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Abstract Implementation of a novel embedded Runge–Kutta fourth order four stage arithmetic

root mean square technique to determine initial configurations of extra-solar protoplanets formed

by gravitational instability is the main goal of this present paper. A general mathematical frame-

work for the introduced numerical technique is described in addition to error estimation descrip-

tion. It is noticed that the numerical outputs through the employed novel RKARMS(4,4)

method are found to be more effective and efficient in comparison with the results obtained by

the classical Runge–Kutta technique.
� 2015 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
1. Introduction

From literature review it is noticed that the ever-increasing
advances in high performance computer technology have
enabled several researchers towards science and engineering
to employ novel numerical techniques to simulate physical
phenomena. Intensive techniques are frequently required for

the solution of real time practical problems and they often
need the systematic application of a range of elementary tech-
niques. In the development of new numerical methods, simpli-

fications required to be made to progress towards an optimal
solution. As a result, numerical algorithms do not usually give
the exact answer to a given problem, or they can only tend

towards a solution getting closer and closer with each itera-
tion. Numerical techniques exhibit certain computational char-
acteristics during their real time implementation. It is

significant to consider these characteristics while selecting a
specific technique for implementation. The characteristics
which are critical to the success of implementation are accu-
racy, rate of convergence, numerical stability and efficiency.

Numerical algorithms must review the factors such as,
tra-solar
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determination of the correctness of various steps, reduction of
the number of steps, if necessary, and increase in the speed of
solving the problem, respectively.

To solve many different problems under signal processing,
communication, electronic and transistor circuits, Runge–
Kutta (RK) method is being applied to obtain the required

solution (Alexander and Coyle, 1990). Shampine and
Gordon (1975) discussed the normal order of a RK algorithm
having the approximate number of leading terms of an infinite

Taylor series, which calculates the trajectory of a moving
point. Yaakub and Evans (1993) presented a new fourth order
RK method based on the root mean formula for solving initial
value problems (IVPs) in numerical studies. A new embedded

fourth order RK method which is actually two different RK
methods but of the same order p= 4 has been introduced by
Evans and Yaakub (1995). Bader (1987, 1998) introduced the

RK–Butcher algorithm for finding the truncation error esti-
mates, intrinsic accuracies and the early detection of stiffness
in coupled differential equations arising in theoretical chem-

istry problems. Yaakub and Evans (1999) introduced a new
fourth order RK technique for IVPs with error control.
Butcher (1987, 1990, 2003) derived the best RK pair along with

an error estimates and by all statistical measures it appeared as
RK–Butcher algorithms. In order to overcome step-size con-
straint imposed by numerical stability, many new techniques
have been developed in recent past. To confirm this, recently

Ponalagusamy and Senthilkumar (2009) proposed a novel
fourth order embedded RKARMS(4,4) technique based on
RK arithmetic mean and root mean square with error control

in detail to solve the real time application problems efficiently
in image processing under CNN model. A detailed illustration
related to the local truncation error (LTE), the global trunca-

tion error (GTE), error estimates and control for fourth order
and four stage RK numerical algorithms is eventually
addressed by Senthilkumar (2009).

The formation of planetary systems has been a topic of
interest to the mankind ever since the dawn of civilization.
However, scientific theories for the formation of the system
largely date from Descartes (1644) when he proposed his vor-

tex theory in this regard. Since that time many theories have
been advanced. In most cases these theories were primarily
speculative because of the lack of observational characteristics

of the system. Fortunately, for the theorists of today, there are
some convenient observational constrains of the system. The
two end mechanisms, namely core accretion and disk instabil-

ity, in principle, can form gas giant protoplanets. Though the
core accretion mechanism has been, so far, adopted as the
main theory of planetary formation both in our solar system
and elsewhere, it fails to explain properly the recently discov-

ered extrasolar protoplanets by direct imaging (see Dodson-
Robinson et al., 2009). With this difficulty encountered by
the core accretion models, the disk instability model, once in

vague, has been reformulated with fragmentation from mas-
sive protoplanetary disks and has been advanced through the
investigations of many authors (e.g., Boss, 1997; Mayer

et al., 2002, 2004; Boley et al., 2010; Cha and Nayakshin,
2011). But this model is also criticized by some investigations
with the argument that disk instabilities are unable to lead to

the formation of self-gravitating dense clumps (Pickett et al.,
2000; Cai et al., 2006; Boley et al., 2007). Although some ques-
tions arise as to whether stable protoplanets could be formed
or not by disk instability, the idea is believed to be a promising
Please cite this article in press as: Paul, G.C., Senthilkumar, S. Execution of novel exp
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route to the rapid formation of giant planets in our solar sys-
tem and elsewhere (Boss, 2007). Unfortunately, the initial
structures of the protoplanets formed via gravitational insta-

bility are still unknown and different numerical models can
be found to report different configurations (Helled and
Schubert, 2008; Helled and Bodenheimer, 2011).

