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Abstract The analysis of entropy generation has received notable attention
in the study of nanofluids because the prime objective of nanofluids is to ad-
mit high heat fluxes. The entropy production can be utilized to generate the
entropy in any irreversible heat transfer process which is important in thermal
machines. This work presents to explore the fluid transport characteristics and
entropy generation of a tangent hyperbolic nanofluid over a horizontal circular
cylinder with the influence of nonlinear Boussinesq approximation. The dimen-
sionless nonlinear partial differential equations have been solved by using an
implicit finite difference Keller box scheme. The impacts of active parameters
on the flow field like Weissenberg number, power-law index, magnetic field,
mixed convection, Brownian motion, thermal convention, thermophoresis and
radiation are illustrated with graphs and tables. The current results exposed
that the nanofluid velocity enhances for enhancing the mixed convection pa-
rameter. Higher values of nonlinear thermal convection parameter declines the
thermal boundary thickness. Total entropy generation decreases for higher val-
ues of Eckert number. Isotherms thickness is escalated with increasing values
of radiation parameter.
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Nomenclature

a radius of the cylinder
B0 strength of the constant magnetic field
Br Brinkman number
C concentration of the fluid
C∗
f skin friction coefficient

(Cp)f specific heat of fluid
CW concentration at the surface
C∞ ambient concentration
DB Brownian diffusion
DT thermophoretic diffusion
Ec Eckert number
g acceleration due to gravity
ka mean absorption coefficient
kf fluid thermal conductivity
LT diffusion parameter
Ma magnetic parameter
na power law index
NB Brownian motion parameter
Nc thermal convection parameter
NG total entropy generation
Nr buoyancy ratio parameter
NT thermophoresis parameters
Nu∗ Nusselt number
Pr Prandtl number
Ra radiation parameter
Re Reynolds number
Sc Schmidt number
Sh∗ Sherwood number
SG dimensional entropy
T temperature of fluid
TW temperature at the surface
T∞ ambient temperature
u∗, v∗ velocity components in x, y directions
u∗e external flow velocity
U∞ free stream velocity
We Weissenberg number
x, y Cartesian coordinates

Greek symbols

αC concentration difference parameter
αT temperature difference parameter
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β0 coefficient of linear thermal expansion
β1 coefficient of nonlinear thermal expansion
Γ material constant
λc mixed convection parameter
µf dynamic viscosity
ρf density of fluid
ρp density of particle
σ electrical conductivity
σB Stefan Boltzmann constant
τ ratio between particle and base fluid
Ψ angle for applied magnetic field

1 Introduction

In recent times, the demand for optimal and efficient energy systems is increas-
ing due to the over exploitation of energy resources. The entropy generation
can be utilized to examine the efficiency of the thermodynamic performance
of energy systems. The concept of entropy generation was initiated by Bejan
[1] by employing the basic laws of thermodynamics, heat transfer process and
fluid mechanics. Generally, convective (free, forced, mixed) heat transfer phe-
nomena is related to two types of losses. The first type of loss is caused by
the heat transfer through a fixed temperature difference and the second type
of loss happens as a consequence of pressure drop in working fluids. These
losses are jointly associated with a single property called entropy generation.
In other words, an entropy generation is the measure of spices disorder of an
energy system. However, several factors like MHD, Joule heating, and diffu-
sion may contribute to irreversibilities which opens the gateway to enhance
the thermal efficiency through entropy generation. Ali et al. [2] investigated
the entropy generation of chemically reacting Cross nanofluid over a stretched
surface with linear radiation and noticed that higher values of Brinkman num-
ber and Lorentz force decrease the Bejan number. Sheikholeslami and Ganji
[3] employed Koo-Kleinstreuer-Li correlation model to analyze the entropy
generation of CuO-water nanofluid in a square enclosure and found that the
entropy generation enhances with an increment in nanoparticle volume frac-
tion. Khan et al. [4] numerically scrutinized the stagnation point flow of a
Carreau nanofluid with entropy generation and observed that the raising val-
ues of diffusive variable augment the entropy generation and Bejan number.
Further studies on entropy generation can be found in Refs [5-14].

Fluids which can express the shear stress and shear rate dependent viscos-
ity are classified as non-Newtonian fluids. Biological materials (blood, saliva),
chemical materials (polymer fluids, pharmaceutical chemicals), food stuffs
(ketchup, yogurt), flow in journal bearings and solar collectors are the examples
of the non-Newtonian fluids which find immense applications in biomedical,
engineering and technology. The conventional form of Navier-Stokes equations
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is not sufficient to elucidate the flow characteristics of non-Newtonian fluids be-
cause of complex rheological properties of non-Newtonian fluids. To overcome
this shortcoming, many researchers had proposed several rheological models
for non-Newtonian fluids such as Cross fluid, Carreau fluid, Maxwell fluid,
Walters B-fluid, Casson fluid and Williamson fluid. Several authors investi-
gated different types of non-Newtonian models in various aspects [15-22]. The
hyperbolic tangent fluid is one of the subclasses of non-Newtonian fluids which
shows shear thinning characteristics (the viscosity of the fluid is decayed as
the shear rate amplifies). Compare to other non-Newtonian fluids, tangent
hyperbolic fluid has a lot of advantages like computational easiness, phys-
ical robustness, and simplicity. Several experimental results reveal that the
tangent hyperbolic fluid model has expressed the exact characteristics of the
shear-thinning phenomenon. Moreover, this fluid model accurately expresses
the rheological properties of blood flow. The hyperbolic tangent fluid has re-
ceived notable attention because it is used to analyze the blood flow through
a tapered artery and fallopian tube. Gaffar et al. [23] employed a non-similar
solution to investigate the heat transfer characteristics of hyperbolic tangent
fluid with the convective heating surface and noticed that the hyperbolic tan-
gent fluid temperature enhances with an increment in Weissenberg number.
Khan et al.[24] utilized Buongiorno nanofluid model to explore the entropy
generation and fluid transport properties of tangent hyperbolic nanofluid over
a sheet and found that the skin friction factor increases for increasing Weis-
senberg number. Nayak et al. [25] examined the importance of activation en-
ergy on tangent hyperbolic nanofluid flow over a permeable Riga plate by
means of thermophoresis and Brownian motion.

In several engineering and industrial manufacturing process, the difference
between the wall and ambient temperatures need not to be small. When the
temperature difference is notable, the fluid transport properties are signifi-
cantly affected. In this case, considering the linear Boussinesq approximation
in the fluid transport equation is incapable which leads to reduce the quality
of the results. Therefore, it is essential to consider the nonlinear Boussinesq
approximation in such cases which certainly contributes to improve the ac-
curacy of the results. It is important to mention that the nonlinear Boussi-
nesq approximation should not be used in low-temperature difference cases.
In addition, engineering, geophysical and astrophysical flows are the relevant
examples of this nonlinear heat convection (Boussinesq approximation). Vasu
et al. [26] discussed entropy generation in the time-dependent mixed convec-
tive flow of a nanofluid in the presence of nonlinear Boussinesq approximation
and noticed that the uplifting convection parameter increases the nanofluid
velocity. Mahanthesh et al. [27] explored the impacts on nonlinear convec-
tion and non-linear radiation on Maxwell nanofluid over a three-dimensional
extending sheet and observed that the x-axis velocity shows an increasing
nature for higher values of mixed convection parameter. Waqas et al. [28]
used Buongiorno nanofluid to manifest the heat and mass transfer character-
istics of magneto-thixotropic nanofluid with an impact of nonlinear convection
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and pointed out that the growing values of the thermophoresis parameter in-
flate the nanofluid temperature and concentration. Patil et al. [29] scrutinized
the hydrogen and oxygen diffusion in nanofluid flow over a roughness cone
using triple nonlinear convection and observed that the skin friction factor
has an oscillating nature for increasing values of roughness surface parameter.
Kameswaran et al. [30] modeled and analyzed the nonlinear convection impact
on the boundary layer flow over a permeable plate and noticed that the rising
values of the nonlinear temperature parameter tend to decline the thickness
of the thermal related boundary layer. The term nanofluid was originated by
Choi and Eastman [31] and this fluid is acquired by the dilute suspension of
nanometer (1-100 nm)-size solid particles in regular fluids (oil, water etc.). It
is observed that the heat transfer efficiency of ordinary fluids is highly en-
hanced with the inclusion of particles like ZnO, Cu, SiO2, T iO2, CuO and
Al2O3[32-36]. Numerous models have been yielded by researchers to look into
the nanofluids, in which the Tiwari and Das model and Buongiorno model are
notable. The Tiwari and Das [37] model proposes the behavior of nanofluid
with the use of solid volume fraction. In the nanofluid, a nonhomogeneous
symmetrical model of four equations of two-components for fluid transport
using the influence of slip mechanisms (thermophoresis and Brownian move-
ment) was proposed by Buongiorno [38].

