
Room temperature humidity sensing studies on the films were conducted in a simple in-house built computer-
controlled sensing system (figure 1) comprising of dry gas cylinder, mass flow controllers (MFC 1, MFC 2 and
MEC 3) attached to mass flow regulator, bubbler containing water, solenoid valves (S1 and S2) attached to
solenoid controller, test chamber, sensor holder and data acquisition system. The contacts of the V,05 humidity
sensing device were fabricated by applying a small amount of silver paste on corners of V,05 thin film (figure 1).
The linear nature of current-voltage curves confirmed the ohmic nature of contacts. The humidity sensing setup
has two lines leading to the sample; (i) MFC 1 and S1, and (ii) MFC 2, MFC 3, Bubbler (water) and S2. First line
which leads flow of dry air alone is taken as background. Second line is humid air attained by bubbling dry air
through MFC 3 in to water, and relative humidity was controlled by adjusting the flow of dry air in MFC 2. The
solenoid valves 1 and 2 are coupled through timed solenoid controller, which makes only one line active at
atime.

The relative humidity is controlled by dry air flow through MFC 2 and the time of exposure to the humid air
is controlled by solenoid valve controller. The RH levels were monitored using Generic E_14009384 220 V
Digital Air Humidity Controller. The relative humidity (RH) of 25, 44, 58, 62 and 76% were attained and
maintained at room temperature (25 °C). The change in conductivity of V,Os thin film was measured with a
Keithley 6430 Source Meter SMU instrument at different RH atmospheres. This setup can be adopted for
studying sensing properties of bulk or thin films for volatile organic compounds and other analytes of interest.

3. Results and discussion

3.1. X-ray diffraction

Figure 2(a) shows the XRD pattern of V,Os thin films. The optimized deposition temperature of 350 °C was
deduced after depositing thin films at several substrate temperatures (250 °C—450 °C). Films deposited below
350 °C were found to be amorphous while thin films deposited at substrate temperature > 350 °C were
crystalline. Grain growth was seen to increase with deposition temperature. Thin films were polycrystalline and
preferentially oriented in (001) direction. This was demonstrated by highest intensity peak at 26 value of 20.32°.
All diffraction peaks were indexed to Pmmn space group of orthorhombic V,0s crystal system (JCPDS # 77-
2418) [42]. No any characteristic impurity peaks nor of any other vanadium oxides was observed revealing phase
purity of synthesized V,Os thin films. Average crystallite size, D of thin films was estimated by Scherrer’s
formula [43, 44], givenby D = m where 201is Bragg’s angle, Kis Scherrer’s constant taken in this
case to be 0.9 [44], X represents the wavelength of x-ray radiation used (CuK,, = 1.5418 A), 3is the peak’s full
width at half maximum while w is instrumental broadening recorded for standard silicon sample. Average D
value was determined to be 22 4 0.5 nm. Dislocation density, § expressed as length of dislocation lines per unit
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Figure 2. (a) x-ray diffraction pattern and (b) room temperature Raman spectra of V,Os thin films.

Table 1. Raman active modes for as-deposited V,0s thin films.

Symmetry
[6,46,47] Wavenumber (cm™")
This

Assignment Ref[6] Ref[46] Ref[47] work
T, Ag 98 101 98 102
T,R, Bsg, By 142 145 145 145
ToR, By, 194 198 194 197
S(V=0)b. By, Bsg 281 284 281 284
§(V5—O)b Aq 300 305 300 304
S(V=0)b. Ag 403 406 405 404
S(V—O-V))b. A 476 484 470 482
V(V5=O)s. Aq 526 531 520 528
v(V-0-V)s. Bag Bsg 698 704 694 701
V(V=0)s. Aq 992 996 992 995

Agmode and 6 modes of B4, B3 symmetry are not observed.

volume of crystal was calculated from the relation 6 = # [20,45] where D is crystallite size and its value was
foundas § = 2.06 x 107 lines/nm”. This small dislocation density confirms good crystallinity of the
synthesized V,O5 thin films [20]. Achievement of high crystalline films at such a low temperature (350 °C) can
be attributed to the exothermic nature of the combustion reaction where the local temperature can be higher.

