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A B S T R A C T

In this paper, the prediction of the magnetohydrodynamic boundary layer slip flow over a permeable
stretched cylinder with chemical reaction is investigated by using some mathematical techniques, namely
Runge–Kutta fourth order method along with shooting technique and artificial neural network (ANN).
A numerical method is implemented to approximate the flow of heat and mass transfer characteristics
as a function of some input parameters, explicitly the curvature parameter, magnetic parameter, per-
meability parameter, velocity slip, Grashof number, solutal Grashof number, Prandtl number, temperature
exponent, Schmidt number, concentration exponent and chemical reaction parameter. The non-linear
partial differential equations of the governing flow are converted into a system of highly non-linear or-
dinary differential equations by using the suitable similarity transformations, which are then solved
numerically by a Runge–Kutta fourth order along with shooting technique and then ANN is applied to
them. The Back Propagation Neural Network is applied for forecasting the desired outputs. The re-
ported numerical values and the ANN values are in good agreement than those published works on various
special cases. According to the findings of this study, the ANN approach is reliable, effective and easily
applicable for simulating heat and mass transfer flow over a stretched cylinder.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The study of boundary layer flow of heat and mass transfer of
stretching flat plates or cylinders has attracted the interest of many
researchers in view of its extensive applications in many industri-
al manufacturing processes that include both metal and polymer
sheets. Some examples are in the extraction of polymer and rubber
sheets, wire drawing, hot rolling, spinning of fibers, metal spin-
ning, paper production, glass blowing, crystal growing, nuclear
reactors, cooling of metallic sheets or electronic chips, manufac-
ture of foods, etc. Crane [1] was the first among the others to consider
an incompressible fluid flow due to a linearly stretching sheet. Enor-
mous research works (Ali [2], Bachok et al. [3], Bhattacharya et al.
[4], Chamka [5], Chethan et al. [6], Cortell [7], Das [8], Farahi Sahari
and Hossein Nezhad [9], Grubka and Bobba [10], Hayat et al. [11],
Hayat et al. [12], Ibrahim and Shanker [13], Pal and Chatterjee [14],
Srinivas et al. [15], Srinivas et al. [16], Gupta and Gupta [17],

Siddheshwar and Mahabaleshwar [18], Colonna and Capitelli [19],
and Armenise et al. [20]) have been done on the boundary layer flow
of heat and mass transfer over a stretching surface under different
physical situations. In view of these applications, many research-
ers explored the boundary layer flow over a stretching surface under
different physical situations. Laminar boundary layer along hori-
zontal and vertical moving cylinders with constant velocity was
discussed by Lin and Shih [21,22]. Wang [23] analyzed the viscous
fluid flow outside a stretching cylinder obtained with an exact sim-
ilarity solution. Heat and mass transfer from a permeable cylinder
embedded in a porous medium with a magnetic field was studied
by Chamka and Quadri [24]. Ishak et al. [25] explored the numer-
ical solution of magnetohydrodynamic flow and heat transfer outside
a stretching cylinder. The numerical solutions of the axisymmetric
laminar boundary layer flow and heat transfer flow over a
stretching cylinder were investigated by Ishak and Nazar [26] and
Bachok and Ishak [27]. Hussam et al. [28] analyzed the heat
transfer in MHD flow over a circular cylinder in duct with a Hart-
mann number. The axisymmetric laminar boundary layer mixed
convection flow of a viscous incompressible fluid and heat trans-
fer toward a stretching cylinder embedded in porous medium was
studied by Mukhopadhyay [29]. Recently, Mukhopadhyay [30] ex-
plored the axisymmetric laminar boundary layer flow of a viscous
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incompressible fluid and heat transfer toward a stretching cylin-
der under the influence of a uniform magnetic field. Very recently,
the influences of the temperature-dependent fluid properties and
the transverse curvature on the axisymmetric flow and heat trans-
fer at a horizontal permeable stretching cylinder were investigated
by Vajravelu et al. [31].

To the best of the authors’ knowledge, no investigation has been
made yet to analyze the magnetohydrodynamic boundary layer slip
flow over a permeable stretched cylinder with chemical reaction
through ANN model. The literature review reveals that the ANN
models have been quite promising in offering solutions to non-
linear problems. The ANN method has not been used for heat and
mass transfer analysis of MHD boundary layer flow over a stretch-
ing cylinder. Therefore, the present study focuses on the applicability
of the ANN method for the boundary layer flow over a stretching
cylinder in the presence of chemical reaction. In this study, the in-
fluences of pertinent parameters on the flow and heat and mass
transfer characteristics are analyzed, and the numerical results are
presented in comparison with the results of ANN method.

