Hindawi Publishing Corporation
Advances in Multimedia

Volume 2012, Article ID 109619, 18 pages
doi:10.1155/2012/109619

Research Article

Enhancing Scalability in On-Demand Video Streaming Services

for P2P Systems

R. Arockia Xavier Annie,' P. Yogesh,? and A. Kannan?

I Department of Computer Science and Engineering, College of Engineering, Anna University, Chennai 600025, India
2 Department of Information Science and Technology, College of Engineering, Anna University, Chennai 600025, India

Correspondence should be addressed to R. Arockia Xavier Annie, annie@annauniv.edu

Received 27 March 2012; Revised 7 June 2012; Accepted 28 June 2012
Academic Editor: Martin Reisslein

Copyright © 2012 R. Arockia Xavier Annie et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Recently, many video applications like video telephony, video conferencing, Video-on-Demand (VoD), and so forth have produced
heterogeneous consumers in the Internet. In such a scenario, media servers play vital role when a large number of concurrent
requests are sent by heterogeneous users. Moreover, the server and distributed client systems participating in the Internet
communication have to provide suitable resources to heterogeneous users to meet their requirements satisfactorily. The challenges
in providing suitable resources are to analyze the user service pattern, bandwidth and buffer availability, nature of applications
used, and Quality of Service (QoS) requirements for the heterogeneous users. Therefore, it is necessary to provide suitable
techniques to handle these challenges. In this paper, we propose a framework for peer-to-peer- (P2P-) based VoD service in order
to provide effective video streaming. It consists of four functional modules, namely, Quality Preserving Multivariate Video Model
(QPMVM) for efficient server management, tracker for efficient peer management, heuristic-based content distribution, and light
weight incentivized sharing mechanism. The first two of these modules are confined to a single entity of the framework while the
other two are distributed across entities. Experimental results show that the proposed framework avoids overloading the server,
increases the number of clients served, and does not compromise on QoS, irrespective of the fact that the expected framework is

slightly reduced.

1. Introduction

Today, Internet faces proliferation of social network groups
that use advanced technology to transfer large commercial
data such as image, audio, and video. This trend has led to
the popular websites such as YouTube, Flickr, and Joost. As a
result, the number of user requests for various video contents
through the Internet has grown exponentially every year [1].

Even with reduction in cost on storage and connectivity,
the Internet still faces problem in providing quality video
to all its customers. Video server faces scalability problem
to a large extent with millions of users added to the
community every year. Therefore, serving heterogeneous
clients efficiently is still an unsolved problem at the servers
[2].

Video-on-Demand (VoD) is one such application that
has large viewership. It is different from video live streaming.

In live video streaming systems, nodes request for data
around a particular playback time [3], with ultimately no
interactive request such as Fast-Forward (FF) or Back-Ward
(BW), and hence become more or less like the broadcast
service which is trivial. As number of users scale up, it is
necessary to increase the buffer size. This helps to provide
a shared frame so that the needed frame could be retrieved
from among those peers. There are dedicated servers for
different live streaming subjects that handle heterogeneous
client groups by sending different streams satisfying the
user’s bit rate pattern [4]. Our work handles live streaming
and goes a step further to handle applications such as e-
learning and VoD with interactivity.

Emerging advancement in distributed systems such as
peer-to-peer (P2P) systems with new challenges is becoming
more complex. This is due to the challenges in (i) dealing
with large scale systems, (ii) achieving real-time VCR (Video

Cassette Recorder) interactivity more effectively, and (iii)
provision of video quality with less resources in distributed
settings [5-7]. Solutions towards all the previously men-
tioned challenges lie in deploying appropriate systems in
integration with (Quality of Service) QoS supportive system,
resource management algorithms, protocols, and approaches
in design. In this work, we provide a new solution by
combining winning factors such as optimal multiversion
and multilayer adaptive streaming [8] video server for the
distributive sharing P2P clients and a proxy kind of tracker to
reduce the load at the sever that manages peers. We compared
this proposed work with existing P2P Gnutella and client
server systems with relevant QoS and resource management
techniques. Performance improvements for two important
resources namely, quality and time towards the interactivity
and scalability factors have been proved to be attractive with
our proposed design. Moreover, latency is greatly reduced in
our work compared with the existing works.

A typical video streaming system, as described in [1, 2],
requires three major components: (1) a media-stream server
that stores and retrieves video based on the available user
bandwidth, (2) an intended proxy server called tracker which
tracks the video content in the P2P systems, and (3) the
designated heterogeneous P2P client group.

Currently, media servers use multicast streaming and
serve the same video through multiple channels to satisfy
heterogeneous end users. Here, the encoding rate differs
based on the bit rates, and hence it is adaptive streaming
[9]. Encoding is performed because the server needs different
bit rates for the same video to be sent across for varied
services like mobile phones, PCs, set-top boxes, ipads, and
so forth; this creates additional workload at the server. This
is overcome in [10] which uses same multicast group to serve
variety of users by dropping few frames for lower bit rate
users. This work has been later extended by yu et al. [10] to
overcome the defect of reduction in bit rate with an average
increase in frame rate of about 30% for better video quality.

However, close observation and analysis of yu et al’s [10]
work made us to think of combining other solutions for
VoD provided through a proxy server called as tracker in this
proposed work.

In order to improve the video quality even for a
lesser advantageous end user (namely, users with lower
bandwidth speed/bit rates), we propose a new solution that
combines the features of all the above solutions. Hence, we
achieved the user-perceived video, without quality deterrent
from media server by proposing a new Quality Preserving
Multivariate Video Model (QPMVM) for heterogeneous peer
group. The term “multivariate” in this work means usage of
either multilayered video streams or multiversioned video
streamsor integrated video streams for optimal solution
tosatisfy heterogeneous users.

Multiversion systems encode a video sequence into
several independent streams at different rates [8, 11]. This
requires dropping of frames of the higher bit rates to satisfy
the lower bit rates. Moreover it helps to store multiple
versions of the same video file with different bit rate as
per the user requirement. It also streams the particular bit
rate versioned file of the same video to requester. Though it

Advances in Multimedia

increases the storage cost, the quality provided is improved,
and streaming latency is reduced. During transmission, the
server switches among different versions to achieve the
desired sending rate. Here, we have used multiple versions
for providing better quality by storing minimal number of
versions, which is as low as three versions permanently for
the uploaded video by a client.

Multilayer systems encode a video sequence into several
nonoverlapped, dependent streams [12, 13]. Multilayer
systems work in par with the Scalable Video Encoding
(SVC) with the difference that here the server provides
input to the dropping of layers of frames on the fly to
satisfy the requestor’s bit rate. This is necessary because the
contributions of Fine Grained (FG) layers to the overall video
quality are different [14] which are handled by the server
using the transcoder module of QPMVM.

Combining the two streaming pattern is termed as hybrid
stream. Hybrid streams are generated when the multiversion
streams switch to multilayered one for the required bit
rate by dropping frame from the current multiversion
stream. Multiversion cannot be combined with Scalable
Video Coding since it contains multiple base layers and is
more suitable to scale in three-dimension space [14].

When the video quality is conserved to certain extent, we
move one step further for reducing the delay and latency.
This is performed by sharing of peers and henceforth
provides VCR interactivity in VoD application that is more
desirable with this proposed model. The tasks concentrated
within the peer groups include (i) apportioning cached
content, (ii) value-based content placement at the peer cache
for sharing, (iii) peer energizer (a sharing initiator), and
(iv) heuristic-based scheduler at the tracker system for late
joiners of the multicast group and interactive requestors. All
these multifaceted functionalities have been combined, to
scoop up the VoD system as per the user’s satisfactory notion
on quality of the perceived video [15].

The media server proposed in this work manages the
video requests from heterogeneous clients and is also respon-
sible for handling the scalability factors affecting the server.

The tracker present in this framework is situated at the
edge router of the peer groups connecting to the backbone
network. The tracker acts as message transmitter across
the peers and services media streams that the peers have
requested to and from the media server. The management of
the peers, like the peer request scheduling, managing entry
and exit of each peers, Look-Up-Table (LUT) management
using Ant-Based optimized routing for the peer groups are
handled at the tracker rather than by the server [16, 17].
The combination of the QPMVM at server and the tracker
enhances the system as a whole and hence reduces the latency
during scalability.

This work provides an optimal solution for video
streaming by finding multiple views of the problem in
terms of server, tracker, and peer clients. There are many
significant contributions that are made in this work. First,
the provision of QPMVM at the server reduces the load and
improves the video quality. Second, the tracker proposed in
this framework increases the streaming ability within the
peer groups. Third, the peers are motivated to share the

Advances in Multimedia

distributed video contents. Finally, the latency is reduced for
normal playback as well as VCR operations.

The remainder of this paper is organized as follows:
we discuss the related work in Section 2; our proposed
video streaming system architecture is given in Section 3; the
performance metrics used in the evaluation of the system
are presented in Section 4; we discuss our results obtained
and analyse them in Section 5. Finally in Section 6, we
summarize our findings and suggest possible directions for
future investigations.