To the best of the authors knowledge, no effort has been made to explore
the entropy analysis on hyperbolic tangent nanofluid with nonlinear Boussi-
nesq approximation over a circular cylinder. So, the prime intention of the
present model is to exhibit the fluid flow and heat transfer characteristics of
hyperbolic tangent nanofluid over a horizontal circular cylinder in existence
of nonlinear convection. It is noticed that the mixed convection flow of non-
Newtonian nanofluid over a heated horizontal cylinder has notable uses in the
geological and industrial process such as geothermal reservoirs, thermal recov-
ery of oil, drag reduction, coating of wires, thrust bearing, underground nuclear
waste storage sites and assessment of aquifers. The system of fluid transport
equations is solved numerically by using unconditionally stable implicit finite
difference Keller box method. Influence of diverse pertinent parameters on
the velocity, temperature, concentration and entropy generation are analyzed
through the graphs.

2 Mathematical Formulation

The schematic view of geometry for the present problem is manifested in Fig-
ure 1 which is modeled in a two-dimensional Cartesian coordinate system. The
magnetic field strength is assumed to be uniform and is applied parallel to the
fluid motion. The coordinates x and y are taken along the circumference of
the cylinder and normal to the cylinder, respectively. a is the radius of the
cylinder. Changes in density for the buoyancy term is determined by employ-
ing nonlinear Boussinesq approximation. The constant temperature (TW ) and
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Fig. 1 Physical configuration of the geometry.

concentration (CW ) of the wall is presumed to be greater than the ambient
temperature (T∞) and ambient concentration (C∞), respectively. Buongiorno
nanofluid model is employed to express the momentum, energy and concen-
tration equations. In addition, the following assumptions are taken into con-
sideration.

– Laminar, steady, incompressible, mixed convective flow of tangent hyper-
bolic nanofluid over a circular cylinder is considered.

– The body force is implemented in the momentum equation.
– The induced magnetic field strength is smaller compared to external mag-

netic field, so it is neglected.
– Tangent hyperbolic nanofluid dissipation and Joule heating are considered

in the energy equation.

Based on these assumptions, the flow of tangent hyperbolic nanofluid is gov-
erned by the following equations [4, 15, 23, 26 and 27]

∂u∗

∂x
+
∂v∗

∂y
= 0, (1)

u∗
∂u∗

∂x
+ v∗

∂u∗

∂y
= u∗e

du∗e
dx

+ νf (1− na)
∂2u∗

∂y2
+ νf na Γ

√
2

(
∂u∗

∂y

)
∂2u∗

∂y2

+
[

(1− C∞) ρf β0g (T − T∞) + (1− C∞) ρf β1g(T − T∞)
2
]

sin
(x

a

)

,

−g (ρp − ρf ) (C − C∞) sin
(x

a

)

−
σB2

0

ρf
sin2Ψ (u∗ − u∗e) (2)

u∗
∂T

∂x
+ v∗

∂T

∂y
=

kf

(ρCp)f

∂2T

∂y2
+ τ

[

DB
∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+
µf

(ρCp)f
(1− na)

(
∂u∗

∂y

)2

+
µf

(ρCp)f

naΓ√
2

∂u∗

∂y

(
∂u∗

∂y

)2
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−
1

(ρCp)f

∂qr

∂y
+

σB2
0

(ρCp)f
sin2Ψ (u∗)

2
, (3)

u∗
∂C

∂x
+ v∗

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
. (4)

The boundary conditions of this model are as follows

u∗ = 0, v∗ = 0, T = TW , C = CW at y = 0,
u∗ → u∗e, T → T∞, C → C∞ as y → ∞.

}

(5)

According to Rashad et al. [39], external flow (u∗e) of the fluid transport
equation can be expresses as u∗e =sin

(
x
a

)
U∞.

The radiative heat flux [27] is expressed as

qr = −
4

3

σB

ka

(
∂T 4

∂y

)

= −
16

3

σBT
3
∞

ka

(
∂T

∂y

)

, (6)

Suitable non-similarity variables are expressed as follows

ξ = x
a , η =

√
Re

(
y
a

)
, u = u∗

U∞

, v =
√
Re

(
v∗

U∞

)

, ue (ξ) =
u∗

e(x)
U∞

,

T = T∞ + θ (TW − T∞) , C = C∞ + φ (CW − C∞) .

}

(7)

where Re = aU∞

νf
.

By implementing the above variables, Eqns. (1)-(4) are transformed as

∂u

∂ξ
+
∂v

∂η
= 0, (8)

u
∂u

∂ξ
+ v

∂u

∂η
= ue

due

dξ
+ (1− na)

∂2u

∂η2
+ naWe

∂u

∂η

∂2u

∂η2

−Masin
2Ψ (u− ue) + λc

(
θ +Ncθ

2 −Nrφ
)
sin ξ, (9)

u
∂θ

∂ξ
+ v

∂θ

∂η
=

1

Pr

(

1 +
4

3
Ra

)
∂2θ

∂η2
+NB

∂θ

∂η

∂φ

∂η
+NT

(
∂θ

∂η

)2

+MaEcsin
2Ψ(u)

2
+ Ec (1− na)

(
∂u

∂η

)2

+ Ec
naWe

2

∂u

∂η

(
∂u

∂η

)2

, (10)

u
∂φ

∂ξ
+ v

∂φ

∂η
=

1

Sc

[
∂2φ

∂η2
+
NT

NB

∂2θ

∂η2

]

. (11)

with the corresponding boundary conditions

u = 0, v = 0, θ = 1, φ = 1 at η = 0,
u→ ue, θ → 0, φ→ 0 as η → ∞.

}

(12)

where λc = (1−C∞)gβ0(TW−T∞)a
U2

∞

, We = Γ
√
Re

√
2U∞

a , Pr =
νf

α∗
, Ma =

σB2
0a

U∞ρf
,

Nc =
β1(TW−T∞)

β0
, Nr =

(ρp−ρf )(CW−C∞)
(1−C∞)ρfβ0(TW−T∞) , Ec =

U2
∞

(Cp)f (TW−T∞) , NB =
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τDB(CW−C∞)
νf

, Ra =
4σBT

3
∞

kakf
, NT = τDB(TW−T∞)

νfT∞

and Sc =
νf

DB
.

To expresses the flow equations with the boundary conditions in dimen-
sionless form, ψ = ξ f (ξ, η) , θ = θ (ξ, η) , φ = φ (ξ, η) are assumed according
to Rashad et al. [39], where ψ is the stream function which is defined as

u = ∂(ψ(ξ,η))
∂η & v = −∂(ψ(ξ,η))

∂ξ .