It is pertinent to point out here that depending upon opac-
ities of grains, present in protoplanets, as well as on initial con-
ditions different investigators assumed different heat

transports at different regions of protoplanets at different
stages of their evolution. DeCampli and Cameron (1979), in
their investigation, assumed initial protoplanets to be fully
convective with a thin outer radiative zone as a consequence

of higher opacity and much work has since then been devoted
to the evolution of planetary system including our own from
such types of initial protoplanets (e.g., Bodenheimer et al.,

1980; Wuchterl et al., 2000; Helled et al., 2008; Helled and
Bodenheimer, 2011). It is well-known that depending on obey-

ing the law L=4pR2 ¼ ðsurface opacityÞ�1
, where L represents

the luminosity and R is the protoplanetary radius, or on slow

contraction, initial protoplanets may be fully convective (see
DeCampli and Cameron, 1979), which is consistent with
Helled et al. (2005). To investigate planetary evolution from

such types of protoplanets, a series of studies were conducted
by Paul et al. (2008, 2012, 2013) and the obtained results were
found to be in good agreement with the estimates by other
investigations (see e.g., Helled and Schubert, 2008; Helled

et al., 2008). However, recently Boss (1998, 2002, 2007) in
his investigations assumed the protoplanets to be in radiative
equilibrium, which is consistent with earlier investigation by

Bodenheimer (1974) who calculated a completely radiative
Jovian mass structure assuming a constant grain opacity of
0.14 cm2 g�1. It is of interest to note here that in the case of

radiative heat transfer, conduction is also taken part (Böhm-
Vitense, 1997). Based on the idea, Paul et al. (2008) investi-
gated initial structure of a Jovian mass protoplanet, which

was further extended by Paul and Bhattacharjee (2013) for
investigating initial structures of extra solar protoplanets and
the obtained results were found to be consistent with the
results reported in some studies with rigorous treatment of

the problem (see Paul et al., 2013).
In this communication we intend to reinvestigate the model

of Paul and Bhattacharjee (2013) assuming heat transport fol-

lowing them to be conductive-radiative by a novel explicit
RKARMS(4,4) method in order to test its validity and effi-
ciency and to see how our computed results compare the esti-

mates obtained with other investigations.
The rest of the article is structured as follows. The theoret-

ical foundation of the problem in addition to boundary condi-
tions is presented in Section 2. Numerical technique is adopted

in Section 3. A brief description of the explicit RKARMS(4,4)
technique along with local truncation error and error control is
addressed in Section 4 and in its subsection. In Section 5, dis-

cussion of the obtained results as well as conclusion is
presented.
2. Theoretical foundation

As in Paul et al. (2008) and Paul and Bhattacharjee (2013), the
structure of a protoplanet, assuming the heat transport to be
conductive-radiative, is given by the following set of equations:
licit RKARMS(4,4) technique in determining initial configurations of extra-solar
ysics (2016), http://dx.doi.org/10.1016/j.nrjag.2015.11.004
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The equation of hydrostatic equilibrium,

dPðrÞ
dr

¼ �GMðrÞ
r2

qðrÞ: ð1Þ

The equation of conservation of mass,

dMðrÞ
dr

¼ 4pr2qðrÞ: ð2Þ

The equation of conductive-radiative heat flux,

8rH

3� 10�24

T3ðrÞ
qðrÞ þ g

� �
dTðrÞ
dr

¼ � CR

4pR
GM2ðrÞ

r3
: ð3Þ

The gas law,

PðrÞ ¼ k

lH
qðrÞTðrÞ: ð4Þ

with the following boundary conditions

TðrÞ ¼ 0; PðrÞ ¼ 0 at r ¼ R surfaceð Þ
MðrÞ ¼ M at r ¼ RðsurfaceÞ
MðrÞ ¼ 0 at r ¼ 0 centerð Þ