This paper has been arranged as follows: Section 2 deals with
the mathematical formulation of the problem. Numerical model-
ing and algorithm are presented in Section 3. Section 4 contains the
importance and the discussion of ANN method and the Back

Propagation algorithm. The concluding remarks are presented in
Section 5.

2. Mathematical analysis

Let us consider the steady axisymmetric mixed convection flow
of viscous, incompressible, electrically conducting fluid along a ver-
tical stretching cylinder embedded in a porous medium in the
presence of chemical reaction. The x-axis is taken along the stretch-
ing surface in the direction of the motion while the y-axis is
perpendicular to the surface ,which is shown in Fig. 1. The conti-
nuity, momentum, energy and concentration equations governing
such type of flow can be written as (Mukhopadhyay [29],
Mukhopadhyay [30] and Mukhopadhyay [32]):.
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where u and v are the velocity components in the x and r direc-
tions, respectively, υ is the kinematic viscosity, σ is the electrical
conductivity, ρ is the density of the fluid, B0 is the uniform mag-
netic field, υ is the kinematic viscosity, ′k is the permeability of
the medium, g is the gravity field, β is the coefficient of thermal
expansion, β* is the coefficient of expansion with concentration,
T is the temperature, T∞ is the temperature of the ambient fluid, C
is the concentration, C ∞ is the concentration of the ambient fluid,
α is the thermal diffusivity of the fluid, D is the mass diffusion co-
efficient, and Γ is the reaction rate constant of the solute.

The boundary conditions for the problem are:
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Fig. 1. Geometry of the problem.

Fig. 2. Schematic diagram of BPNN. Fig. 3. Schematic diagram of a multi-layer ANN.
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centration exponent, and B1 is the velocity slip.
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Now substituting (6) into the Equations (2)–(4) and (5), we get
the following set of ordinary differential equations:
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velocity slip. It should be noted that M = 0 corresponds to the case
of stretching flat plate and the no slip condition is recovered for B1 = 0.

The quantities of physical interest in this problem are the skin-
friction coefficient, heat transfer rate and mass transfer, and are
defined as:
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Respectively, the surface shear stress τw , surface heat flux qw

and mass flux Jw are given by:

Fig. 4. Graphical representation of the skin friction coefficient.
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Substituting (6) and (12) into Equation (11), we get:
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where Rex
xU=
υ

is the local Reynolds number.

3. Numerical modeling

Equations (7)–(9) along with the boundary conditions (10) form
a two point boundary value problem. These equations are solved
using shooting method, by converting them to an initial value
problem. For this, we transform the non-linear ordinary differen-
tial Equations (7)–(9) to a system of first order differential equations
as follows:

′ = ′ = ′ = − − + + − −f z z p fp Mp k z, , ( ( ) )p z D2
12 λθ δφ (14)

′ = ′ = − − + +θ θ ηq q fq Nz Mq M, [Pr( ) ] ( )2 1 2 (15)

′ = ′ = − − − + +φ φ βφ ηr r sc fr Pz Mr M, [ ( ) ] ( )2 1 2 (16)

The boundary conditions (10) becomes:

f f s fv( ) , ( ) , ( ), ( ) , ( )0 0 0 1 0 0 1 0 11 1= ′ = + = ′′ = =ω ω θ φ (17)

In order to integrate (14)–(17) as an initial value problem, one
requires a value for p( )0 , i.e., ′′f ( )0 , q( )0 , i.e., ′θ ( )0 and r ( )0 , i.e., ′φ ( )0 ,
but no such values are given at the boundary. The suitable guess
values for ′φ ( )0 and ′φ ( )0 are chosen and then integration is carried
out. The most important factor of the shooting method is to choose
an appropriate finite value of η∞ . In order to determine η∞ for the
boundary value problem, we start with some initial guess values
for some particular set of physical parameters to obtain ′′ ′f ( ), ( )0 0θ
and ′φ ( )0 . The solving procedure is repeated with another large value
of η∞ until two successive values of ′′ ′f ( ), ( )0 0θ and ′φ ( )0 differ only
by the specified significant digit. The last value of η∞ is finally chosen
to be the most appropriate value of the limit η∞ for that particular
set of parameters. The value of η∞ may change for another set of
physical parameters. Once the finite value of η∞ is determined, then
the integration is carried out. Compare the calculated values for

′f , θ and φ at η = 10(say) with the given boundary conditions
′ = =f ( ) , ( )10 0 10 0θ , φ( )10 0= and adjust the estimated values,
′′ ′f ( ), ( )0 0θ and ′φ ( )0 to give better approximation to the solution.