(1− na) f
′′′ + naWef ′′′ f ′′ + ff ′′ − (f ′)

2
+

sin ξ cos ξ

ξ
−Masin

2Ψ

(

1−
sin ξ

ξ

)

+ λc
sin ξ

ξ

(
θ +Ncθ

2 −Nrφ
)
= ξ

[

f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

]

, (13)

1

Pr

[

1 +
4

3
Ra

]

θ′′ + fθ′ +NBθ
′φ′ +NT (θ

′)
2
+ Ecξ

2Msin2Ψ (f ′)
2

+Ecξ
2 (1− na) (f

′′)
2
+ Ecξ

3na
We

2
(f ′′)

3
= ξ

[

f ′
∂θ

∂ξ
− θ′

∂f

∂ξ

]

, (14)

1

Sc

[

φ′′ +
NT

NB
θ′′

]

+ fφ′ = ξ

[

f ′
∂φ

∂ξ
− φ′

∂f

∂ξ

]

. (15)

along with the transformed boundary conditions

f = f ′ = 0, θ = φ = 1 at η = 0,
f ′ → 1, θ → 0, φ→ 0 as η → ∞.

}

(16)

Table 1 Comparison result of Nu∗ for various values of ξ with Pr=0.71,Ra = 0, Ma=0.5,
Sc=0.6, We=ue=Nr=Ec=na=NB=NT=Nc=0,Ψ = 90◦

ξ Nu∗(Gr)−1/4 = −θ′ (ξ, 0)
Merkin[40] Yih[41] Prasad et al.[22] Present

0.0 0.4212 0.4214 0.4211 0.4211
0.2 0.4204 0.4207 0.4206 0.4206
0.4 0.4182 0.4184 0.4185 0.4185
0.6 0.4145 0.4147 0.4146 0.4146
0.8 0.4093 0.4096 0.4095 0.4095
1.0 0.4025 0.4030 0.4027 0.4027

At the wall, the dimensionless forms of skin friction factor
(

C∗
f

)

, heat

transfer rate (Nu∗) and mass transfer rate (Sh∗) are defined as

C∗
f

(
Gr−3/4

)
= (1− na) ξf

′′ (ξ, 0) + na

2 Weξ(f ′′ (ξ, 0))
2
,

Nu∗
(
Gr−1/4

)
= −

(
1 + 4

3Ra
)
θ′ (ξ, 0) ,

Sh∗
(
Gr−1/4

)
= −φ′ (ξ, 0) .






(17)
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2.1 Entropy generation

The dimensional form of entropy generation for nanofluid can be written as
follows [22 and 24]:

SG =
kf

T∞
2

(

1 +
16σBT

3
∞

3kfka

)(
∂T

∂y

)2

︸ ︷︷ ︸

Thermal irreversibility

+
RD

C∞

(
∂C

∂y

)2

+
RD

T∞

(
∂T

∂y

∂C

∂y

)

︸ ︷︷ ︸

Mass irreversibility

+
µf

T∞

[

(1− na)

(
∂u∗

∂y

)2

+
naΓ√

2

∂u∗

∂y

(
∂u∗

∂y

)2
]

︸ ︷︷ ︸

Tangent hyperbolic nanofluidfrictionirreversibility

+
σ

T∞
B2

0sin
2Ψ(u∗)

2

︸ ︷︷ ︸

Joule heating irreversibility

,

(18)

where, D is the mass diffusivity and R is the constant.

Using Eqn. (7) in Eqn. (18), the transformed expression for entropy gen-
eration is

NG = αT
(
1 + 4

3Ra
) (

∂θ
∂η

)2

+Br (1− na)
(
∂u
∂η

)2

+Br naWe
2

∂u
∂η

(
∂u
∂η

)2

+MaBr sin
2Ψ(u)

2
+ LT

(
αC

αT

)(
∂φ
∂η

)2

+ LT
∂θ
∂η

∂φ
∂η ,

(19)

whereNG = SGT∞a
kf (TW−T∞)Re , αT = TW−T∞

T∞

, αC = CW−C∞

C∞

, LT = RD(CW−C∞)
kf

and Br =
µfU

2
∞

kf (TW−T∞) .

Employing ψ, θ and φ function for dimensionless form of total entropy
generation

NG = αT
(
1 + 4

3Ra
)
(θ′)

2
+Brξ2 (1− na) (f

′′)
2
+Brξ3 naWe

2 (f ′′)
3

+MaBrξ
2 sin2Ψ(f ′)

2
+ LT

(
αC

αT

)

(φ′)
2
+ LT θ

′ φ′.
(20)

Further, Bejan number is expressed as the ratio between entropy genera-
tion due to heat and mass transfer and total entropy generation

Be =
αT

(
1 + 4

3Ra
)
(θ′)

2
+ LT

(
αC

αT

)

(φ′)
2
+ LT θ

′φ′

αT
(
1 + 4

3Ra
)
(θ′)

2
+Brξ2 (1− na) (f

′′)
2

+Brξ3 naWe
2 (f ′′)

3
+MaBrξ

2sin2Ψ(f ′)
2

+LT

(
αC

αT

)

(φ′)
2
+ LT θ

′φ′







= NG

(21)
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Table 2 Impacts of na and Nc on local skin friction coefficient
(
C∗

f

)
, dimensionless local

rate of heat transfer (Nu∗) and dimensionless local rate of mass transfer for various values
of ξ.

Physical Values Physical ξ CPU
Parameters Quantities 0 0.2 0.4 0.6 0.8 1 time(Sec.)

C∗

f
0 0.3803 0.7283 1.0230 1.2482 1.3938

0.1 Nu∗ 1.1063 1.0954 1.0738 1.0421 1.0010 0.9514 10.848590
Sh∗ 0.8271 0.8201 0.8061 0.7853 0.7578 0.7239
C∗

f
0 0.3672 0.7013 0.9810 1.1906 1.3208

na 0.3 Nu∗ 1.1097 1.0992 1.0783 1.0475 1.0075 0.9589 11.069575
Sh∗ 0.8291 0.8225 0.8093 0.7897 0.7636 0.7314
C∗

f
0 0.3542 0.6744 0.9393 1.1334 1.2482

0.5 Nu∗ 1.1132 1.1031 1.0829 1.0530 1.0139 0.9664 11.046161
Sh∗ 0.8314 0.8252 0.8127 0.7940 0.7693 0.7387
C∗

f
0 0.3348 0.6346 0.8777 1.0487 1.1401

0.8 Nu∗ 1.1188 1.1092 1.0899 1.0612 1.0236 0.9777 11.207880
Sh∗ 0.8354 0.8296 0.8180 0.8008 0.7779 0.7495
C∗

f
0 0.3672 0.7013 0.9810 1.1906 1.3208

0.1 Nu∗ 1.1097 1.0992 1.0783 1.0475 1.0075 0.9589 10.820276
Sh∗ 0.8291 0.8225 0.8093 0.7897 0.7636 0.7314
C∗

f
0 0.4042 0.7741 1.0876 1.3280 1.4855

Nc 0.5 Nu∗ 1.1257 1.1154 1.0949 1.0647 1.0254 0.9779 11.010522
Sh∗ 0.8469 0.8405 0.8279 0.8090 0.7841 0.7533
C∗

f
0 0.4499 0.8639 1.2189 1.4973 1.6879

1.0 Nu∗ 1.1445 1.1343 1.1142 1.0845 1.0459 0.9994 11.057783
Sh∗ 0.8674 0.8613 0.8492 0.8312 0.8075 0.7782
C∗

f
0 0.4950 0.9526 1.3485 1.6641 1.8871

1.5 Nu∗ 1.1620 1.1520 1.1321 1.1028 1.0647 1.0188 10.904997
Sh∗ 0.8864 0.8805 0.8689 0.8516 0.8288 0.8006

3 Numerical method and code validation

The dimensionless equations under the suitable conditions are solved numer-
ically using unconditionally stable implicit finite difference scheme which is
known as the Keller box method (KBM). The present numerical scheme is
second-order accurate for the boundary layer problem which is represented
using parabolic type partial differential equations(PDEs). The procedure to
obtain the solution by using the Keller box method is given below

– The nth order dimensionless equations are transformed into n first order
dimensionless equations.

– The transformed n first order equations are discretized by employing cen-
tral differences approach.

– The algebraic equations are linearized by means of Newton’s method.
– The results are obtained by using the block matrix system (block tri-

diagonal elimination technique).