However, the high temperature exposure lasts for a very short time avoiding crystalline growth, thereby
resulting in high surface area. Instantaneous evolution of gases not only results in porous microstructure but
also quenches the product thereby preventing grain growth.

3.2. Raman spectroscopy

Phase formation of the thin films was further confirmed from Raman spectroscopic measurements. Figure 2(b)
shows Raman spectra of V,0s5 thin films recorded at room temperature. The Raman spectra of the films featured
ten peaks at wavenumbers 102, 145, 197, 284, 304, 404, 482, 528,701 and 995 cm ™' which were consistent with
wavenumber values reported for crystalline V,05 [6, 17, 46]. The peaks were assigned to different bending and
stretching vibrational modes of V,Os as given in table 1.

3.3.Morphology and microstructure

Figures 3(a) and (b) show the 2D and 3D AFM images of V,05 thin films deposited on quartz substrate at 350 °C.
The films had roughness value (rms) 0of 238 4+ 9 nm. The thin films were 420 + 10 nm thick as determined by
Dektak profilometer measurements. The low and high-magnification SEM images of V,0Os5 thin films deposited
by UNSPACM technique are presented in figures 3(c) and (d) respectively. They reveal highly porous nature of
the thin films, a suitable property for gas sensing applications [3, 27]. The films had average particle size of

296 + 6 nm measured using image-]J software [48]. The TEM image of V,05 nanoparticles is presented in
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Figure 3. (a) 2D and (b) 3D AFM images, (c) low magnification FESEM image and (d) high magnification FESEM image of V,05 thin
films.

Figure 4. (a) TEM image of synthesized V,Os thin films, (b) Selected area electron diffraction pattern, (c) HRTEM image and (d) EDS
spectrum of the sample.

figure 4(a). The selected area electron diffraction (SAED) pattern given in figure 4(b) reveals polycrystalline
nature of V,05 thin films. The lattice spacings at 0.433, 0.401, 0.341, 0.261, 0.204, 0.191 and 0.178 nm obtained
from selected SAED pattern correspond to d-spacings of (001), (101), (110), (310), (202), (600) and (020) crystal
planes respectively proving the polycrystalline characteristic of thin films.

The high-resolution transmission electron microscope image shown in figure 4(c) demonstrates 0.433 nm
lattice spacing corresponding to (001) crystal plane indicating preferential orientation of thin films in (001)
direction. These observations agree with XRD planes of orthorhombic V,0s, space group Pmmn shown in
figure 2(a). The EDS spectrum is shown in figure 4(d); it confirms the presence of vanadium (V) and oxygen (O)
in the sample.

The existence of silicon (Si), carbon (C) and copper (Cu) is due to substrate and carbon-coated copper grids
used for TEM analysis.
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Figure 5. (a) Diffuse reflectance and (b) Tauc plot for synthesized V,Os thin films.

. 140 . =
o O1s — Wide o 01
(a) S120} (b)Zsl ° ¢ vap,,
= X
% 100 %
)
:é: 80 ‘g 4t ¢ ﬁﬁ\e::vnsity
o] (o] t— V2p,,
o 60 o v2p,,
! 22 2
c 20t c
S 2
£ 0 £ ok <
1000 800 600 400 200 O 535 530 525 520 515 510
Binding energy (eV) Binding energy (eV)
Figure 6. XPS; (a) Survey spectrum and (b) O1s and V2p region for V,0s thin films.

3.4. Optical

Figure 5(a) shows the diffuse reflectance (DRS) of V,Os thin films recorded at 200-1200 nm of wavelength.

Kubelka-Munk function, KM was used to convert DRS into absorption spectra [49, 50]. KM at any wavelength is
(1 -R)?*

expressed as F(R) = n = % where R is reflectance of the films relative to reference material

(Reample/ Reeference)> 0t is absorption coefficient while S is scattering coefficient. The absorption band edge
observed ataround 560 nm (figure 5(a)) corresponds to the band gap of V,0s. The band gap (optical) of V,05
thin films was estimated to be 2.22 eV from the plot of (athv)? versus hv (direct band gap) [51, 52]; then
extrapolating linear section of the curve to reach horizontal axis as presented in figure 5(b) (Tauc plot).