2. Related Research

The Video-on-Demand (VoD) as portrayed in large number
of systems involves the server component, the proxy or con-
tent distribution server along with huge number of clients
who are end users of the VoD systems [16, 18, 19]. At the
server side, the existing literature has extensively discussed
numerous solutions to optimize the storage/retrieval of video
files [8, 10, 20]. Any server, which maintains video files in
its database with a single version pertaining to a particular
bit rate, cannot serve multiple heterogeneous clients with
ease and without degrading the quality. In order to serve
these heterogeneous clients, the server adopts two methods
according to the literature available in this area. Each method
has its own advantages and disadvantages. For instance,
the multiversioning avoids the cost of encoding/decoding
during video streaming with the help of independent stored
video file. But this produces frequent switches among stored
versions that result in low reference locality and hence incur
additional I/O cost. Furthermore, storing multiple versions
requires a lot of storage when the number of requested video
for different content is tremendously large during concurrent
user access.

In multilayered system, each multilayer video can be
stored as Coarse Grained (CG), Fine Grained (FG), or a
combination of both. Here, the base layer is the most basic
version of the video stored, and the subsequent layers are
built on top of them. Hence, it is not necessary to waste
storage for storing maximum number of different versions
of the same video. Instead, only three different layers are
used in our work. This, however, has indirect impact on
time as the transcoding is performed in real time based on
the current bit rate pattern of the peers [14]. Moreover,
adaptation is implemented by introducing an extra layer. If
there is any problem in transmitting the base layer itself, then
the end video’s quality is reduced drastically. The hierarchical
encoding is more suitable for multicast to heterogeneous
clients while the switching streams can be used in both
unicast and multicast [20]. But when a video is played at
client side, the user may wish to fast forward (FF), rewind
(RW), and so forth. This requires the video to be played at
an increased speed. In short, the client needs an interactive
server, which responds immediately as per the client request.
This becomes quite difficult, if the server has a single large
file, because, to play the video at an increased speed, the
frames must be identified and transcoded at run time [10].
It becomes easier when the server maintains a special copy

of video, which gives the client a fast version of the same
video. In this work, we achieve higher performance using
the proposed Quality Preserving Multivariate Video Model
(QPMVM).

Today, as the cost of storage has come down, we effec-
tively constructed the server by combining both multiversion
as well as multilayered approaches and tested the system
for heterogeneous P2P group. P2P client pattern is the
most accepted among the many VoD system solutions.
P2P media streaming is becoming popular rapidly for the
reason that the streaming service of client/server model
takes up too much server resource and could not meet
the increasing demand of scalability [7]. CoopNet, PALS,
PROP, Toast, and Zebroid provide on-demand streaming
using P2P networks. Each of these systems seeks to support
an infrastructure-based system with P2P networks and thus
achieves scalability to some extent [20, 21]. However, all
these existing solutions are not sufficient to provide effective
services in the current scenario. Therefore, it is necessary
to provide new store and retrieval techniques to meet the
current demands. In this work, we achieve scalability through
multiversions. Moreover, this work has been implemented
in P2P technology and shows the advantages of serving
on a large scale that has already been introduced to the
media streaming systems. VCR (Video Cassette Recorder)
functionality is one of the most used features in real-world
streaming applications [22] which operates for FF, BW, seek,
pause, and so forth. Also, the problem of scalability to a large
user population in media streaming systems is only mitigated
to a certain degree in the past but not solved.

Optimal methods for video file storage are becoming
increasingly important owing to the rising numbers of video
server populations. Adaptations that optimize playable frame
rate by storing minimal number of configurations require
intensive computation through loading of processor [23, 24].
Storing all possible configurations for a single video file for
all the bit rates a client can have during internet connectivity
requires tremendous amount of storage. Only when the
memory used is sparse and the processor load is reduced
[25], video servers would find it appealing. To meet these
apparently conflicting demands, this work proposes a system
for optimizing video server storage.

3. Video Streaming System Architecture

The video streaming system proposed in the paper possesses
the media server which services the client requests for the
videos stored in its database. A proxy, called as tracker in this
work, lies between the media server and the P2P clients. The
proxy is implemented in one of the peer nodes or at the edge
router of the network connecting the media server and the
P2P client systems. Here, it is implemented at the edge router
of the system so that it conveniently tracks the client requests
that passes through it, as well as the network condition at
the peer end. Figures 1(a) and 1(b) show the high-level setup
of the video streaming system architecture proposed in this
paper which comprises of all the three main components of

P!
=AU
!

P2P client group

Media server

Tracker node

<> Data/control
< Data

(a)

Peer client

Client side processor]

Cache manager

Media server

Tracker

QPMVM streame

Stream onlooker| —|
Peer handler

Tracker analyzer P2P client helper Peer manager

Server helper

Video database Cached video

| I

—— Data/control

FIGURE 1: (a) System architecture; (b) High level system.

the VoD system, namely, the media server, tracker, and the
peer clients.

3.1. Media Server. A video server, which is connected to the
Internet, may have diverse client populations and hence is
very difficult for the server to respond to multiple clients with
varied user profiles. The situation of multiple video requests
by heterogeneous clients is handled in Napster server and few
other VoD servers by having multiple versioned streaming
systems [26-28]. But the same can be achieved using
multilayered approach as well. In this approach, though the
same stream is sent to both the users, it requires dropping
of some frames. In such a scenario, few very important
frames such as “I” and “P” frames might also be dropped
depending on the overflow of the buffer at client end and
the transmission speed at the server/client network. In such a
case, the quality at the user end would not be commendable.

By considering the advantages of both the systems
proposed by Yu et al. [10] and Cheng-Hsin and Mohamed
[8], we propose a hybrid approach in this paper for providing
effective VoD using multiversioning with multilayering. In
addition, we propose a new proxy called tracker deployed
at the edge routers of each client networks in order to
reduce the delay in searching and forwarding from the server.
From the experiment conducted with this new model, it
has been observed that this multiversioned system provides
better quality than the multilayered system [12, 29]. On one
hand, when a channel experiences network congestion, a
multiversioned system which has a precomputed version file,
sends the correct frame based on the bandwidth availability

Advances in Multimedia

at that time. On the other hand, during such congestion,
the only possible option for the multilayered system is to
drop frame(s) irrespective of its priority. Therefore, in this
research work, the features of both multiversioning and
multilayering are integrated, and a tracker with local user
profile database and decision-making capability has been
proposed.

3.1.1. Quality Preserving Multivariate Video Model
(QPMVM). As mentioned earlier both multiversioning
and multilayering systems have both advantages as well
as disadvantages. The choice depends on various factors
that arise from the exact user profile details known to the
server at the start of a streaming request. Moreover, the
packet receiving details from the network side which are
received at the server via probing the network to know
about the congestion and slow delivery helps to analyze the
reasons for congestion and delay. This challenge is addressed
in this work by introducing the QPMVM at the server
as one of the modules in order to manage the server by
providing consistent throughput without overloading the
server even during peak number of requests. Figure 2 shows
the architecture of the proposed QPMVM model at the
server. We do not make any assumption about the format of
layered video. Any scalable or layered video coding scheme
can be incorporated into our framework. This can work on
lower-end codec such as MPEG-2, MPEG-4, MPEG-21 as
well as higher end codec such as MPEG-4 Part 10/H.264 AVC
(Advanced Video Coding). As H.264 SVC (Scalable Video
Coding) is delay intense with respect to computational
complexity than the other codec forms [30], this work is
better off with H.264 AVC with single-base layer. Hence, in
this work, we have considered all MPEG video formats with
the intent that most of the videos used in the Internet fall
into this category. QPMVM has the advantage of identifying
through the seed estimator, a way of holding lesser number
of multiple versions for a video which is encoded by the
transcoder. From the stored multiversions, the multilayering
is done on the fly through the Decider module.

Generally, whenever the server detects any network
change, it drops a layer of frames, in order to achieve the
desired bit rate for the given video. Dropping “B” frames
allows protection of more important “I” and “P” frames for
the same amount of bandwidth [29, 31]. The data size for
the three frames is known to be I > P > B. Also, dropping “B”
frames sparsely does not affect much of the user’s perception
of the video [32-34]. But dropping multiple layers of frames,
without keeping in mind the frame priorities with respect
to its Group of Picture’s (GOP) can affect the received video
quality at the client to a great extent. In such a scenario, due
to bit error and packets loss it is not possible for the receiver
to recover all the frames. For example, the first B frame can
be recovered only if the first I frame and the first P frame
are successfully recovered. The loss of P frame will cause
subsequent P and B frames to be unrecoverable, affecting
the quality of the video. To increase the expected number
of frames successfully reconstructed, the server can adapt to
the network condition by changing the amount of redundant

Advances in Multimedia

Client
Upload request

User interface

Video frames

Client side
processor

Streamed video

Download request

N

Cache Streaming video

Media server

QPMVM

—><

Video information analyzer

Client video file + metadata
Separate seed configuration +

Seed estimator | video file

Transcoder

Frame splitter and recognizer

Frames I, B, P + sted
values ‘ Version generator

Multiple versions of same video

Seek indexer

EE

Video
database

Altered video file stream

Analyzer

Decision

manager

FiGure 2: Media Server.

information sent to protect the video against different packet
loss rates [4, 7, 9]. The system must alter the bit pattern in the
frames’ Group of Pictures (GOP) to improve the efficiency.

This is because of the fact that when a video is being
played at an increased speed, “n” number of frames may
be dropped per GOP (of “m” frames). When receiving the
video file, the receiver will expect “m” frames when actually
only “m — n” frames are received. This reduction in frames
must be set in the GOP’s bit pattern so that the receiver
expects only “m — n” frames. This is done by supplying the
end user with Forward Error Correction (FEC) code as done
in Jiangchuan [13] within the MPEG frame header. Block
diagram of QPMVM subsystem and the important activities
of the subsystem are shown in Figure 4.