Step 1:

We have considered a new set of variables u (ξ, η), v (ξ, η), s (ξ, η), t (ξ, η), g (ξ, η), p (ξ, η)
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to transform the nth order dimensionless equations into the first order dimen-
sionless equations, which depends on ξ and η.

f = f, f ′ = u, u′ = v, θ = s, s′ = t, φ = g, g′ = p (22)

(1− na) ξv
′ + naWeξv′v + f v − u2 +

sin ξ cos ξ

ξ
−Masin

2Ψ

(

u−
sin ξ

ξ

)

+ λc
sin ξ

ξ

(
s+Ncs

2 −Nrg
)
= ξ

[

u
∂u

∂ξ
− v

∂f

∂ξ

]

, (23)

1

Pr

[

1 +
4

3
Ra

]

t′ +NT t
2 +NBt p+MaEcξ

2sin2Ψ(u)
2
+ f t

Ec (1− na) ξ
2v2 + Ec

naWe

2
ξ3v3 = ξ

[

u
∂s

∂ξ
− t

∂f

∂ξ

]

, (24)

1

Sc

[

p′ +
NT

NB
t′
]

+ fp = ξ

[

u
∂g

∂ξ
− p

∂f

∂ξ

]

. (25)

with the boundary conditions

η = 0 : u = 0, f = 0, s = 1, g = 1 (26)

η → ∞ : u→ 1, s = 0, g = 0

Step 2:

The net point of x and y plane is expressed as

ξ0 = 0, ξi = ξi−1 + ki, i = 1, 2, 3...I, (27)

η0 = 0, ηj = ηj−1 + hj , j = 1, 2, 3...J. (28)

where ki is ∆ξ spacing in the ith node and hj is ∆η spacing in jth node.

(
∂ ()

∂ξ

)i− 1
2

j− 1
2

=
()
i
j− 1

2
− ()

i−1
j− 1

2

ki
,

(
∂ ()

∂η

)i− 1
2

j− 1
2

=
()
i− 1

2
j − ()

i− 1
2

j−1

hj

()
i− 1

2
j =

()
i−1
j − ()

i
j

2
, ()

i
j− 1

2
=

()
i
j−1 − ()

i
j

2

The midpoint
(

ξi, ηj− 1
2

)

is considered between the segments
(
ξi, ηj−1

) (
ξi, ηj

)

by using central difference approximation

f ′ = u ⇒ uij− 1
2
=
uij + uij−1

2
=

(
f ij − f ij−1

)

hj
, (29)

u′ = v ⇒ vij− 1
2
=
vij + vij−1

2
=

(
uij − uij−1

)

hj
, (30)
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s′ = t⇒ tij− 1
2
=
tij + tij−1

2
=

(
sij − sij−1

)

hj
, (31)

g′ = p⇒ pij− 1
2
=
pij + pij−1

2
=

(
gij − gij−1

)

hj
, (32)

First order PDEs Eqns. (23)-(25) are approximated by centering the rect-

angle points (P1, P2, P3, andP4) at
(

ξi−
1
2 , ηj− 1

2

)

(
vij−v

i
j−1

hj

)

(1− na) ξ + naWeξ vij−1/2

(
vij−v

i
j−1

hj

)

+(1 + α)
(

f ij−1/2v
i
j−1/2

)

− (1 + α)
(

uij−1/2

)2

−
(
Masin

2Ψ
)
uij−1/2

+Masin
2Ψ2B + 2H + λcB

(

sij−1/2 +Nc

(

sij−1/2

)2

−Nrg
i
j−1/2

)

+αvi−1
j−1/2f

i
j−1/2 − αf i−1

j−1/2v
i
j−1/2

= −












(
vij−v

i
j−1

hj

)

(1− na) ξ + naWeξ vij−1/2

(
vij−v

i
j−1

hj

)

+(1− α)
(

f i−1
j−1/2v

i−1
j−1/2

)

+ (α− 1)
(

ui−1
j−1/2

)2

+λcB

(

sij−1/2 +Nc

(

sij−1/2

)2

−Nrg
i
j−1/2

)

−
(
Masin

2Ψ
)
ui−1
j−1/2


















(33)

1
Pr

[
1 + 4

3Ra
] ( tij−t

i
j−1

hj

)

+NB

(

tij−1/2p
i
j−1/2

)

+NT

(

tij−1/2

)2

+MaEcsin
2Ψξ2

(

uij−1/2

)2

+ Ec (1− na) ξ
2
(

vij−1/2

)2

+Ec
naWe

2 ξ3
(

vij−1/2

)3

− αui−1
j−1/2s

i
j−1/2 − αf i−1

j−1/2t
i
j−1/2

+αti−1
j−1/2f

i
j−1/2 + (1 + α)

(

f ij−1/2t
i
j−1/2

)

−α
(

uij−1/2s
i
j−1/2

)

+ αsi−1
j−1/2u

i
j−1/2

= −












1
Pr

[
1 + 4

3Ra
] ( tij−t

i
j−1

hj

)

+NB

(

tij−1/2p
i
j−1/2

)

+MaEcsin
2Ψξ2

(

uij−1/2

)2

+ Ec (1− na) ξ
2
(

vij−1/2

)2

+Ec
naWe

2 ξ3
(

vij−1/2

)3

+NT

(

tij−1/2

)2

+(1− α)
(

f i−1
j−1/2t

i−1
j−1/2

)

+ α
(

ui−1
j−1/2s

i−1
j−1/2

)


















(34)

1
Sc

(
pij−p

i
j−1

hj

)

+ 1
Sc

(
NT

NB

)(
tij−t

i
j−1

hj

)

+(1 + α)
(

f ij−1/2p
i
j−1/2

)

− α
(

uij−1/2g
i
j−1/2

)

+ αgi−1
j−1/2u

i
j−1/2

−αui−1
j−1/2g

i
j−1/2 − αf i−1

j−1/2p
i
j−1/2 + αpi−1

j−1/2f
i
j−1/2

= −





1
Sc

(
pij−p

i
j−1

hj

)

+ 1
Sc

(
NT

NB

)(
tij−t

i
j−1

hj

)

+(1− α)
(

f i−1
j−1/2p

i−1
j−1/2

)

+ α
(

ui−1
j−1/2g

i−1
j−1/2

)











(35)
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where α = ξn−1/2

kn
, B =

sin(ξn−1/2)
ξn−1/2 and H =

sin(ξn−1/2) cos(ξn−1/2)
ξn−1/2 .

subject to the boundary conditions

f i0 = ui0 = 0, si0 = 1, gi0 = 1, uiJ → 1, siJ = 0, giJ = 0 (36)

Step 3:

The unknowns (f ij , u
i
j , v

i
j , g

i
j , p

i
j , s

i
j , t

i
j) are calculated by using the known

values of f i−1
j , ui−1

j , vi−1
j , gi−1

j , pi−1
j , si−1

j , ti−1
j where 0 ≤ j ≤ J.

The unknowns are assumed as (f ij , u
i
j , v

i
j , g

i
j , p

i
j , s

i
j , t

i
j) ≡ (fj , uj , vj , gj , pj , sj , tj).