This value agrees with reported band gap values for V,Os thin films [1].

3.5. X-ray photoelectron spectroscopy

Figure 6(a) presents survey spectrum of the thin films from which peaks corresponding to O1s, V2p; , and
V2p, s, core-level spectra were identified. The adventitious Cls peak present at binding energy (BE) of 284.8 eV
was taken as areference. Ols and V2p peaks were then calibrated based on this value.

The background was subtracted by applying Shirley background function (figure 6(b)). V2ps s, peak
occurred at BE 0of 517.6 eV with FWHM 0f 0.9 eV while V2p, ,, peak appeared at BE of 524.9 eV with FWHM of
2.3 eV. These peak positions together with the difference in energy between the V2p; ,, and V2p; ,, peak values
which is 7.3 eV are characteristic of V> oxidation state [2, 53, 54]. The absence of any other oxidation state in
the XPS spectra of the sample further confirms the high quality of V,05 thin films. The O1s peak appearing at BE
0f530.3 eV with FWHM of 1.1 eV is attributed to lattice oxygen while O1s peak occurring at BE 0f 531.8 eV with
FWHM of 1.5 eV is ascribed to atmospheric oxygen present due to CO, or H,O [55, 56].
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Figure 7. (a) Room temperature current-voltage characteristics of the sensor at different static relative humidity atmospheres, (b)
room temperature current-time response curves of the sensor at various RH under 2 V bias voltage, (c) variation of current with
relative humidity and (d) sensitivity versus relative humidity, (e) experimental and fitted rise and fall curves for V,0Os thin films.

3.6. Sensing

The humidity sensing properties of V,Os thin films were studied by fabricating a two-probe device which was
introduced to various relative humidity (RH) environments achieved by mixing dry air with humid air obtained
by bubbling dry air through water at a controlled flow rate. The schematic of humidity sensing set up used is
given in figure 1. Our method provides an easy way of attaining and maintaining various relative humidity
environments thus providing better room for reproducibility of the results. Figure 7(a) shows room temperature
current-voltage curves of V,0s based humidity sensor response under different RH environments ranging from
dry air to high humid atmosphere (76% RH). The curves are linear proving ohmic characteristic of the contacts.
Itis also clear from current-voltage curves that current of V,05 humidity sensor increases with increase in
relative humidity which is consistent with reports for n-type semiconducting humidity sensors [32].

Further testing was conducted which gave fundamental results on important parameters which characterize
sensing device notably sensitivity, response time, recovery time and reproducibility. Figure 7(b) gives device
response on exposure to different humidity environments ranging from dry air (5% RH) to various higher RH
environments of 25, 44, 58, 62 and 76% at 25 °C. Upon exposure of the device to moist air of 25% RH from dry
air (5% RH), current increased drastically and stabilized at a value higher than that exhibited by dry air.
Interestingly, on switching off the device back to dry air, current sharply decreased and stabilised at baseline
current value of dry air. This quick response and recovery were repeating for several cycles of switching the
device from dry air to moist air and vice versa showing greater reproducibility and stability of the sensor; only
few representative cycles are given in figure 7(b) to avoid clutter. A similar response trend with enhanced current
was noted when the device was subjected to much higher humid air of 44, 58, 62 and 76% RH. The current
increased with increase in RH as given in figure 7(c). We tested performance of the device after four months and
results were repeating, which further confirms its greater stability and reproducibility.

Conductivity of semiconductor device sensors is dependent upon the humidity levels the sensor is subjected
to; it can be electronic or protonic [27, 32]. Water adsorption in V,Os is considered as an intercalation
phenomenon to form V,05.nH,0 due to its layered structural nature [1, 3]. On exposure to low humidity
atmospheres, less quantity of water molecules get trapped into the layers. They are too far apart for H* to move
freely between immobile chemisorbed and first physisorbed water layers. Electron hoping thus prevails
characterised by low sensor conductivity [32]. At high humidity levels large quantity of water molecules gets
intercalated, protons freely move at higher-level physisorbed water layers according to Grotthuss mechanism
[32, 57] and protonic conductivity prevails over electronic one. The formation of more physisorbed water layers
at higher humidity enhances diffusion of protons through array of hydrogen-bonded water molecules which
leads to increased protonic conductivity [58]. The high conductivity at higher humid environments is due
electrons donated by the more physisorbed water molecules onto n-type V,Os thereby pushing Femi level closer
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Table 2. Comparison of the performance of our device with different oxide-