The QPMVM system in media server can be logically
divided into two components, namely, upload and download
video streaming. The uploading component uses Transmis-
sion Control Protocol (TCP), and the video streaming is per-
formed using Real Time Protocol (RTP). When the system is
executing in an upload scenario, it takes a video as input from
the client side. As video sent from the server is implemented
using RTP, it gives added advantage in determining video
streaming metrics that are more appropriate to the real
world scenario that combine Real Time Streaming Protocol
(RTSP) as well as Real Time Control Protocols (RTCP) in a
connection-oriented network. Next, based on the client side’s
profile which includes details such as IP address, bandwidth,
and user preference category (i.e., high priority user, medium

priority user, low and very low priority), the server decides
its video streaming method to be either the layered approach
or the versioned approach for a video request to a particular
client based on the user profile and details from the network.
Once these details are available at the server side, the video is
analysed to decide on the seed configuration of the video that
is to be streamed. Once the seed configurations are identified,
based on the information gathered from the video file the
versions are generated. The process of generating versions
involves identifying the frames based on the information
gathered. The versions are then stored in the database.
When the QPMVM system is executing in a video
streaming scenario, multiple components work at the same
time. First of all, the client request for a particular file
is received at the server which triggers a check for the
availability of the file in the database. Further, a check for
a compatible version is done. Once both the checks get
completed, the users’ connection profiles are now taken into
account, and if an exact version has not been found amongst
the existing versions, then transcoding is done at run time
and the video is streamed across and played on the client side.
Throughout the entire process of streaming the video
file, the network conditions are monitored, and when a
change in the network condition is detected, communication
with the client is activated to check how many frames
of the video have already been played at the client. This
frame information coupled with the change in the network
bandwidth information is used to identify which part of the

video must be played and in which version. Basically our
pattern of evolving around user profile data does not mean
that very often communication through message transfer is
made to acquire knowledge of the current situation, rather
only when the network causes reduction in data flow do
we make the server change its stand from multiversion to
multilayering. This is beneficial immensely as the time for
deciding is reduced.

In other works, the communication with the client to
know about the details of frames played (current situation)
is not done periodically rather only when the situation
demands. This obviously helps during client VCR request
pattern where, for a medium or a lower prioritized client
the layered versions are sent for that specific VCR requests.
The following subsections explain the different modules in
the QPMVM system with their implementation details.

QPMVM Algorithm:

Request Type I

Input: Request to upload a video into the server
database from a client

Output: Server stores the uploaded video into the
database

Process:

(1) Video information extracted from the uploaded
video

(2) Seed configurations identifier to create versions
(3) Frames split and stored

Request Type II

Input: Request a video to the server by a client
Output: Client receives the video

Process:

(1) Based on client network priority

(2a) If same video version is present in database it is
retrieved and sent to client

Else

(2b) Multilayered video is sent to the client

Request Type III

Input: Video VCR request to the server by a client
Output: client receives the video part

Process:

(1) Based on client network priority

(2) Appropriate video part with required version is

layered to client.

The QPMVM is a major module in the server side
which extracts the video metadata, splits frames, creates
versions, and successfully stores it as indexed version in
the video database. It uses the aspects like bit rate control,
buffer control, and frame positioning control methods from
the javax.media classes of Java Media Framework (JMF). It
encompasses three modules:

Advances in Multimedia

(i) Video Information Analyser,
(ii) Seed Estimator,

(iii) Transcoder.

(i) Video Information Analyser. It receives the video file
from the client and analyses the metadata to separate useful
information like Group of Pictures (GOPs) and so forth. This
is done by extracting the MPEG header from every video
file. The upload operation from the client sends a video file.
The video information analyzer splits the metadata apart
from the video part of the received video file. The metadata
is parsed, and the information about the client is gathered
such as its IP address and its user profile as being high or
medium or low. The video information is also gathered from
the metadata like frame rate, GOP, video duration, bit rate,
and so forth, both these information is then stored for future
processing. The output from the video information analyzer
is sent to the seed estimator and peer handler modules.

Input: Client uploaded video metadata
Output: Client information and video information

Process:

(1) By extracting data on the uploaded client’s
connectivity, the client is categorized as:

If the connecting bandwidth is

(a) up to 52 Kbps then, very low priority client

(b) between 52Kbps and 112 Kbps then, low priority
client

(c) between 112 Kbps and 256 Kbps then, medium pri-
ority client

(d) between 256 Kbps and 512 Kbps then, high priority
client

(2) Video metadata is extracted from the video file.

(ii) Seed Estimator. As the name suggests the seed estimator
receives the metadata and decides upon the seed values that
we intend to make the uploaded video into several versions.
The seed values here mean the relative number of versions
that is required for a particular video file to be stored in
the database. It is the seed values generated that decide
upon the version numbers. This is intended for client nodes
with Internet connections ranging from 16 Kbps through
a telephone dial up networks to 512 Mbps through DSL
networks.

In order to arrive at the seed values, we calculate them by
analyzing the bit rate of the video; subsequently we reduce
the given bit rate by just half the bit rates and figure seed
versions that equal these halved rates. We stop factoring the
bit rate by two until the bit rate reached is greater than or
equal to 16 kbps because it is known that user’s connection
setup speed cannot be slower than this. The reason we go in
for halving the bit rates without doubling it is we signify the
uploaded video version as it is with its provided quality and

Advances in Multimedia

go in for supporting the lower end clients with almost the
same quality by storing versions with lesser bit rates. Most
importantly, these subversions (means lower bit rate versions
of the given video file) are each arrived through the generated
seeds, and hence each video version is stored expressing the
seed values. This paves in for storing only very few versions
for the overall vast difference in the number of client bit
rate pattern, thereby reducing the storage space at the server
enormously.

Input: Video bit rate of the uploaded video file by a
client

Output: Number of seeds for the input video file
Process:

(1) Uvbr = video bit rate of the uploaded video file by
a client

(2) seed_count =0
(3) while (Uvbr ! = 16 Kbps)
Uvbr = Uvbr/2

If Uvbr generated is within the priority limit of the client
group, then
seed_count = seed_count + 1.
Else
No change in seed_count.

(iii) Transcoder. The transcoder is another major submodule
within the processor. This module uses the input from the
other two submodules within the processor and performs
transcoding operation. This ensures different layers exist
upon these base versions. Transcoder includes (a) frame
splitting and recognizing I, P, and B frames, (b) version
generation, and (c) seeking the frames in the video.

(a) Frame Splitting and Recognizing I, P, and B Frames.
Frame splitting module identifies the Intra (I), Bidirectional
interpolated (B), and Prediction (P) frames and splits them.
GOP gives us information that says how many frames are
present between consecutive I frames. Each frame of the
video has a separate header which is called the picture header.
This is essential because it contains information which tells
us about I, P, and B frames. The picture header has the frame
information in byte 5 of the MPEG header. The bits set at
3rd, 4th, and 5th position are checked, and the following
are inferred: “001” is I frame; “010” is a P frame; “011” is
a B frame. The seed values provided by the Seed Estimator
module and the video received from client are used here as
references to generate multiple versions of the same video
to accommodate heterogeneous client bit rate pattern. The
realization of I, P, and B frames from all the GOPs is done.
Here, information from the video file’s hint track called the
video track, is used to include streaming information. A video
file usually contains multiple tracks. Individual tracks can
have metadata, such as the aspect ratio of a video track, title
of the video, episode numbers, and variable bit rate/constant
bit rate [35, 36]. The track information set at the MPEG
header of the uploaded video file provides more information

which is hinted in the video file per data unit of the stream.
This will help in extracting the GOP during sending the video
for requests. The information of the current frame being
processed from the uploaded video file lends it to being I,
P. or B frame.

Input: Video frames
Output: Recognize and Split Frames as I or P or B

Process:

(1) For each instance of the Track-information or hint
tracks from the metadata of the uploaded video file

(1a) Store images in Image-control.

(1b) Extract data units from the hint tracks
(2) while ('Reached end of the Frameset)

{ I =track_no * GOP
P =track.no + (k + 1)*j

B = all other frames }

Where-“track_no” is the nth I frame encountered at that
time, “k” is the number of B frames between the consecutive

« 2

I 'and P frames “j” is P frame counter.

(b) Version Generation. The user video needs to be morphed
to the lower versions. This is done with the help of the seed
values that have been identified. Based on the property that
dropping of B frames does not affect the quality of the video
that much, the system proceeds to drop B frames at first
to accommodate to the lower bit rate versions. We use the
information obtained from frame splitting and recognizing
for the seed value from the seed estimator to generate
versions for the users with lower bit rate pattern. In this work
when creating multiversions, the frame rate is not affected
much, because the bit rate has no impact on the frame rate
of a video. It is with respect to a codec [23, 35]. Also, the aim
is to fit the multiversion file into any possible client bit rate
without losing quality. Different versions of same video file
are generated using the following algorithm.

Input: Client uploaded video file, seed_count from
seed estimator

Output: Video versions generated

Process:

(1) Read video as bit stream

(2) Check for GOP header and picture header, if
(match found)

(a) Read nth bit and obtain whether I, B or P frame

(b) For each seed obtained from seed estimator, drop
every 5th B frames subjected to the required bit rate
(information from Monitor).