The set of central difference equations are expressed as

uj + uj−1

2
=
fj − fj−1

hj
, (37)

vj + vj−1

2
=
uj − uj−1

hj
, (38)

tj + tj−1

2
=
sj − sj−1

hj
, (39)

pj + pj−1

2
=
gj − gj−1

hj
, (40)

(vj − vj−1) (1− na) ξ + naWeξ
(vj+vj−1)

2 (vj − vj−1) + 2hjH

+
(1+α)hj

4 [(fj + fj−1) (vj + vj−1)]−
hj

4 (1 + α) (uj + uj−1)
2

−hj

2

(
Masin

2Ψ
)
(uj + uj−1) + hjMasin

2Ψ 2B

−αhj

2 f i−1
j−1/2 (vj + vj−1) +

αhj

2 vi−1
j−1/2 (fj + fj−1)

+
λcBhj

2

[

(sj + sj−1) +Nc
(sj+sj−1)

2

2 −Nr (gj + gj−1)
]

= [E1]
i−1
j−1/2







(41)

1
Pr

[
1 + 4

3Ra
]
(tj − tj−1) +

NB

4 hj (tj + tj−1) (pj + pj−1)

+MaEc

4 hjsin
2Ψξ2(uj + uj−1)

2
+ Ec

4 hj (1− na) ξ
2(vj + vj−1)

2

+Ecna

16 Wehjξ
3(vj + vj−1)

3
+ NT

4 hj(tj + tj−1)
2

+
(1+α)hj

4 (fj + fj−1) (tj + tj−1)−
αhj

4 [(uj + uj−1) (sj + sj−1)]

+
αhj

2 si−1
j−1/2 (uj + uj−1)−

αhj

2 ui−1
j−1/2 (sj + sj−1)

−αhj

2 f i−1
j−1/2 (tj + tj−1) +

αhj

2 ti−1
j−1/2 (fj + fj−1) = [E2]

i−1
j−1/2







(42)

1
Sc (pj − pj−1) +

1
Sc

NT

NB
(tj − tj−1)

+
(1+α)hj

4 [(fj + fj−1) (pj + pj−1)]−
αhj

4 [(uj + uj−1) (gj + gj−1)]

+
αhj

2 gi−1
j−1/2 (uj + uj−1)−

αhj

2 ui−1
j−1/2 (gj + gj−1)

−αhj

2 f i−1
j−1/2 (pj + pj−1) +

αhj

2 pi−1
j−1/2 (fj + fj−1) = [E3]

i−1
j−1/2







(43)
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where,

[E1]
i−1
j−1/2 = −hj











(
vj−vj−1

hj

)

(1− na) ξ + naWeξvj−1/2

(
vj−vj−1

hj

)

+(1− α)
(

fj−1/2vj−1/2

)

+ (α− 1)
(

uj−1/2

)2

+λcB

(

sj−1/2 +Nc

(

sj−1/2

)2

−Nrgj−1/2

)

−
(
Masin

2Ψ
)
uj−1/2











(44)

[E2]
i−1
j−1/2 = −hj











1
Pr

[
1 + 4

3Ra
] ( tj−tj−1

hj

)

+NB

(

tj−1/2pj−1/2

)

+MaEcsin
2Ψξ2

(

uj−1/2

)2

+ Ec (1− na) ξ
2
(

vj−1/2

)2

+Ec
naWe

2 ξ3
(

vj−1/2

)3

+NT

(

tj−1/2

)2

+(1− α)
(

fj−1/2tj−1/2

)

+ α
(

uj−1/2sj−1/2

)











(45)

[E3]
i−1
j−1/2 = −hj





1
Sc

(
pj−pj−1

hj

)

+ 1
Sc

(
NT

NB

)(
tj−tj−1

hj

)

+(1− α)
(

fj−1/2pj−1/2

)

+ α
(

uj−1/2gj−1/2

)



 (46)

[E1]
i−1
j−1/2 , [E2]

i−1
j−1/2 and [E3]

i−1
j−1/2 are the known quantities.

To linearize the nonlinear system of equations using Newtons method, the
following iterates are introduced

ωf
(n)
j = f

(n+1)
j − f

(n)
j , (47)

ωu
(n)
j = u

(n+1)
j − u

(n)
j , (48)

ωv
(n)
j = v

(n+1)
j − v

(n)
j , (49)

ωs
(n)
j = s

(n+1)
j − s

(n)
j , (50)

ωt
(n)
j = t

(n+1)
j − t

(n)
j , (51)

ωg
(n)
j = g

(n+1)
j − g

(n)
j , (52)

ωp
(n)
j = p

(n+1)
j − p

(n)
j (53)

Implementing the above mentioned expressions in Eqns. (37)-(43) and
omitting higher-orders of ω, the following equations are obtained

ωfj − ωfj−1 −
hj

2
ωuj −

hj

2
ωuj−1 − (e1)j = 0 (54)

ωuj − ωuj−1 −
hj

2
ωvj −

hj

2
ωvj−1 − (e2)j = 0 (55)

ωsj − ωsj−1 −
hj

2
ωtj −

hj

2
ωtj−1 − (e3)j = 0 (56)
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ωgj − ωgj−1 −
hj

2
ωpj −

hj

2
ωpj−1 − (e4)j = 0 (57)

(a1)jωvj + (a2)jωvj−1 + (a3)jωfj + (a4)jωfj−1 + (a5)jωuj

+(a6)jωuj−1 + (a7)jωsj + (a8)jωsj−1

+(a9)jωgj + (a10)jωgj−1 − (e5)j−1/2 = 0, (58)

(b1)jωtj + (b2)jωtj−1 + (b3)jωfj + (b4)jωfj−1

+(b5)jωuj + (b6)jωuj−1 + (b7)jωsj + (b8)jωsj−1

+(b9)jωvj + (b10)jωvj−1 + (b11)jωpj + (b12)jωpj−1 = 0 (59)

(c1)jωpj + (c2)jωpj−1 + (c3)jωfj + (c4)jωfj−1 + (c5)jωuj + (c6)jωuj−1

+(c7)jωgj + (c8)jωgj−1 + (c9)jωtj + (c10)jωtj−1 − (e7)j−1/2 = 0, (60)

where,

(a1)j = (1− na) ξ + naWeξvj−1/2 + hj

[
1 + α

2
fj−1/2 −

α

2
hjf

n−1
j−1/2

]

,

(a2)j = − (1− na) ξ − naWeξvj−1/2 + hj

[
1 + α

2
fj−1/2 −

α

2
hjf

n−1
j−1/2

]

,

(a3)j = hj

[
(1 + α)

2
vj−1/2 +

α

2
vn−1
j−1/2

]

,

(a4)j = (a3)j ,

(a5)j = hj

[

− (1 + α)uj−1/2 −
Ma

2
sin2Ψ

]

,

(a6)j = (a5)j ,

(a7)j = hj
λcB

2
+ hj λcBNc sj−1/2,

(a8)j = (a7)j ,

(a9)j = −
B

2
hjNr,

(a10)j = (a9)j ,

(b1)j =
1

Pr

[

1 +
4

3
Ra

]

+ hj

[

NT tj−1/2 +
NB

2
pj−1/2 +

1 + α

2
fj−1/2 −

α

2
fn−1
j−1/2

]

,

(b2)j = −
1

Pr

[

1 +
4

3
Ra

]

+ hj

[

NT tj−1/2 +
NB

2
pj−1/2 +

1 + α

2
fj−1/2 −

α

2
fn−1
j−1/2

]

,

(b3)j = hj

[
(1 + α)

2
tj−1/2 +

α

2
tn−1
j−1/2

]

,

(b4)j = (b3)j ,

(b5)j = hj

[

MaEc sin
2Ψ uj−1/2 −

α

2
sj−1/2 +

α

2
sn−1
j−1/2

]

,

(b6)j = (b5)j ,

(b7)j = hj

[

−
α

2
uj−1/2 −

α

2
un−1
j−1/2

]

,

(b8)j = (b7)j ,
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(b9)j = hj

[

Ec (1− na) ξ
2 vj−1/2 +

Ec naWe

2
ξ3

(
vj−1/2

)2
]

,

(b10)j = (b9)j

(b11)j = hj

[
NB

2
tj−1/2

]

,

(b12)j = hj

[
NB

2
tj−1/2

]

(c1)j =
1

Sc
+ hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]

,

(c2)j = −
1

Sc
+ hj

[
(1 + α)

2
fj−1/2 −

α

2
fn−1
j−1/2

]

,

(c3)j = hj

[
(1 + α)

2
pj−1/2 +

α

2
pn−1
j−1/2

]

,

(c4)j = (c3)j ,

(c5)j = hj

[

−
α

2
gj−1/2 +

α

2
gn−1
j−1/2

]