We take the series values for ′′ ′f ( ), ( )0 0θ , ′φ ( )0 and apply the fourth
order Runge–Kutta method with step size h = 0.01. The above pro-
cedure is repeated until the converged results up to the desired
degree of accuracy 10 5− are achieved.

Fig. 5. Graphical representation of the Nusselt number.
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4. Artificial neural network modeling

Artificial neural network (ANN) is a parallel processing archi-
tecture consisting of very simple and extremely interconnected
processors called neurons organized in layers. Artificial neural
network (ANN) is a mathematical model and advanced comput-
ing tool that processes information using neuro computing technique.
ANN has the capability for machine learning and pattern match-
ing. This model is developed from the human brain, having
processing that is the same as that of the human biological neuron.
The human brain is capable of doing vast calculations and utilizes
billions of nerve cells existing in our brain. Biological neuron stores
knowledge in memory bank, while in an ANN the data or the in-
formation is distributed through the network and stored in the form
of weighted interconnection. The architecture of ANN model is
shown in Fig. 2. This ANN model is different from conventional com-
putation. ANN has been shown to be highly flexible modeling tool
with the capability of learning the mathematical mapping between
input and output. ANN is composed of layers of neurons. The input
layer of neurons is connected to the output layers of neurons through
one or more hidden layers of neurons. ANN is trained with exper-
imental data and tested with other experimental data to reach at
an optimum topology and weights. A multilayer perception (MLP)
is feed forward neural network with one or more hidden layers.

During the training process ANN adjusts its weights to minimize
the errors between the predicted result and actual output by using
Back Propagation algorithm.

A schematic diagram of a Back Propagation Neural Network
(BPNN) with n inputs nodes, r outputs nodes and a single hidden
layer of m nodes is shown in Fig. 2. Each interconnection between
the nodes has a weight associate with it. The input nodes have a
transfer function of unity and the activation function of the hidden
and output nodes are sigmoidal S ( )• and linear, respectively.

According to Fig. 2 the net input to the jth hidden neuron is given
by:

Fig. 6. Graphical representation of the Sherwood number.

Table 1
Comparison ′′f ( )0 for several values of magnetic parameter in the absence of cur-
vature parameter, porous medium, velocity slip, mixed convection parameter,
concentration buoyancy parameter, temperature exponent, concentration expo-
nent, Schmidt number and chemical reaction parameter.

D Vajravelu et al. [33] Numerical ′′f ( )0 ANN ′′f ( )0

0 1.000001 1.000001 1.000001
0.5 1.224745 1.224745 1.224745
1.0 1.414214 1.414213 1.414214
1.5 1.581139 1.581140 1.581139
2.0 1.732051 1.732050 1.732051
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where w ji1 is the weight between the ith node of input layer and
jth node of hidden layer and b j1 is the bias at jth node of hidden layer.
The output of the jth hidden node is defined by
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Given an input vector x, the output value o xk ( ) of the kth node
of output layer is equal to the sum of the weighted outputs of the
hidden nodes and the bias of the kth node output layer, and is given
by:

o x w z bk kj j k
j

m

( ) = +
=

∑ 2 2
1

(20)

where w kj2 is the weight between the jth node of hidden layer and
kth node of output layer, b k2 is biasing term at the kth output node,
and b k2 is the biasing term at the kth node of output layer.

The output of ANN was determined by giving the inputs and com-
puting the output from various nodes activation and interconnection
weights. The output was compared to the experimental output and
the mean squared error was calculated. The error value was then
propagated backwards through the network and changes were made
to the weights at each node in each layer. The whole process was
repeated, in an iterative fashion, until the overall error value drops
below a predetermined threshold.