If (no more B frames to drop) drop no frames.

Generate versions.

Every 5th B frame is dropped, since it is not very difficult
to generate one, as it might lie between two B frames and/or

Bit rate versus actual frames dropped
140

120

100 +

Frames dropped (numbers)
N o)
(==} (== S
1 1 1

5o}
[=}
1

(=}

64 96 128 192 256 384 512
Bit rate (Kbps)
—— Single version

—— Many multiple versions
Our optimised solution

FIGURE 3: Bit rate (kbps) versus actual no. of packets dropped.

Bit rate versus effective packets dropped
160

140 —

120 —

100 —

80 —

60 —

40 —

Effective packets dropped (numbers)

64 96 128 192 256 384 512
Bit rate (Kbps)
—— Single version

—— Multiple versions
Our optimised solution

FiGure 4: Bit rate (kbps) versus actual no. of packets dropped.

an I and a P frame as well. This is better than dropping
consecutive B frames [34]. Any GOP under consideration
would have the probability that based on this information
it would speed up the encoding/decoding process to a greater
extent. This is better than to scan the frames of importance
before dropping, which is time consuming or not to scan at
all which is unfavourable when quality is perceived [37]. This
is supported by our simulation result as well from Figures 3
and 4.

(c) Seeking the Frames in the Video. When a client prefers to
play a video file, he selects it and starts to view the video file.
Sometimes, after the client has started to view the file, and

Advances in Multimedia

when the video is still being played, the same client’s network
condition may change for the worse. Congestion may throw
up, and video frames may get clogged at the bottleneck link
which may not be able to transfer the high bit rate frames
that the client is currently viewing. But the link might allow
few frames of lower bit rates to pass through it. Our system
is designed to adapt to such changes and provide the next
best available video version for that condition. In order to
achieve this, the seek indexer traverses the video file after
every nth frame to avoid retrieving the entire video file in
the new version to be played for the client. The inputs to
this module are video frames played by the client, and the
seed value corresponding to the bit rate change needed to
be placed on the incoming video due to the change in the
network condition.

Input: link strength, video version

Output: frame to be played is identified in stored
video version

Process:

(1) Extract the video version file to be played for

bit rate given by “i” at the client.
(2) while (not end of file)
{ Check frame rate;
if (frame_no mod GOP = =0)
i = frame_no / GOP;
if (frame_no is a multiple of GOP)
Timestamp = frame_no_i / n;

}

Where “i” is the indication of the frame we try to
determine as the one to be played at the client.

3.1.2. Monitor and Analyser. The input to the monitor
is from the client side. Output is the identified network
conditions from the RTSP protocol. The functionality of
the analyzer is simple. It merely searches for the client
compatible version, and if it is not found, it sends the
nearest compatible lower version. This is understood from
the following

The output from monitor module gives the network
configuration details of the client’s download request, and
this input query is sent to the database, to search for the client
compatible version.

Input: link strength, video viewed by the client

Output: video to be played is identified in stored
video version as per the link strength

Process:

(1) If the queried file is found, search for version

(a) if version not found, extract immediate lower
version file and send

(b) Else, send the version matched file.

Advances in Multimedia

3.1.3. Decision Manager . In a video streaming application,
after a client has partly downloaded a file, if the video is still
being played, the same client’s network configuration may
change. Our system is designed to adapt to such a change
and provide the next best available video version. Here, it
becomes important that we do not retransmit the frames
that have already been played on the client side. The decision
manger predicts and decides which frames can be skipped
and which frames should be sent.

The process dealt at the decision manager can be
explained with the following example: If a client-A is
connected to the system for some “¢,” seconds, during which
“Y” number of frames is received at that client. If the network
configurations change at the some “fx;ith” second, and
if we analyze and send the new version video, it would
be meaningless to send the first “Y” frames. The decision
manager thus transmits the video from the “Y + 1th” frame
after analyzing the current GOP and its associated frame
streamed recently. For instance, if the “Y” frame is an “I”
frame, thus decoding and reencoding are needed to search for
the new version starting from the “Y + 1” frame. Therefore,
the current GOP helps out in the delivery of required stream.

Here, the usage of RTP protocol helps in achieving this
pattern of skipping frames and sending the current frame
from the stored multiversion video file. This is one of the
novel techniques used in our work that reduces both time
to select the frame from stored video version and send or to
generate them to the current bit rate level of the connected
client through the already sending stream on the fly [8], by
dropping packets which is multilayering done in adaptive
streaming method. Client side communication is also done
through this module.

The selection of stored video version or dropping of
frames to match the limited bandwidth is decided here.

The input given is video file that client has requested
along with the monitor’s output as to which frame has been
viewed recently. The output to this module generates a new
compilation of video with dropped frames

Input: Identified video version from Server
Output: Frame to be played at the client

Process:

(1) If current bit rate of client matches stored video
version then check frame number, seek to that
frame and send from that frame onwards.

(2) Else, drop layers of B frames from the current
video stream, seek to the requested frame
number and send from that frame onwards.

3.2. Tracker. The cooperation provided by the peers by up-
loading to the fellow peers with incentivized pattern as
seen in [18, 19, 38] is added to motivate the peers as
jubilant uploaders. This further achieves better focus on
servicing requesters rather than spending time in identifying
providers at the tracker. In our system, we consider all peers
are cheerful in providing as they are serviced with greater
download speed for each completed (100% data received by

the peer requester) or partially completed (40% to 90% data
received by the peer requester) uploads. The combination of
these destined methods at the tracker provides novelty to this
approach with which we deem to achieve far more than that
was intended with great impact on client satisfaction. The
basic processes at the tracker for all the combined effort to be
put into the router or a separate dedicated peer node for this
tracking should include the following modules: (1) Stream
Onlooker, (2) P2P Client helper, and (3) Server-side Helper.

3.2.1. The Stream Onlooker. The Stream Onlooker (SO) is
quite similar in a way to the analyzer module of the QPMVM.
This keeps a watch on the incoming requests from the
client to the media server which notes down the request
information in the tracker table (LUT). Also, it saves the
video segment information stored by the media server during
push stream which is used for managing further requests
among the peer groups. Among all the other things, it keeps
watch on the stream request generated within the peer group,
by looking for further requests to be made by the same
requester after assigning another peer to serve for the request
currently made by the requesting peer.

For example if peer “A” has requested a video segment
“,” then the tracker could receive only two more request,
for the same video segment from the same peer “A” By
this we guarantee that the request has either been serviced
by another providing peer for the better or the request has
not been served by the provider peer to whom the request
was directed to, for the worse. In which case, the tracker
manages to route it to another peer and the media server
simultaneously. By this way the tracker fixes the servicing
time for the requesting peer and looks on for another reliable
provider with options open within the local peers of high
profile range groups.

This part of the work at the tracker to look for capable
service providers in the peer group satisfies the requesting
peer to get serviced before the exhaustion of its buffered
video content. Moreover the agreed peer provider who would
not serve the requesting peer client would get less benefit in
terms of speed and video quality as the agreement has been
futile with no services at the client end. After agreement,
the nonproviding peer node’s information could be captured
with the same request generated by the requesting client
who has timed out its earlier request. This information on
the nonprovider becomes fruitful at the same time to look
for any further requests from the non-provider as such to
look in for network-related problems like link congestion,
attack-driven malicious nodes and so on, and if there are no
such problems, the information would be used for negative
incentives.

Input: Streaming requests to the server/tracker from
the peer clients

Output: Manage client uploading/downloading pat-
tern send information to tracker

Process:

(1) Maintain database

10

(1a) Requested video file, user id of the requester,
number of requests by same user for the same content
and/or different content, servicer details and so forth,

(1b) For uploading within peer groups and the rate
of upload.

(1c) For downloading within peer groups or from
server and the rate of upload.

(1d) Place the most uploading peer at the top and
the remaining in consecutive order of their sharing
ability.

(2) Update tracker with the managed database for
every request serviced.

(3) Provide entity on the PM and CM to PCH.

3.2.2. P2P Client Helper. The P2P Client Helper (PCH)
manages and provides information for Ant-based routing at
the tracker. The Stream Onlooker (SO) updates and sends
the information on each peer based on the services required
as well as services provided among peers to PCH. The PCH
holds the latest information on the clips cached at each peer
in all the peer nodes as a table.

Input: From Stream Onlooker
Output: Analyzed video segments and policies
Process:

(1) Places the pushed video segments from the media
server into the peers, by queue maintained by the SO.

(1a) The top of the queue has the maximal provider
and the rear the least provider in the peer group-
This data subjectively used for pushing data as well
as incentive at the peer.

(1b) Identifies and updates route for Ant based
optimization. (Any peer node is not selected for an
optimal route but with the information from the
maximal queued.)

This achieves high delivery to the client side by
combining these several solutions put together.

3.2.3. Server-Side Helper. The Server-side Helper (SH)
mainly concerns with scheduling the peer group requests
mostly at the tracker and very few at the Media server.
The Server-side Helper maintains hash table to provide the
requesting peer map with video segment needed from the
various peers stored across peer group. The PCH and SO
input the SH with the needed information for managing
the admission control dynamically altering the choice when
the provider or the receiver is no more worthy of doing any
of it due to network-related problems. The topology of the
peer group connected and maintained as Earliest Reachable
Merge Tree (ERMT) with Static Full Stream Scheduling
(SESS) [11, 16, 39] gains more momentum in multicast
streaming for the peers as scheduled by the SH. The SH
provides another most prominent work to server that helps
it to place the pushed video content at the peers based on the
ability of each peer of its bandwidth speed and buffering size

Advances in Multimedia

which is to serve others. This is to identify the best supplier
(peer) for the current request. By best suppliers we mean
those peer nodes that can stream the requested video as fast
as possible which is achieved by tracking the reduced load at
those peers to serve the requester.