,

(c6)j = (c5)j ,

(c7)j = hj

[

−
α

2
uj−1/2 −

α

2
un−1
j−1/2

]

,

(c8)j = (c7)j ,

(c9)j =
1

Sc

NT

NB
,

(c10)j = −(c9)j ,

(e5)j−1/2 = (vj−1 − vj)
[
(1− na) ξ + naWeξvj−1/2

]
− hj (1 + α) fj−1/2

vj−1/2 + (1 + α)hj
(
uj−1/2

)2
+Ma hjsin

2Ψ uj−1/2 −Masin
2Ψ 2B hj

−2H hj − λcB hj

[

sj−1/2 +Nc
(
sj−1/2

)2 −Nr gj−1/2

]

+αhj vj−1/2f
n−1
j−1/2 − αhjfj−1/2v

n−1
j−1/2 + (E1)

i−1
j−1/2 (61)

(e6)j−1/2 = (tj−1 − tj)

[
1

Pr

(

1 +
4

3
Ra

)]

−NBhjtj−1/2pj−1/2 −NThj
(
tj−1/2

)2

−hjMa ξ
2Ec sin

2Ψ
(
u

j−1/2

)2 − Ec (1− na) ξ
2hj

(
v
j−1/2

)2 − Ec na
We

2
ξ3 hj

(
v
j−1/2

)3

− (1 + α)hjfj−1/2tj−1/2 + hjαuj−1/2sj−1/2 − αhjs
n−1
j−1/2uj−1/2

+αhju
n−1
j−1/2sj−1/2 + αhjf

n−1
j−1/2tj−1/2,−αhjtn−1

j−1/2fj−1/2, (62)

(e7)j−1/2 =
1

Sc
(pj−1 − pj)− (1 + α)hjfj−1/2pj−1/2

+hjαuj−1/2gj−1/2 − αhjg
n−1
j−1/2uj−1/2 + αhju

n−1
j−1/2gj−1/2 + αhjf

n−1
j−1/2pj−1/2
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−αhjpn−1
j−1/2fj−1/2 +

[
1

Sc

NT

NB

]

(tj−1 − tj) + (E3)
i−1
j−1/2 . (63)

The boundary conditions Eqn. (36) become

ωf0 = 0, ωu0 = 0, ωsn0 = 0, ωg0 = 0,
ωuJ = 0, ωsJ = 0, ωgJ = 0, fn0 = un0 = 0,
sn0 = 1, gn0 = 1, unJ = 0, snJ = 0, gnJ = 0






(64)

Step 4:

The block-elimination method is used to compute the linearized difference
Eqns. (47)-(56) which is outlined by Cebeci and Pradshaw [42].

Aω = e (65)

where,

A =
















[A1] [C1]
[B2] [A2] [C2]

. . .

. . .

. . .

[BJ−1] [AJ−1] [CJ−1]
[BJ ] [CJ ]
















, (66)

ω =














[ω1]
[ω2]

...

[ωJ−1]
[ωJ ]














, e =














[e1]
[e2]

...

[eJ−1]
[eJ ]














. (67)

The elements of the matrices are as follows

[A1] =













0 0 0 1 0 0 0

−hj

2 0 0 0 −hj

2 0 0

0 −hj

2 0 0 0 −hj

2 0

0 0 −hj

2 0 0 0 −hj

2
(a2)1 0 0 (a3)1 (a1)1 0 0
(b10)1 (b12)1 (b2)1 (b3)1 (b9)1 (b11)1 (b1)1

0 (c2)1 (c10)1 (c3)1 0 (c1)1 (c9)1













, (68)
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[AJ ] =














−hj

2 0 0 1 0 0 0

−1 0 0 0 −hj

2 0 0

0 −1 0 0 0 −hj

2 0

0 0 −1 0 0 0 −hj

2
(a6)j (a10)j (a8)j (a3)j (a1)j 0 0

(b6)j 0 (b8)j (b3)j (b9)j (b11)j (b1)j
(c6)j (c8)j 0 (c3)j 0 (c1)j (c9)j














, 2 ≤ j ≤ J (69)

[BJ ] =














0 0 0 −1 0 0 0

0 0 0 0 −hj

2 0 0

0 0 0 0 0 −hj

2 0

0 0 0 0 0 0 −hj

2
0 0 0 (a4)j (a2)j 0 0

0 0 0 (b4)j (b10)j (b12)j (b2)j
0 0 0 (c4)j 0 (c2)j (c10)j














, 2 ≤ j ≤ J (70)

[CJ ] =













−hj

2 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

(a5)j (a9)j (a7)j 0 0 0 0

(b5)j 0 (b7)j 0 0 0 0

(c5)j (c7)j 0 0 0 0 0













, 1 ≤ j ≤ J − 1 (71)

[ω1] =













ωv0
ωp0
ωt0
ωf1
ωv1
ωp1
ωt1













, [ωj ] =













ωuj−1

ωgj−1

ωsj−1

ωfj
ωvj
ωpj
δtj













, 2 ≤ j ≤ J (72)

and [ej ] =














(e1)j−(1/2)

(e2)j−(1/2)

(e3)j−(1/2)

(e4)j−(1/2)

(e5)j−(1/2)

(e6)j−(1/2)

(e7)j−(1/2)














, 1 ≤ j ≤ J (73)

In the present problem, we have fastened the ξ and η maximums as 1
and 30, respectively. The difference between the special nodes is taken as 0.05
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Fig. 2 Solution approach by computer, boundary layer mesh and Keller box element .

in both directions for the solution convergence. It is noteworthy to mention
that the parabolic boundary layer is meshed as (20 × 600). To increase the
accuracy of the present solution, the convergence criterion is fixed as 10−6 at
all gird points. Comparison results of Nu∗ for various values of ξ are illustrated
in Table 1. It is observed from this table that present results show a good
accordance with the results obtained by Merkin [40], Yih[41], and Prasad et
al.[22] which depicts that the obtained numerical solution is precise. Tables
2, 3 and 4 manifest the skin friction factor, rate of heat and mass transfer
of active parameters. Figure 2 displays the solution approach by computer,
boundary layer mesh and Keller box element.

4 Results and discussion

This current section is aimed to visualize the influence of emerging param-
eters like Weissenberg number (We = 0, 1, 2, 3), power law index (na =
0.1, 0.3, 0.5, 0.7), magnetic field (Ma = 0.5, 1.0, 1.5, 2.0), angle of inclination
(Ψ = π

5 ,
π
4 ,

π
3 ,

π
2 ), mixed convection parameter (λc = 1, 3, 7, 10), Eckert number

(Ec = 0.01, 0.1, 0.3, 0.5), thermal convention parameter (Nc = 0.1, 0.5, 1, 1.5),
Brownian motion (NB = 0.3, 0.5, 0.7, 0.9), thermophoresis (NT=0.01,0.1,0.3,0.5)
and radiation (Ra=0.0,0.5,1.0,1.5) on velocity (f ′), temperature (θ), concen-
tration (φ), skin friction factor (C∗

f ), rate of heat transfer (Nu∗) and rate
of mass transfer (Sh∗). Dimensionless form of the flow and transport equa-
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tions subject to boundary conditions have been computed by KBM. In this
computation, the pertinent parameters of tangent hyperbolic nanofluid trans-
port equations are fastened as NB=0.3, NT=0.1, Ra=0.5, Ec=0.01, Nr=0.5,
Pr=1, Sc=0.3, Ma=0.5, Na=0.3, We=1.0, Ψ =π

3 , λc =1 and Nc=0.1. In en-
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gineering systems, entropy generation has notable applications to model the
energy-efficient devices. The entropy generation minimization approach is very
important to illustrate the losses in thermo hydraulic systems and engineering
systems. Therefore, this analysis can provide a clear view of researchers to en-
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hance the efficiency of thermal systems. Figures 3-24 depict the characteristics
of fluid transport properties, Figs. 25-27 illustrate the streamlines, isotherms
and isoconcentrations, and Figs. 28-35 express the entropy generation.
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for uplifting values of We.