In the present study, the numerical values obtained for all the
parameters were used to train the ANN. The BPNN consists of three
phases – namely the training, validation and test phases. The eleven
parameters (M, D, k1, λ , δ , Sv, Pr, N, Sc, P and β ) determined for
the samples used in the study were used as the input nodes, and
three parameters (skin friction coefficient, Nusselt number and the
Sherwood number) in these samples were used as the output pa-
rameter of the ANN, as shown in Fig. 3. As there exists no proper
rule for setting the exact number of neurons in the hidden layer
to avoid overfitting or underfitting of the input parameters and to
make the learning phase convergent, the number of nodes in the
hidden layer was selected through a trial and error method based

Table 2
Comparison − ′θ ( )0 for several values of temperature exponent in the absence of curvature parameter, magnetic parameter, porous medium, velocity slip, mixed convection
parameter, concentration buoyancy parameter, Schmidt number and chemical reaction parameter with Pr = 1.

N Ishak and Nazar [26] Grubka and Bobba [10] Ali [2] Mukhopadhyay [29] Numerical ′′f ( )0 ANN ′′f ( )0

−2 −1.0000 – – – −0.9999 −1.0000
−1 0.0000 – – – 0.0000 0.0000

0 0.5820 0.5820 0.5801 0.5821 0.5820 0.5820
1 1.0000 1.0000 0.9961 1.0000 1.0001 1.0001
2 1.3333 1.3333 1.3332 1.3332 1.3333 1.3333

Table 3
Values of ′′f ( )0 for the various values of D, k1, λ , δ , Sv, Pr, N, Sc, P and β .

M D k1 λ δ Sv Pr N Sc P β Numerical ′′f ( )0 ANN ′′f ( )0

0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.74792 1.763073917
0.0 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.52627 1.520320746
0.0 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.52627 1.532139794
0.0 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.98865 1.934049284
0.0 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.98637 1.99128844
0.0 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 0.99038 0.99155112
0.0 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.65453 1.682657116
0.0 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.67913 1.676297932
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 1.61098 1.604403182
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 1.69329 1.699698112
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 1.69738 1.702960861
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.66703 1.669329736
0.5 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.43185 1.418166739
0.5 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.43185 1.423882368
0.5 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.91479 1.888398577
0.5 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.91082 1.901597585
0.5 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 0.91857 0.914288975
0.5 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.57581 1.580271409
0.5 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.59299 1.57579867
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 1.52976 1.518738523
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 1.60985 1.598835568
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 1.61189 1.605602386
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.55893 1.554521832
1.0 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.31667 1.321386498
1.0 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.31667 1.320395723
1.0 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.81201 1.835549318
1.0 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.80735 1.810393176
1.0 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 0.83771 0.852424236
1.0 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.47448 1.468063705
1.0 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.48659 1.486537583
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 1.42621 1.433204407
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 1.50307 1.50012747
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 1.50314 1.498128279
MSE = 0.000207

ARTICLE IN PRESS

Please cite this article in press as: P. Bala Anki Reddy, Raja Das, Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical
reaction through numerical and artificial neural network modeling, Engineering Science and Technology, an International Journal (2016), doi: 10.1016/j.jestch.2015.12.013

6 P.B.A. Reddy, R. Das/Engineering Science and Technology, an International Journal ■■ (2016) ■■–■■



on the number of epochs needed to train the network. After such
iterative procedures it was found that the convergence between the
numerical values and predicted values of skin friction, Nusselt
number and Sherwood number was achieved with the inclusion of
one hidden layer with five neurons. ANN structure has been de-
signed and accomplished using the MATLAB code. A sigmoid function
has been used as the activation function of artificial neurons, and
training has been completed using a fixed (105) number of epochs.
The total 33 numerical results were used to train, validate and test
the ANN model for the skin friction coefficient. The 23 data sets were
used for the training set, 5 data sets were used for validation, and
the rest of the data were used for testing the results of the model.
The performances of the skin friction coefficient, Nusselt number
and Sherwood number for training, validation and test sets of the
proposed ANN model are shown in Figs. 4, 5 and 6, respectively. From
Tables 3, 4 and 5, the MSE values of the model for all data set were
0.000207, 0.005861 and 0.00022, respectively. It is observed that
the ANN models were properly trained, as they simulate compli-
cated relationship between the input and output variables. Moreover,
the predicted skin friction coefficient, Nusselt number and Sher-
wood number values from the ANN model for training, validation
and test sets are compared with numerically obtained skin fric-
tion coefficient, Nusselt number and Sherwood number values, which
are given in Figs. 4, 5 and 6, respectively. The results obtained from
the ANN model are in very good agreement with the numerical
results. This study so far reveals that skin friction, Nusselt number
and Sherwood number can alternatively be modeled using the ANN
within a reasonable accuracy. The results obtained from the ANN
model are in very good agreement with the numerical results.