Input: Split video segments

Output: Place video segments among the clients
Process:

m: total number of peers in the system

N: total number of segments a video is split.

A: average bandwidth of all m peers

bi: bandwidth of ith peer “Pi”.

ph: high bandwidth peers

pl: low bandwidth peers

Npl: Total number of segments to be allocated for low
bandwidth peers.

Nph: Total number of segments to be allocated for
high bandwidth peers.

Categorize the m peers into

ph where, bandwidth > A for all nodes in this set and
pl where, bandwidth < A for all nodes in this set
fori="P1toPm

Nph = (N * (bi) PeerHigh) / (A % m)

Npl = N— Nph

Ni= (N % bi)/ (A % m)

Ni video segments are distributed to Pi.

The video segments that have been obtained by splitting
the video file are distributed among the various peers in the
system based upon their utility bandwidth. More precisely,
the peers having more bandwidth receive more segments
and vice versa. It is also possible for the end user to
view a specified segment in the video. This improves user
interactivity of the system by providing for random-seek
option.

3.3. Peer Node. Distributed P2P network is more advanta-
geous in the setup of VOD system [17, 40]. Each peer node is
equipped to handle a factor of the overall load from the server
by serving with its buffered content. Peers are henceforth
clients with mini version of the server. The requests arise
from the clientpart of the peer node, and the streaming
service comes from the server part of the peer. Here, we call
it as service provider. Not only does the service provider
is quite complicated but then it needs to have the current
information on the video segments held at each peer and also
needs to combine with existing multicast streams to service
in a better way. The user interface at each peer contains the
Audio Video receiver (AV receiver) which is used for Real
Time Protocol (RTP) video reception. Processing at each Peer
node comprises of the (i) Client Side Processor (CSP) (ii)
Cache Manager, and (iii) Peer Manager which we detail in
the following sections.

Advances in Multimedia

3.3.1. Client Side Processor. The Client Side Processor (CSP)
acts as the heart of every peer node in the network. Because,
it keeps track as well as informs the most important matters
happening within the peer to the tracker as well as neighbor
peers. CSP attends to the various tasks that take place at the
peers.

The most important of all and several other individual
peer subtasks like decoding the video and connecting with
Cache Manager and Peer Manager. The various factors
leading to proper uploading and henceforth the incentives
maintenance very much depends on CSP’s informed data.
Here, the sender does not magnify the sending details but
the receiver notifies it to the tracker. Which means in the
normal sense as the sender might not fulfill or rather provide
to the custom peer node but inform to the tracker that it
had completed its service; this magnification by the sender is
clarified by the receiver’s CSP information. The components
of the CSP meticulously work with the Media server, tracker
and other peers to provide them with optimized content
delivery. The Cache Manager (CM) and the Peer Manager
(PM) also inputs content stored to the CSP.

Input: Various tasks at the peers

//* multicast stream upload, multicast stream down-
load, buffer scanner, network bandwidth connec-
tivity, video segments buffered, services provided
and services received, services disrupted, subtasks
like decoding the video and connecting with Cache
Manager for knowing high priority task and Peer
Manager and so forth, *//

Output: Information supplied to tracker and neigh-
bor peers

Process:

(1) Inform on each task performed at a peer to the
tracker.

(2) The stream shift that takes place for the different
version of the same video file, is also provided by the
CSP during uploading to fellow peers.

(3) CSP maps the tracked frame number when
rewind, fast forward and pause buttons are clicked.

(i) It uses the aspects like bit rate control, buffer
control and frame positioning method.

(ii) It induces request appropriate to the Cache
Manger’s data on the cached content within the
playback time.

3.3.2. Cache Manager. Video content buffered at the peer
is managed by Cache Manager (CM). The importance of
cache manager towards bringing out efficient working of peer
groups sharing is explained in this subsection. There are two
cache, used in each peer. Ones completely dedicated for the
server to push its video content called the serve-cache is and
the other is used by the peer for its client application called
the playback cache/buffer. In our work, we presume there is
enough cache to hold at the client so there is no need for
cache replacement policy.

11

The serve-cache would also slowly accustom to fill in the
user’s/client’s interest. The user’s interest is expected to lie
within any two of all the videos at hand. The Cache Manager
acts as a monitor of the playback system wherein the playback
time of the current clip is used to fill in the playback cache.
If the cache is almost empty and does not get filled up within
the stipulated playback time,

Input: Playback time indicator from the player.
Output: CM raises high priority issue to the CSP.
Process:

(1) CM does not wait until the last bit of the cached
content is viewed rather as in several of the Media
players’ cache warning takes place at half of 1/4th
of the cached content [28] which is fixed as the
threshold here too

(2) Sets high priority bit.

(3) Halt all other services that it was carrying out and
perform for getting the next needed video segment.

(4) For normal play back, the cached content in
the playback buffer is managed to hold the viewer’s
interest through (1)—(3) steps.

(5) For VCR requests, if the server-push content is
different from the interest of the user it would not
benefit from the cached content.

(6) % of cache hit is required to be greater than the
cached content at each client. Hence, the non-interest
cached content would alter its position from serve-
cache to another of the interest filled serve-cache peer
node.

For any VCR request like seek Fast-forward generated
within the client, the playback buffer keeps playing the latest
video segment that it is currently viewing for 20 msecs and
immediately switches over to the kth video segment held in
the playback cache. Here, k is the random number generated
that lies within the currently viewing clip number to half
of the maximum segment number. The maximum segment
number lies as the last clip in the limit of the existing playback
buffer content [40].

If the VCR request is for seek Fast-backward, the same as
Fast-forward with reverse action carries on here. But, if the
currently viewing clip is the first clip in the playback cache,
this particular seek request grabs the clip segment previously
to currently viewing clip minus kth (any integer value for
k that matches the serve-cache content) clip from the serve-
cache if present (which is highly possible); else it grabs the
clip within next hop of its neighbors processed by CSP within
2 secs (maximum).

For any other VCR actions like pause, continue lies
within the previously explained two types. For request of any
new video, while the currently viewing video is different, CM
searches for video in serve-cache instantly without looking
in the playback cache. It then accepts clips from a different
multicast stream through CSP and retains the currently
viewed clip in the serve-cache.

12

3.3.3. Peer Manager. Communication between other peer
nodes to receive and to send video streams happens through
this Peer Manager (PM).

The speed at which the receiver receives the video streams
gets increased by few kbps based on the incentivized value
prescribed by the tracker; the senders have minimal upload
bandwidth in which the receiver combines channels as it
receives from many nodes at the same time quantifying the
incremental speed for its service already provided.

Input: Tracker information and bandwidth correla-
tion map.

Output: communication and incentives by interact-
ing with the groups intimated by the tracker through
CSP in order to supply at incentive sufficed speed.

Process:

(1) For each video shared among a group, it main-
tains a leader (higher bandwidth within group);

The PM accurately maps with all other servicing peer nodes
at the same time and balances upload among this specific
group for the specified client.

Incentive Algorithm

Peer Up-Loaders

(1) Tracker stores the up-loader’s peer information
for incentive management.

(2) Critical case-exhaustion of buffer content,

(i) Uploading peers can agree on uploading for
critical case.

(i1) Once agreed,

(a) No more high priority bit is set by the
requestor

(b) Else, look for Congestion, Malicious nodes.
If found, then do not mark the agreed
up-loader for negative incentive (reduce
download speed by 10 kbps per negative
score per agreed peer)

(c) Else, mark the agreed up-loader for nega-
tive incentive

(d) Else, uploaded successfully (100%) or par-
tially (40-90% may happen due to exter-
nal failures), provide positive incentive
counter set (increase download speed by
25kbps per positive score by combining
multiple agreed up-loaders)

Peer Down-Loaders
(1) Incentivized peers are tracked by the tracker. PM
present at each peer verifies the incentive received.
(2) Achieving incentives (at tracker, Peer):
(1) If Incentive queue managed at the tracker has

counter set and if the counter is not more than
can be serviced then provide full incentive.

Advances in Multimedia

(ii) Else, divide the counter by half and check
whether half the incentive can be serviced by
individual Up-loader or by combining multiple
up-loaders,

(iii) Repeat the above step until incentive service-
able.

(iv) If Negative incentive, update incentive queue
per peer basis at tracker and that peer.

Combining Multiple Up-Loaders

This is done as one of the group member say “Pi”
who has maximal bandwidth say at “q” kbps, but currently
provides at the rate of “g-x” kbps (since it in reality,
complete bandwidth is underutilized) this “x” kbps would
be compensated by another peer in the group by sending
at its current bit rate “plus” the left out bit rate that is, if
supposedly it sends at “r” kbps and its maximal is below
“r + x” kbps it compensates the complete streaming rate.
If not, the “x” kbps would be shared among the existing
group to provide incremental support bandwidth which is
obtained by adding current sending rate plus 2 kbps by all
until receiver is fulfilled with the added bit rate. This requires
enormous client communication management to support
the incentive set. Hence, with PM the feasibility to provide

to peers with ultimate caution and care has been obtained.