Figure 3 illustrates the impact of We on tangent hyperbolic nanofluid ve-
locity. We is expressed as the ratio of tangent hyperbolic fluid relaxation time
and specific process. It is noticed that the relaxation time of the fluid uplifts by
enhancing the We. This generates resistance in the fluid flow direction which
diminishes the velocity. Figures 4 and 5 exhibit the behavior of We on tem-
perature and concentration, respectively. From these figures, it is seen that the
thermal and mass related boundary layer thicknesses are slightly amplified as
We increases. Hence, tangent hyperbolic nanofluid temperature and concen-
tration distributions raise. Figure 6 depicts the impact of na on f ′. Increasing
values of na abridge the friction in tangent hyperbolic nanofluid flow which
results in uplifting velocity distribution. Impact of Ma on tangent hyperbolic
nanofluid velocity is depicted in Fig. 7 for nonlinear mixed convection and free
convection cases. In an electrically conductive fluid, the magnetic field acting
in the transverse to the geometry creates a resistive force called Lorentz force.
It is noteworthy to mention that the Lorentz force has the behavior to pro-
hibit fluid velocity, this nature can be observed in free convection flows. To
express the nature of free convection in the present problem, the external force
and nonlinear convection in the momentum equation (Eqn. 13) are modified

as (1− na) f
′′′ + naWef ′′′ f ′′ + ff ′′ − (f ′)

2 −Masin
2Ψ + sin ξ

ξ (θ −Nrφ) =

ξ
[

f ′ ∂f
′

∂ξ − f ′′ ∂f∂ξ

]

and the momentum boundary condition (Eqn. 16) is modi-

fied as f ′ = 0 as η → ∞. The usual nature of the magnetic field is obtained
in free convection flow which is displayed in the subgraph but the velocity
profiles uplift with an increase in Ma due to the presence of nonlinear mixed
convection. Figure 8 presents the effect of variation of Ψ on nanofluid velocity
profiles. It is observed form this figure that direction of the applied magnetic
field to the flow shifts from transverse to horizontal for raising the angle of
inclination. It is well known that the magnetic field applied in horizontal di-
rection experiences lower Lorentz force compared to vertical direction. In the
nonlinear mixed convection flow, fluid velocity elevates for amplifying the an-
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gle of inclination.
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f ′, θ and φ for several values of λc are manifested in Figs. 9-11. It is note-
worthy to mention that the positive and negative values of λc represent the
hot and cold cylinder, respectively. It is seen from Fig. 9 that nanofluid veloc-
ity shows an increasing nature near the geometry (η < 2) for increasing the
values of λc but the opposite nature is observed in the region 2 < η < 5. It
is clear from Figs. 10 and 11 that nanofluid temperature and concentration
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Fig. 25 Streamlines for uplifting values of λc, Nc and Ra.
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distributions diminish for amplifying the values of λc. Physically, higher val-
ues of convection parameter tend to enhance the convection cooling effect, as
a consequence, nanofluid velocity uplifts. Further, magnification in convection
cooling effect causes the decay in temperature and concentration distributions.
Figures 12 and 13 are plotted to observe the f ′ and θ of nanofluid with increas-
ing values of Nc. It is observed that the intensifying values of Nc uplift the
nanofluid velocity but diminish the thermal related boundary thickness. This
mechanism is related to the buoyancy force, thus increasing values of Nc use to
strengthen the buoyancy force. This magnification in buoyancy force declines
nanofluid temperature distribution. Figure 14 divulges the influence of Ra on
tangent hyperbolic nanofluid temperature profiles. It is noticed that larger val-
ues of radiation lead to elevate the nanofluid temperature. The magnification
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Fig. 26 Isotherms for uplifting values of λc, Nc and Ra.

in radiation motivates the heat transfer proceess in the tangent hyperbolic
nanofluid which increase the thermal boundary layer thickness.

Figure 15 displays the results on θ for distinct values of NT . Physically,
the phenomenon of thermophoresis is related to the motion of nano-sized solid
particles owing to difference in temperature distribution. Larger values of ther-
mophoresis greatly promote the movement of nano-sized solid particles, thus
nanofluid temperature rises. Figure 16 exhibits the changes in φ for several
values of NT . It is well known that thermophoresis has the nature to displace
the nano-sized solid particles from hot place to cool place. This results in an
uneven distribution in nano-size particles concentration. So that concentra-
tion profile is rising by increasing thermophoresis. The role of NB on tangent
hyperbolic nanofluid temperature is displayed in Fig. 17. As the Brownian mo-
tion enhances, the nanoparticles move freely and improperly in the fluid which
in turn causes the temperature enhancement. The effect of NB on tangent hy-
perbolic nanofluid concentration is exhibited in Fig. 18. Brownian motion is
expressed as the ratio between mass species and nano-sized solid particles.
Larger values of Brownian motion diminish the nano-sized solid particles con-
centration so that the nanofluid concentration decreases.

Figure 19 is drawn to explore the influence of λc on the skin friction factor.
It is noticed that the skin friction factor is 0 at ξ= 0 and the skin friction
factor is raised when ξ enhances. Moreover, an increase in mixed convection
parameter augments the skin friction factor of nanofluid at the surface. Figures
20 and 21 are plotted to examine the impact of mixed convection parameter
on rate of heat and mass transfer. It is observed that the rate of heat and
mass transfer of nanofluid at the surface upsurge by magnifying the mixed
convection. The impact of We on the skin friction factor, rate of heat and
mass transfer are elucidated in Figs 22-24, respectively. It is seen that the skin
friction factor at the surface enhances with an increment inWe but the reverse
behavior is exhibited on the rate of heat and mass transfer. It is to be noted
that magnitude of rate of heat and mass transfer near the surface is higher
while the rate of heat and mass transfer decline for increasing the height of
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the wall.

Figures 25-27 are plotted in order to illustrate the streamlines, isotherms
and isoconcentrations for various values of λc, Nc and Ra. The influence of λc,
Nc and Ra on streamline is demonstrated in Fig. 25. It is observed from these
figures that the streamlines are more dense near the wall at ξ < 1. However,
streamlines manifest an oscillating nature for increasing the λc from 1 to 10.
Moreover, for higher values of Nc and Ra, the streamlines show the oscillat-
ing nature due to the buoyancy force. Figures 26 and 27 are manifested the
isotherms and isoconcentrations for distinct values of λc, Nc and Ra, respec-
tively. It is noticed from these figures that isotherms and isoconcentrations
thicknesses slightly decrease with an increment in λc and Nc. However, higher
values of Ra enhance the isotherms and isoconcentrations.

4.1 Entropy generation

This numerical study is the analysis of entropy generation in a tangent hy-
perbolic non-Newtonian nanofluid over a normal surface of a circular cylin-
der. The future examines will exhibits entropy generation in a various non-
Newtonian nanofluid (eg. Williamson, Maxwell, Jeffrey ). Furthermore, the
rough surface of a circular cylinder also will be taken for the analysis. Char-
acteristics of entropy generation (NG) and Bejan number (Be) under the im-
pacts radiation (Ra=0.0,0.5,1.0,1.5), Brinkman number (Br=0.1,0.3,0.5,0.5),
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Fig. 27 Isoconcentrations for uplifting values of λc, Nc and Ra.