based humidity sensors.
Response Recovery Sensitivity
Sensing material time (s) time (s) (at% RH)
SnO, nanowires [62] 20-170 20-60 32 (at 85)
ZnO thick films [59] 89 175 0.61 (at 80)
SnO,/PANI compo- 26 30 10 (at95)
site [60]
MoO; nanorods [61] 118 5 229
(at97.3)
ZnO nanofeathers [65] 40-70 80-150 229 (at97)
VO,(M) nanostruc- 5-8 2-3 50 (at97)
tructures [64]
V.05 thin films [2] 2-3 0.5-1 12 (at95)
V,0s5 nanotubes [3] 8-12 20-25 90 (at97.2)
V,05 nanosheets [29] 240 300 43 (at97.3)
V.05 thin films 35-60 7-54 90.8 (at 76)
(present work)

to the conduction band thereby enhancing conductivity of the sensor with increasing RH [2]. The sensitivity of

IOO(RE;RA) [29,59-61] where Ry; is resistance of sensor at

the device was determined from the relation S(%) =
different RH and Ry is resistance of sensor in dry air. Sensitivity was found to be linearly dependent on RH as
given in figure 7(d). The V,05 humidity sensor exhibited maximum sensitivity of 90.8% at 76% RH, which is
better than that previously reported [2, 29]. Response time and recovery time (defined as time required to reach
90% of final equilibrium value) [62] were determined by fitting one cycle of RH response curves (figure 7(e)) for
rise and fall rate constants using first order differential equations expressed as I(t)sie = Idryair + ae"/7 and
I(Oan = Laryair + Be~*/T) respectively [63] where and 3 are scaling constants, T is time constant, t is time for
ON or OFF cycles and L4y 4ir is sensor current in dry air. The response time and recovery time were determined
to be 35-60 s and 7-54 s respectively. We have compared the performance of our device with that of previously
reported oxide-based humidity sensors in table 2 [2, 3, 29, 59-62, 64, 65]. Our device exhibits high sensitivity
(90.8%) at relatively low RH (76%) which signifies better humidity sensing performance than that of V,Os thin
films/nanosheets [2, 29] and other previously reported oxide based humidity sensors [59, 60, 62, 64]. The
response/recovery times of our device are also faster than those of other oxide-based humidity sensors reported
[29,59,61,62,65].

This deposition technique provides a simple and cost-effective scalable way of synthesizing V,05 thin films
for various sensing applications. The films obtained were highly porous and nanocrystalline in nature, which
provides large surface to volume ratio and easily accessible active sites making this a prominent deposition
technique for various gas sensing applications. Gas sensing set up described in this work can easily be adopted for
sensing various volatile organic compounds, by simply keeping analyte of interest in the bubbler.

4, Conclusion

We have synthesized and comprehensively characterized low temperature (350 °C) crystalline V,Os thin films on
quartz substrate by simple and cost-effective deposition technique; ultrasonic nebulized spray pyrolysis of aqueous
combustion mixture. The thin films were characterized by XRD, Raman spectroscopy, UV-Visible spectroscopy,
scanning electron microscope and transmission electron microscope. Morphological investigation revealed porous
and nanocrystalline nature of V,Os thin films, a suitable phenomenon for gas sensing performance due to their
enhanced surface to volume ratio. In-house built setup was used to study humidity sensing properties of thin films.
The fabricated humidity sensor based on the as-synthesized V,05 thin films demonstrated excellent humidity
sensing properties. It exhibited fast response and recovery time of 35-60 s and 7-54 s respectively and high
sensitivity of 90.8% at 76% RH. These results exhibit high performance of V,0s thin films opening avenues for
large-scale preparation of V,O5 thin films for several sensing applications.
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