4. Performance Study (METRICS) and
Experimental Setup

The experimental setup for the simulation run is shown
in Table 1. The simulation is done using Java code for the
entire system. Here, the simulated system is compared with
Bittorrent-based Gnutella system and the normal client-
server system and we call the Gnutella system, as the
traditional P2P system as they form the base for any
P2P network system for file sharing. In traditional P2P
system, the segments are equally distributed among the peers
without the tracker scheme. The components of a social
network are simulated as our peer network groups.

Firstly, we evaluate the main subsystem in VoD setup,
which is our QPMVM that ensures video quality does not
gets deteriorated as the user bandwidth reduces below the
video bit rate. We evaluate this subsystem present at the
server by calculating the loss of packets and compare the
loss of effective frames in packets to the existing multiversion
and multilayer systems. We consider this as the parameter
for QoS. Normally, when frame drop occurs, the receiver’s
capacity is lesser than the senders. A simulation setup that
performs for the frame drops in three different systems are
handled here. It shows, [and P frames lost with single version
and many multiple version system is relatively high than our
QPMVM system. Though it stores very few multiple version
it rarely drops effective frames. In QPMVM we look for B
frames that are to be dropped first, and lastly we drop the P
frames and finally I frames during the packet transmission.
This of course is not handled in both multilayered as well
as multiversion systems where the frames in a packet are

Advances in Multimedia 13
TaBLE 1: Experimental values. TABLE 3: Segment split.
Simulation setup S. no. Storage Sample 1 Sample 2
Total number of peers 100 peers Bandwidth No.of Bandwidth No. of
Total number of videos 5 (kbps) ~ segments (kbps) Segments
Min-Segment size 1 sec 1 P_B 100 5 115 6
Max-Segment size 25 secs 2 PC 90 5 58 3
Serve-cache size of each peer 200 secs or 180 segments 3 P.D 70 4 45 2
Play buffer size 30 segments 4 PE 80 4 95 5
Upload bandwidth 32 kbps—512 kbps 5 P.F 20 1 30 2
Download bandwidth 32 kbps—512 kbps 6 PG 60 3 25 1
Video bit rate 64-512 kbps 7 P.H 40 2 65 4
Length of video 180 secs 8 PI 60 3 75 4
Tracker bandwidth 32 kbps—512 kbps 9 PJ 50 3 55 3
Simulation time 3600 secs
Reservation buffer size 4 segments
Incentive increment per count 25kbps 5. Results and Discussion

TaBLE 2: Video Samples.

S.no Video name Time length (min:sec) Data rate (kbps)
1 v_1 (Core) 0:50 4086
2 v_2 (Bodyguard) 3:30 4971
3 v_3 (3idiots) 4:40 4209
4 v_4 (Magadheera) 5:40 5204
5 v_5 (Inception) 6:40 3466

dropped without its relevance consideration as studied in
[12].

Secondly, we evaluate the proposed work by considering
the entire system as a whole with the server and the tracker
along with 100 peer nodes. The simulation run for one
hour with request arrival rate using random distribution
and its corresponding factors such as start-up latency, seek
latency, network throughput, simultaneous peers in action,
and media server load are studied. Finally, every peer that
contributes to our VoD system that increases its upload
bandwidth as a profit has provided added multicast strength
reducing load at server and solving penalized sending peer.
The experimental study with the other two systems has been
done with same peers reacting inefficiently to the same setup.

Table 2 describes the various video samples used for
testing and its properties like time length and data rate. The
number of segments for each video is fixed for the traditional
system, whereas it is dynamically calculated for the proposed
system with the available set of peer nodes formed in a group
with its heterogeneous ability such as bandwidth rate and
cache size as explained earlier. Dynamic splitting a video
is done until the request for that video remains within the
group. Table 3 provides the dynamic split of the same video
v_1 stored at the same peer node at different bandwidth
strength indicated as Sample 1 and Sample 2.

Table 3 gives the number of segments stored in each peer
according to the algorithm present in the Server Helper (SH)
which distributes segments based on peer’s capacity.

In this section, we put forth a test copy of the system
that is suited for application such as VoD, based on set-
top boxes as well as the multimedia content sharing at the
social network systems. The fundamental approach to the
reduction in service latency as well as providing optimal
quality than any feasible solution is our concern. We prove
this here with the several graphs and tables which provide
proof to the system with the tracker and our QPMVM
which is more advantageous than the systems that have very
few factors working at the server end or the client end or
at the proxy end. Since we combined all the factors from
different viewpoint, this creates elements where the client
side perception has more impact towards the betterment of
the system as a whole. There are several results in the form of
graphs and tables, but here we provide only a few of them to
highlight our works aim.

Frames dropping is one concept to check for, in any
service provider, such as our media server which services for
video requests. On requests that come from peer clients, the
sender’s video bit rate should match that of the receiver’s bit
rate. If there is no match, frame dropping occurs when the
sender’s bit rate is more than the receiver’s receiving capacity
which happens due to congestion at the client network,
and the bandwidth is clogged with the sender’s data which
the user could not process. This is present in all the server
technology to drop frames and progress with streaming until
it is uniformly completed in all multicast clients.

Here, in Figure 7, we see that the average number of
frames dropped for video streams at 316 bits per second
to 5 clients that receive at 56 kbps to 512 kbps. At 64 kbps,
the client reception is very poor, and the loss of packets
is comparatively more than that of 512 kbps reception, at
which point all the clients receive the data packets without
frames being lost. In Figure 7 it can be noted that the choking
level is for lesser bit rate at client as seen from the graph.
The table shows the difference in the three technologies
discussed so far. Single version storage of video files drops
few frames because it would be a lower version video with
reduced picture quality that suffices even the least set of
clients with very low connectivity. Also, it is seen that the

14

TABLE 4: Amount of memory used by different systems for different
versioned files.

Single version Traditional multiple version Our optimal solution
609 KB 2416 KB 1403 KB
10453 KB 42113 KB 22874 KB

number of frames dropped by a single version is much less
when compared to other multiple version systems. This is
contrary to the fact that maintaining multiple versions is
an optimal solution. The effectiveness of multiversioning is
evident when we observe that the actual packets dropped are
not the effective packets which we describe in the following
paragraph.

In a single version system I, B, or a P frame could be
dropped. But each one has a different level of importance.
If the system drops a single I frame, then the corresponding
full GOP is deemed to be useless. An important detail to
note in Figure 3’s graphical representation of the table is that
the number of frames dropped is almost the same between
the traditional multiversion scheme (that maintains every
possible version for the client pattern) and our optimal
solution. This indicates our optimal solution drops almost
the same number of frames but it uses minimal storage as
compared to the traditional scheme by setting a base version
and few higher versions. It is also seen in Figure 3 that the
frame drop in single version is less. To understand that the
I, P, and B frames’ corresponding priorities are taken into
account in multiversioning, we plot a second graph as shown
in Figure 4, which gives the effective number of packets
dropped.

To understand the impact of the effective frame drop
we must compare Figures 3 and 4. In Figure 3, we take the
example where 3 frames are dropped in the single version
(384 kbps file); we note that the corresponding effective
frame rate is 28 frames. This is explained as follows:

Total no. of frames dropped: 3
Total no. of I frames dropped: 2
Total no. of P frames dropped: 1
Total no. of B frames dropped: —-
GOP: 12
If an I frame is dropped, none of the other frames
can be decoded in the GOP, that is, dropping a single I
frame effectively drops 12 frames. If a P frame is dropped,
dependant B frames cannot be decoded. Hence,
No. of frames dropped because of I frames lost:
2xX12=24
No. of frames dropped because of P frames lost:
4 B frames
Total no. of effective frames dropped: 29 frames
Moreover, it is clear from Table 4 that a single version file

requires lesser memory, but at the expense of video quality.
Using all possible versions that satisfy the different client

Advances in Multimedia

TABLE 5: Segment distribution in proposed P2P.

Peer groups Bandwidth (kbps) ~ No. of videos Segments
A 100 3 v1,v2,v.3
B 80 3 v_2,v.5,v.6
C 60 2 v_1l,v4
D 45 1 vl

E 30 1 v.5

TaBLE 6: Segment distribution in t raditional P2P.

Peer groups ~ Bandwidth (kbps) No. of videos Segments
A 100 2 vl,v2
B 80 2 v.3,v4
C 60 2 v_1l,v.3
D 45 2 v.5,v.2
E 30 2 v4,v.5

TasBLE 7: Total view time.

No. of simultaneous Total viewing time(s)

users (name of peers) proposed P2P Client server traditional P2P

1(B) 481 469 640
2 (B,D) 543 481 764
3 (A,B,D) 584 806 1199
4 (A,B,D,E) 723 1015 1254
5 (A,B,C,D,E) 923 2634 1867

abilities in terms of its receiving minimal capacity, we find
that this consumes enormous storage size for a single video
file. Our optimized storage reduces the size for a single video
content by approximately half of it and provides more or
less same video quality similar to the multiversioned system.
This is a major advantage of using the higher-versioned
video at times of congestion to serve a slightly lower capacity
client that is managed by our QPMVM system to drop off
ineffective frames on the fly.

In traditional P2P system, the segments are equally
distributed among the peers without the tracker system
as shown in Table4, and the proposed system has the
distribution of clips based on the peer ability as shown in
Table 5. For proposed, traditional, and client server systems,
we measured the evaluation parameters given in Table 1.