mixed convection (λc = 1, 3, 7, 10), dimensionless temperature ratio variable
(αT = 0.1, 0.5, 1.0, 1.5), Eckert number (Ec = 0.01, 0.1, 0.3, 0.5) and thermal
convection (Nc = 0.1, 0.5, 1.0, 1.5) are explored graphically in Figs. 28-35. Fig-
ure 28 elucidates the influence of Ra on NG. There is an augment in NG for
raising values of Ra. As a result of Ra, the internal energy of the hyperbolic
nanofluid flow system is uplifted which corresponds to enhance NG. Figure 29
represents the effect of αT on NG. It is observed from this figure that there
is a raise in NG with an increment in αT . αT significantly controls the fluid
frictional effects, thus enhances the NG. The behavior of Ec on NG is man-
ifested in Fig. 30. Physically, Ec is related to self-heating mechanism of the
nanofluids due to the influence of dissipation. It is seen that NG decreases for
uplifting values of Ec. Figure 31 is plotted to scrutinize the changes in NG
with increasing values of λc. It is evident that an increment in λc promotes
the rate of heat transfer and generate more heat, as a consequence NG en-
hances near the geometry (η < 2) but an opposite trend is manifested in the
region (4 < η < 4.5). Figures 32 and 33 show the effect of Nc on NG and Be,
respectively. It can be seen that the effect of Nc enhances the total entropy
generation while the reverse trend is observed on Be. As a consequence of
buoyancy force, NG and Be express this nature. Figure 34 displays NG for
varying Ψ . It is evident that increasing values of Ψ tend to lessen Be. The
variation in Be with raising values of Br is manifested in Fig. 35. This figure
reveals that Be decreases for uplifting values of Br. It is known that Br is
the relationship between heat and molecular transport caused by fluid friction
and heat transfer. Generally, Br admits viscous heating corresponding with
the convective heat transfer. However, when viscous effects produce more heat
which intend to control heat transport via molecular conduction. This is the
reason for reduction in Be.
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Fig. 28 NG for uplifting values of Ra.
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5 Conclusion

This study has been presented to explore the heat and mass transfer charac-
teristics and entropy analysis on hyperbolic tangent nanofluid over a circular
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cylinder with the impacts of nonlinear Boussinesq approximation and inclined
magnetic field. Non-similar variables are utilized to transform the dimensional
equations into a dimensionless form which are computed by adopting an im-
plicit finite difference KBM method. The outcomes are demonstrated in terms
of a two-dimensional plot, streamlines, isotherms and isoconcentrations con-
tours. The main findings of the current study are listed below.

– Tangent hyperbolic nanofluid velocity uplifts for enhancing the mixed con-
vection parameter.

– The velocity and temperature distributions show an opposite nature due
to the increase in thermal convection parameter.

– Temperature and concentration distributions raise with an increment in
the Weissenberg number.

– The rate of heat and mass transfer at ξ=0 is higher than at ξ=1.
– Higher values of radiation, mixed convection and thermal convection pa-

rameters augment the total entropy generation.
– Magnifications in angle of inclination and Brinkman number reduce the

Bejan number.
– Streamlines manifest the oscillating nature for amplifying nonlinear mixed

convection.
– Isotherms and isoconcentrations boundary layers enhance for raising values

of thermal radiation.
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Table 3 Impacts of Nr and Ec on local skin friction coefficient
(
C∗

f

)
, dimensionless local

rate of heat transfer (Nu∗) and dimensionless local rate of mass transfer (Sh∗) for various
values of ξ.

Physical Values Physical ξ CPU
Parameters Quantities 0 0.2 0.4 0.6 0.8 1.0 time(Sec.)

C∗

f
0 0.3984 0.7626 1.0709 1.3065 1.4599

0.1 Nu∗ 1.1194 1.1090 1.0884 1.0580 1.0185 0.9706 11.438911
Sh∗ 0.8418 0.8354 0.8226 0.8036 0.7784 0.7473
C∗

f
0 0.3829 0.7321 1.0261 1.2489 1.3907

Nr 0.3 Nu∗ 1.1146 1.1042 1.0835 1.0529 1.0131 0.9649 11.858886
Sh∗ 0.8356 0.8291 0.8161 0.7968 0.7712 0.7395
C∗

f
0 0.3672 0.7013 0.9810 1.1906 1.3208

0.5 Nu∗ 1.1097 1.0992 1.0783 1.0475 1.0075 0.9589 11.161408
Sh∗ 0.8291 0.8225 0.8093 0.7897 0.7636 0.7314
C∗

f
0 0.3515 0.6703 0.9356 1.1318 1.2502

0.7 Nu∗ 1.1046 1.0940 1.0730 1.0420 1.0016 0.9527 11.189030
Sh∗ 0.8225 0.8158 0.8023 0.7823 0.7557 0.7228
C∗

f
0 0.3984 0.7626 1.0709 1.3065 1.4599

0.01 Nu∗ 1.1194 1.1090 1.0884 1.0580 1.0185 0.9706 11.438911
Sh∗ 0.8418 0.8354 0.8226 0.8036 0.7784 0.7473
C∗

f
0 0.3674 0.7021 0.9833 1.1952 1.3288

Ec 0.1 Nu∗ 1.1097 1.0888 1.0475 0.9885 0.9154 0.8332 11.072150
Sh∗ 0.8291 0.8230 0.8108 0.7926 0.7682 0.7378
C∗

f
0 0.3677 0.7038 0.9883 1.2057 1.3468

0.3 Nu∗ 1.1097 1.0656 0.9786 0.8558 0.7068 0.5453 11.256386
Sh∗ 0.8291 0.8241 0.8142 0.7991 0.7787 0.7525
C∗

f
0 0.3680 0.7056 0.9934 1.2163 1.3653

0.5 Nu∗ 1.1097 1.0424 0.9092 0.7210 0.4927 0.2452 11.169868
Sh∗ 0.8291 0.8252 0.8175 0.8057 0.7894 0.7677
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Table 4 Impacts of NT and NB on local skin friction coefficient
(
C∗

f

)
, dimensionless local

rate of heat transfer (Nu∗) and dimensionless local rate of mass transfer (Sh∗) for various
values of ξ.

Physical Values Physical ξ CPU
Parameters Quantities 0 0.2 0.4 0.6 0.8 1.0 time(Sec.)

C∗

f
0 0.3675 0.7019 0.9819 1.1917 1.3221

0.01 Nu∗ 1.1192 1.1086 1.0876 1.0566 1.0162 0.9673 10.986395
Sh∗ 0.8428 0.8361 0.8226 0.8025 0.7760 0.7431
C∗

f
0 0.3672 0.7013 0.9810 1.1906 1.3208

NT 0.1 Nu∗ 1.1097 1.0992 1.0783 1.0475 1.0075 0.9589 11.788723
Sh∗ 0.8291 0.8225 0.8093 0.7897 0.7636 0.7314
C∗

f
0 0.3666 0.7001 0.9793 1.1884 1.3183

0.3 Nu∗ 1.0889 1.0786 1.0581 1.0278 0.9884 0.9407 11.129852
Sh∗ 0.8016 0.7953 0.7826 0.7637 0.7387 0.7077
C∗

f
0 0.3661 0.6991 0.9778 1.1865 1.3160

0.5 Nu∗ 1.0687 1.0585 1.0384 1.0086 0.9699 0.9229 10.991573
Sh∗ 0.7778 0.7717 0.7595 0.7414 0.7172 0.6872
C∗

f
0 0.3672 0.7013 0.9810 1.1906 1.3208

0.3 Nu∗ 1.1097 1.0992 1.0783 1.0475 1.0075 0.9589 10.967421
Sh∗ 0.8291 0.8225 0.8093 0.7897 0.7636 0.7314
C∗

f
0 0.3679 0.7026 0.9829 1.1929 1.3236

NB 0.5 Nu∗ 1.0769 1.0667 1.0465 1.0166 0.9777 0.9306 11.181454
Sh∗ 0.8369 0.8303 0.8169 0.7971 0.7708 0.7382
C∗

f
0 0.3684 0.7035 0.9843 1.1947 1.3258

0.7 Nu∗ 1.0449 1.0350 1.0153 0.9863 0.9485 0.9028 11.330983
Sh∗ 0.8405 0.8337 0.8204 0.8004 0.7740 0.7414
C∗

f
0 0.3688 0.7045 0.9856 1.1964 1.3277

0.9 Nu∗ 1.0136 1.0040 0.9849 0.9567 0.9200 0.8756 11.356811
Sh∗ 0.8425 0.8358 0.8224 0.8024 0.7760 0.7433


