Header menu link for other important links
X
Evaluation of pan-sharpening methods for spatial and spectral quality
, A.V. Hegde
Published in Springer Verlag
2017
Volume: 9
   
Issue: 1
Abstract
Many pan-sharpening methods have been proposed to fuse the high spectral and low spatial resolution of multispectral (MS) image with the high spatial resolution of panchromatic (PAN) image to produce a multispectral image with improved spatial resolution. In this study, the effectiveness of pan-sharpening methods such as principal component analysis (PCA), brovey transform (BT), modified intensity hue saturation (M-IHS), multiplicative, wavelet-intensity-hue-saturation (W-IHS), wavelet principal component analysis (W-PCA), hyperspectral colour space (HCS), high-pass filter (HPF), gram-schmidt (GS), subtractive resolution merge (SRM), Fuze Go and Ehlers was assessed and compared by fusing the PAN and MS imagery of Quickbird-2. The qualities of the pan-sharpening methods were evaluated by both visual and quantitative analyses with respect to spatial and spectral fidelity. In quantitative analysis, the spectral indices such as spectral angle mapper (SAM), relative dimensionless global error in synthesis (ERGAS), structural similarity index method (SSIM), relative average spectral error (RASE), correlation coefficient (CC) and universal image quality index (Q) were used. The spatial indices such as spatial correlation coefficient (SCC), gradient and image entropy (E) were used. The result of both analyses revealed that the Ehlers and Fuze Go methods performed better than the other methods. The Ehlers method was superior by retaining the colour information, and Fuze Go best enhanced the spatial details in the fused image. © 2016, Società Italiana di Fotogrammetria e Topografia (SIFET).
About the journal
JournalData powered by TypesetApplied Geomatics
PublisherData powered by TypesetSpringer Verlag
ISSN18669298