The Total Viewing Time of the Video for Peer Group B Is
Observed as Follows. From Tables 5 and 6, we have analyzed
the total viewing time for 5 peer groups. As the number of
simultaneous peers increases the time for viewing, the entire
video increases. The variations among the three models are
explained in the following section.

Table 7, we have analyzed the total viewing time for 5 peer
groups.

Total Viewing Time. From the graph in Figure 5, we observe
that when the percentage of simultaneous users at a point
of time is very low (i.e., less than 40 users in this case),

Advances in Multimedia

Simultaneous users (%) versus total viewing time

3000
2500 -
L -
.g 2000
Eé 00
.2 1500 A
Z
L
S
= 1000 A
=
500 A
0 L1
0 20 40 60 80 100
Simultaneous users (%)
Proposed P2P
- Client server
Traditional P2P

FIGURE 5: Percentage of simultaneous users versus total viewing
time.

accessing all the segments from the server itself is preferable.
This is because to access the segments from various peers,
the user has to divide its bandwidth among the peers in the
system. This initial joining time could be used to push video
streams among the connected peers. In case of the client
server model the entire bandwidth is dedicated to user. But
as the number of users (simultaneous access) grows, the P2P
model that we have proposed proves to be better. This can
be explained as follows. As an example, 4 users request for
viewing the video. (a) In client-server model, the server has
to satisfy requests of all the clients in the network. This would
obviously require more time. And also, the load on the server
increases drastically. (b) Looking into the Proposed P2P
model, the segments are shared among all the peers available.
In this model, the bandwidths of all the peers are utilized.
Thus, there is no overload problem in this case. This proves
better for proposed system in comparison to the Traditional
P2P in a way, because the segments are split according to the
peer capacities the time for serving the requests for viewing
is drastically reduced here.

(1) The Start-Up Latency for % of Simultaneous Users Is
Observed as Follows. From the measured values, we observed
that the start-up is comparatively less for our system than
the traditional P2P model. Comparing the first two values,
it is seen that there is decrease in the latency in the case
of traditional P2P model. This is because the server has a
bandwidth rate that is comparatively greater than a single
peer in the network. Thus the time for serving a system
decreases. This is the same with the startup latency as well.
Figure 6 shows the startup latency for the various users
occurring simultaneously.

(2) The Seek Latency for % of Simultaneous Users Is Observed
as Follows. While measuring the seek latency, firstly, the
proposed P2P (all users accessing different segments), we

15

Simultaneous users (%) versus start-up latency
1800

1600
1400
1200
1000
800
600
400
200

Start-up latency (s)

0 20 40 60 80 100

Simultaneous users (%)

-@- Proposed P2P
l Traditional P2P

FIGURE 6: Percentage of simultaneous users versus start-up latency.

have peers from peer P_B request for the segment wk_7 from
peer P_C. All other peers request for segments that are not in
peer P_C. Secondly, the proposed P2P (2 users accessing same
segments), peer P_B, and peer P_D request for the segment
wk_7 from peer C simultaneously. All other peers request
segments that are not in peer C. We could infer that seek
latency is comparatively less for our system at the peak time.
We efficiently offload the server at the peak time request for
seek. The other peers have requests generated for various
other clips that are not in sequence similar to P_B and P_D
requests. Figure 7 shows the greater improvement of having
tracker to manifest the VCR-based requests to locate and
retrieve effectively in the proposed system.

Further, for explanations by looking at this case from
a slightly different perspective, we have the users/clients
requesting for a segment (same or each different) that is
spatially ahead, and we find this method of combining
multiple subsystems working together is more efficient for
VCR (seek) than that given in [20, 29].

When the P2P Groups access different segments, multiple
end users put forth seek requests simultaneously. But each
end user request for a unique segment located at different
peers. Thus, in this case the entire bandwidth of the storage
peer that contains the requested segment is dedicated to that
single requesting end user.

When the P2P Groups access different segments, multiple
end users put forth seek requests simultaneously. But each
end user request for a unique segment located at different
peers. Thus, in this case the entire bandwidth of the storage
peer that contains the requested segment is dedicated to that
single requesting end user.

When the P2P groups access same segments, all the VCR
requesting clients are made for the same segment at the
same time. Thus the storage peer holding that requested
segment has to share its bandwidth to serve the multiple
end users. Utilizing the bandwidth of the many peers in the
system model improves the performance when compared

16

Simultaneous users (%) versus seek latency

2000
1800
1600
1400
1200
1000
800
600
400
200

(s)

Seek latency

0 20 40 60 80

Simultaneous users (%)

4l Client server
A Proposed P2P (all users accessing different segments)
—— Proposed P2P (various users accessing same segment)

FIGURE 7: % of simultaneous users versus seek latency.

Number of request generated time versus servicer
300

250

200

150

100

Number of requests

50

0 500 1000 1500 2000 2500

Time of requests

- New video requests serviced by media server
A~ New video requests serviced within peers
—<~ VCR request serviced by media server

-@- VCR request serviced by peers

FIGURE 8: No. of request generated time versus service for the
proposed system.

to dedicating (by dividing/sharing) the entire bandwidth of
Server (Client-Server model) to all requesters (with others
requests as well) [40].

In the traditional P2P system, the entire set of requests
is sent to the server. This later identifies the clips present in
the peer groups and reroutes them accordingly [29]. Be it
requests for same segment or multiple segments, they have
to be satisfied by the single system. Hence, there is a heavy
increase in terms of load on the server. This in turn increases
the seek time. In a nutshell, it deteriorates the performance
of the complete model.

Figure 8, shows the overall requests as handled by our
work which we mention here as the proposed system. The
requests here are the requests for new video and VCR
requests. The ability of this system to handle most of the

Advances in Multimedia

Throughput

—_

Average throughput
O =N WU N OO

Traditional

Proposed
P2P P2p

Client server

F1GURrE 9: Throughput comparison.

requests with ease shows the utilization factor of the pro-
posed work with the tracker and the optimized distribution
at hand among the peers. The same when working with the
traditional system showed 45% of the requests were handled
by the media server whereas the proposed system made only
17% of the requests handled by the media server.

Throughput Measure. Performance tests for measuring
throughput have been conducted, and the throughputs for
the various models have been found to be as shown in
Figure 9.

The graph in Figure 9 shows that the throughput of
proposed P2P system is much better than a client server
model and more similar to the traditional model. In client
server model, since all requests are served only by the server,
the other peers in the system are idle most of the time.
In the proposed system, all the peers actively serve the
requesting end user with the segments stored in it. Thus
our system achieves high throughput and hence efficiently
utilizes most of the peer resources. This is slightly greater
than the proposed one as it leaves certain peers underutilized
and several others overutilized. Hence the traditional P2P
suffers a slight lower throughputthan our proposed P2P.

6. Conclusion and Future Work

Our proposed system with QPMVM, tracker in P2P VOD
environment, has shown performance which utilizes various
resource management techniques. It also understands per-
formance limits in order to deploy adaptive QoS effectively
in larger scaling systems.

Major Contributions from This Work Are as Follows

(i) A novel workable solution QPMVM for video
streaming systems, especially for a VoD system, in
place where there is provision of limited system
resources and infrastructure. For example, systems
that are possible only with lower bandwidth, less
neighbor support and so on, could perform much
better by employing our system (namely, e-learning
with limited users).

Advances in Multimedia

(ii) Optimized usage of server bandwidth, reduced server
load, storage, and prevalent better quality video
at client by combining multiversion and multilayer
system for videos at the server.

(iii) Stressing the video segment distribution combined
with incentive mechanism solves idleness among peer
sharers is another major advantage. This increases the
usage of available distributed bandwidth among the
social network groups with incentive benefits.

(iv) Design and integration of the entire system with
performance study over various scenarios highlight
the coordination and management rules provided by
the various subsystems at the server, tracker, and the
P2P nodes.

Limitations of This Work

(i) As this system is to provide better utilities for low
profile consumers, sufficient video files that fit this
category were considered for simulation. Hence, use
of H.264 (SVC) is avoided/omitted.

(i1) If all the consumers request different videos at the
same instant, then the peer structure would perform
poorly, because there would be no possibility for
initial sharing and thereby increasing the seek latency.

(iii) The cache store and replacement policies worked
with are optimal in their usage but could further
be altered to suit the peer sharing ability with their
profiles in mind. Peer churns must be handled for real
time efficiency.

This work supports all MPEG file formats including

MPEG-4 part 10 (AVC); future enhancements could include
usage of H.264 (SVC) files that could provide remarkable
solutions that can be studied. Advanced caching policies
could be fitted into the framework to upgrade the system.

References

[1

] C. Zhijia, L. Chuang, and W. Xiaogang, “Enabling on-demand
internet video streaming services to multi-terminal users in
large scale,” IEEE Transactions on Consumer Electronics, vol. 55,
no. 4, pp. 1988-1996, 2009.

] A. Raghuveer, N. Kang, and D. H. C. Du, “Techniques for
efficient streaming of layered video in heterogeneous client
environments,” in Proceedings of the IEEE Global Telecommu-
nications Conference (GLOBECOM °05), vol. 1, pp. 245-250,
December 2005.

] Y. Yang, A. L. H. Chow, L. Golubchik, and D. Bragg, “Improv-
ing QoS in BitTorrent-like VoD systems,” in Proceedings of the
IEEE International Conference on Computer Communications
(IEEE INFOCOM ’10), San Diego, Calif, USA, March 2010.