To assess the validity and accuracy of the applied numerical
scheme, the numerical values for the skin friction coefficient and
heat transfer coefficient are compared with the available results, and

the outcome is shown in Tables 1 and 2. It is observed that the
present results are found to be in excellent agreement. The values
of skin friction coefficient, Nusselt number and the Sherwood
number for various values of the involved pertinent parameters are
shown in Tables 3, 4 and 5. It can be noted that the skin friction
coefficient decreases with increasing values of magnetic parame-
ter, permeability parameter, slip velocity, Prandtl number,
temperature exponent, Schmidt number, concentration exponent
and chemical reaction parameter, whereas the reverse trend is ob-
served in the case of Grashof number and solutal Grashof number.
It is analyzed that the Nusselt number decreases with an increase
in the magnetic parameter, permeability parameter, Schmidt number,
concentration exponent and chemical reaction parameter, whereas
it increases with an increase in the Grashof number and solutal
Grashof number, slip velocity, Prandtl number and temperature ex-
ponent. It is viewed that the Sherwood number decreases as the
magnetic parameter, permeability parameter, Prandtl number and
temperature exponent. It can be seen that the Sherwood number
increases with increasing Grashof number, and solutal Grashof
number, velocity slip, Schmidt number, concentration exponent and
chemical reaction parameter are raised. The results obtained from
the numerical modeling and ANN model are in very good agree-
ment with the numerical results. Thus according to the findings of
the current study, the proposed ANN model is altogether for MHD
boundary layer slip flow over a stretching cylinder embedded in a
porous medium with chemical reaction, successfully.

5. Conclusions

In this study we successfully employed the ANN approach for
the prediction of the magnetohydrodynamic convective boundary

Table 4
Values of − ′θ ( )0 for the various values of D, k1, λ , δ , Sv, Pr, N, Sc, P and β .

M D k1 λ δ Sv Pr N Sc P β Numerical − ′θ ( )0 ANN − ′θ ( )0

0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 0.98138 0.997266
0.0 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 0.95499 1.000858
0.0 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 0.95499 0.98949
0.0 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.00244 1.016739
0.0 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.00222 1.011748
0.0 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 1.03373 1.015892
0.0 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.15829 1.123949
0.0 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.17919 1.186686
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 0.95442 1.007852
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 0.97235 0.979221
0.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 0.97194 0.896833
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.17810 1.163209
0.5 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.15050 1.032169
0.5 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.15050 1.154456
0.5 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.99550 1.722184
0.5 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.98970 1.98235
0.5 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 1.22461 1.282245
0.5 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.35006 1.476187
0.5 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.37836 1.370359
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 1.15388 0.986369
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 1.16918 1.21675
0.5 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 1.16866 1.210029
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.36609 1.40971
1.0 1.0 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.33962 1.318797
1.0 0.5 1.0 5.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.33962 1.417767
1.0 0.5 0.5 6.0 5.0 0.1 0.72 0.5 0.6 0.5 0.5 1.38721 1.375243
1.0 0.5 0.5 5.0 6.0 0.1 0.72 0.5 0.6 0.5 0.5 1.38658 1.353162
1.0 0.5 0.5 5.0 5.0 0.5 0.72 0.5 0.6 0.5 0.5 1.40745 1.386226
1.0 0.5 0.5 5.0 5.0 0.1 1.00 0.5 0.6 0.5 0.5 1.53114 1.536548
1.0 0.5 0.5 5.0 5.0 0.1 0.72 1.0 0.6 0.5 0.5 1.56285 1.54623
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 1.0 0.5 0.5 1.34573 1.179531
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 1.0 0.5 1.35829 1.333864
1.0 0.5 0.5 5.0 5.0 0.1 0.72 0.5 0.6 0.5 1.0 1.35774 1.37973
MSE = 0.005861
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layer flow over a permeable stretching cylinder in the presence of
chemical reaction. The developed ANN model is found to be reli-
able due to an excellent accuracy during the training, and validation
and testing were compared with the numerical methods. The pro-
posed ANN model is efficient, exact and time saving because it
involves much less effort and yields results much faster than the
numerical methods. Also, it is concluded that the designed ANN
model may be considered as an alternative and powerful tech-
nique for solving the heat and mass transfer aspects with Newtonian/
non-Newtonian fluid flow problems.
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