] B. Giovanni, S. Thomas, and A. Luigi, “Theoretical models
for video on demand services on peer-to-peer networks,”
International Journal of Digital Multimedia Broadcasting, vol.
2009, Article ID 263936, 8 pages, 2009.

] A. G. Nemati and M. Takizawa, “Application level QoS in
multimedia peer-to-peer (P2P) networks,” in Proceedings of
the 22nd International Conference on Advanced Information

17

Networking and Applications Workshops/Symposia (AINA °08),
pp- 319-324, March 2008.

[6] L. Bo, C. Yanchuan, C. Cui Yi, X. Yuan, Q. Fan, and L.
Yansheng, “Minimizing service disruption in peer-to-peer
streaming,” in Proceedings of the IEEE Computer Communica-
tions and Networking Conference (CCNC ’11), pp. 1066-1071,
2011.

[7] Y. Lingjie, G. Linxiang, Z. Jin, and W. Xin, “SonicVoD: a
VCR-supported P2P-VoD system with network coding,” IEEE
Transactions on Consumer Electronics, vol. 55, no. 2, pp. 576—
582, 2009.

[8] H. Cheng-Hsin and H. Mohamed, “Optimal coding of multi-
layer and multiversion video streams,” IEEE Transactions on
Multimedia, vol. 10, no. 1, pp. 121-131, 2008.

[9] G. M. Muntean, G. Ghinea, and T. N. Sheehan, “Region of
interest-based adaptive multimedia streaming scheme,” IEEE
Transactions on Broadcasting, vol. 54, no. 2, pp. 296-303, 2008.

[10] H. Yu, E. C. Chang, W. T. Ooi, M. C. Chan, and W.
Cheng, “Integrated optimization of video server resource and
streaming quality over best-effort network,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 19, no. 3, pp.
374-385, 2009.

[11] L.Jiangchuan, B. Li, and Z. Ya-Qin, “Adaptive video multicast
over the internet,” IEEE Multimedia, vol. 10, no. 1, pp. 22-33,
2003.

[12] S. McCanne, M. Vetterli, and V. Jacobson, “Low-complexity
video coding for receiver-driven layered multicast,” IEEE
Journal on Selected Areas in Communications, vol. 15, no. 6, pp.
983-1001, 1997.

[13] L. Jiangchuan, B. Li, and Y. Q. Zhang, “Optimal stream
replication for video simulcasting,” IEEE Transactions on
Multimedia, vol. 8, no. 1, pp. 162-169, 2006.

[14] T. C. Thang, J. W. Kang, J. J. Yoo, and Y. M. Ro, “Opti-
mal multilayer adaptation of SVC video over heterogeneous
environments,” Advances in Multimedia, vol. 2008, Article ID
739192, 8 pages, 2008.

[15] C. Yan, E Toni, and Y. Nong, “QoS requirement of network
applications on the Internet,” Proceedings of Information,
Knowledge, Systems Management, vol. 4, no. 1, pp. 55-76, 2004.

[16] R.A.X. Annie and P. Yogesh, “VoD system: providing effective
peer-to-peer environment for an improved VCR operative
solutions,” Communications in Computer and Information
Science, vol. 106, no. 2, pp. 127-134, 2010.

[17] E V. Hecht, T. Bocek, and B. Stiller, “B-Tracker: improving
load balancing and efficiency in distributed P2P trackers,” in
Proceedings of the 11th IEEE International Conference on Peer-
to-Peer Computing (P2P’11), pp. 310-313, 2011.

[18] C. Liang, Z. Fu, Y. Liu, and C. W. Wu, “Incentivized peer-
assisted streaming for on-demand services,” IEEE Transactions
on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1354—
1367, 2010.

[19] T. Guo and Y. Zhang, “Research of incentive mechanisms in
P2P-based Video on Demand System,” in Proceedings of the
2nd International Conference on Networking and Distributed
Computing (ICNDC’11), pp. 340-343, 2011.

[20] J. M. Dyaberi, K. Kannan, and V. S. Pai, “Storage optimization
for a peer-to-peer video-on-demand network,” in Proceedings
of the ACM SIGMM Conference on Multimedia Systems
(MMSys ’10), pp. 59-70, February 2010.

[21] D. Tursun and W. Liejun, “Adaptive stream multicast for video
in heterogeneous networks,” Information Technology Journal,
vol. 8, 1o. 2, pp. 246-249, 2009.

[22] D.WangandJ. Liu, “Peer-to-peer asynchronous video stream-

»

ing using skip list,” in Proceedings of the IEEE International

18

(27

(28]

Conference on Multimedia and Expo (ICME °06), pp. 1397—
1400, July 2006.

E. Tan and C. T. Chou, “Frame rate control for video
streaming,” in Proceedings of the 36th Annual IEEE Conference
on Local Computer Networks (LCN ’11), pp. 163-166, 2011.

S. E Chang and A. Vetro, “Video adaptation: concepts,
technologies, and open issues,” Proceedings of the IEEE, vol. 93,
no. 1, pp. 148-158, 2005.

F. Takaya, E. Rei, M. Kei, and S. Hiroshi, “Video-popularity-
based caching scheme for P2P video-on-demand streaming,”
in Proceedings of the 25th IEEE International Conference on
Advanced Information Networking and Applications (AINA
’11), pp. 748-755, March 2011.

S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and
analyzing the characteristics of Napster and Gnutella hosts,”
Multimedia Systems, vol. 9, no. 2, pp. 170184, 2003.

H. Byun and M. Lee, “A tracker-based P2P system for live
multimedia streaming services,” in Proceedings of the 13th
International Conference on Advanced Communication Tech-
nology: Smart Service Innovation through Mobile Interactivity
(ICACT ’11), pp. 1608-1613, February 2011.

C. Jia Ming, L. Jenq Shiou, C. Yen Chiu, W. Hsin Wen, and
S. Wei Kuan, “MegaDrop: a cooperative video-on-demand
system in a Peer-to-Peer environment,” Journal of Information
Science and Engineering, vol. 27, no. 4, pp. 1345-1361, 2011.

I. Radulovic, P. Frossard, and O. Verscheure, “Adaptive video
streaming in lossy networks: versions or layers?” in Proceedings
of the IEEE International Conference on Multimedia and Expo
(ICME °04), vol. 3, pp. 1915-1918, Taipei, Taiwan, June 2004.
P. Seeling and M. Reisslein, “Video transport evaluation
with H.264 video traces,” IEEE Communications Surveys and
Tutorials, no. 4, pp. 1-24, 2011.

L. Tionardi and F. Hartanto, “The use of cumulative inter-
frame jitter for adapting video transmission rate,” in Proceed-
ings of the Confernce on Covergent Technologies for the Asia-
Pacific Region (IEEE TENCON ’03), pp. 364-368, October
2003.

R. Mahindra, R. Kokku, H. Zhang, and S. Rangarajan, “MESA:
farsighted flow management for video delivery in broadband
wireless networks,” in Proceedings of the 3rd International Con-
ference on Communication Systems and Networks (COMSNETS
’11), pp. 1-10, January 2011.

D. Gangadharan, H. Ma, S. Chakraborty, and R. Zimmer-
mann, “Video quality-driven buffer dimensioning in MPSoC
platforms via prioritized frame drops,” in Proceedings of the
IEEE 29th International Conference on Computer Design (ICCD
°11), pp. 247-252, 2011.

A. A. Sofokleous and M. C. Angelides, “DCAF: an MPEG-
21 dynamic content adaptation framework,” Multimedia Tools
and Applications, vol. 40, no. 2, pp. 151-182, 2008.

J. Annesley, G. Bise, J. Orwell, and H. Sabirin, “An extension
of the AVC file format for video surveillance,” in Proceedings
of the 3rd ACM/IEEE International Conference on Distributed
Smart Cameras (ICDSC ’09), pp. 1-8, September 2009.

P. Amon, T. Rathgen, and D. Singer, “File format for scalable
video coding,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 17, no. 9, pp. 1174-1185, 2007.

T. L. Lin, J. Shin, and P. Cosman, “Packet dropping for widely
varying bit reduction rates using a network-based packet
loss visibility model,” in Proceedings of the Data Compression
Conference (DCC ’10), pp. 445—454, March 2010.

C. Hu and C. Tu, “Research on P2P incentive mechanism,”
in 2010 International Forum on Information Technology and
Applications (IFITA ’10), vol. 1, pp. 47-50, July 2010.

(39]

[40]

Advances in Multimedia

Y. W. Wong, J. Y. B. Lee, V. O. K. Li, and G. S. H. Chan, “Sup-
porting interactive video-on-demand with adaptive multicast
streaming,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 17, no. 2, pp. 129-141, 2007.

Q. Wei, T. Qin, and S. Fujita, “A two-level caching protocol for
hierarchical peer-to-peer file sharing systems,” in Proceedings
of the IEEE 9th International Symposium on Parallel and
Distributed Processing with Applications (ISPA °11), pp. 195—
200, 2011.

Advances in

Civil Engineering

Journal of

Robotics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

International Journal of

Rotating
Machinery

The Scientific o AR
World Journal §ensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

o --,
» |
-

VLS| Design

Modelling &
International ,‘v'mrma\l\"f Simulation
Navigation and i inaari
Observation inEngine gy

e

77

Active and Passive

Propagation Electronic Components

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