9>=
>;: ð5Þ
Figure 1 Initial temperature–pressure profiles of some protoplanets.
3. Numerical approach in structure determination

For the solution of structure equations, we have nondimen-
sionalized them in addition to the boundary conditions follow-

ing Paul and Bhattacharjee (2013), which can be given by

dp

dy
¼ pq

tð1� yÞ2 ; ð6Þ

dq

dy
¼ � pð1� yÞ2

t
; ð7Þ

and

dt

dy
¼ CR

cpq2

ð1� yÞ3ðat4 þ bpÞ ; ð8Þ

where

a ¼ 8rH

3� 10�24

lHGM

kR

� �3

; b ¼ Mg

4pR3
; and c ¼ M2k

16p2R5lH
;

as by means of the above transformations, q is reduced to the
form

q ¼ M

4pR3

p

t
; ð9Þ

where the boundary conditions are given by

tðyÞ ¼ 0; pðyÞ ¼ 0 at y ¼ 0

qðyÞ ¼ 1 at y ¼ 0

qðyÞ ¼ 0 at y ¼ 1

9>=
>;: ð10Þ

Now, analytic solution of the system specified by
Eqs. (6)–(8) with the boundary conditions specified by

Eq. (10), as they stand, is impossible (Paul et al., 2013), resort
to be taken to numerical technique. But because of the exis-
tence of vanishing denominators in the basic equations, the

integration cannot be started right from either of the bound-
aries, and hence the boundary conditions should be developed.
In our investigation, we used developed surface boundary con-

ditions, which are available in Paul and Bhattacharjee (2013).
Please cite this article in press as: Paul, G.C., Senthilkumar, S. Execution of novel exp
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With the developed boundary conditions, inserting the values
of the required parameters involved, we have solved
Eqs. (6)–(8) numerically by the newly introduced explicit

RKARMS(4,4) method from y ¼ 0:01 downwards to the point
0.99 to get the distributions of p; q, and t. The values of the
required parameters of the present study are similar to those

used in the study of Paul and Bhattacharjee (2013). With the
distributions of p and t, the density distribution is then
easily obtained by Eq. (9). The structures of the protoplanets

are found to be dependent on a parameter CR. The best
values of CR for the prescribed protoplanetary masses
0:3MJ; 1MJ; 3 MJ; 5 MJ; 7MJ and 10 MJ satisfying the
third condition of Eq. (10) can be found to be 0.026, 0.2,

1.27, 2.43, 4.03 and 8.4, respectively, which can be found to
be the same with the ones found in Paul and Bhattacharjee
(2013). The results of our calculation are shown in diagram-

matic forms through Figs. 1–3.

4. A description about explicit RKARMS(4,4) numerical

technique

The s� stage RK(4,4) technique for solving the IVP
y0 ¼ fðx; yðxÞÞ; x0 6 x 6 xn subject to yðx0Þ ¼ y0 can be given

by

ynþ1 ¼ yn þ h
Xs

i¼1

biki; ð11Þ

where ki ¼ fðxn þ cih; yn þ h
Xs

i¼1

aijkiÞ; ci ¼
Xs

j¼1

aij;

i ¼ 1; 2; 3; . . . ; s

with s dimensional vectors c and b and the s� s matrix AðaijÞ.
A general s-stage RK pair can be written in an array form as

T  

Tb̂

C A

b

ET 

The symbols C; A and bT have order s and that C; A and

b̂T have order ðsþ 1Þ. Using the second method, the value of y
at x ¼ xnþ1 can be expressed as
licit RKARMS(4,4) technique in determining initial configurations of extra-solar
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Figure 2 Density distribution inside some initial protoplanets.

Figure 3 Error estimation of the proposed method through p, q

and t with references to the protoplanets with masses 1 MJ and

10MJ; (a) for 1MJ and (b) for 10MJ.
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ŷnþ1 ¼ yn þ h
Xs

i¼1

b̂iki; ð12Þ

whereas the same for the first method is expressed by Eq. (11).

From the embedded form, the LTE may be computed from
the formula: LTE ¼ ynþ1 � ŷnþ1. It is of interest to note here

that LTE leads to control step size.

The four stage method with the Butcher array form is writ-
ten as follows:

0   

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2          b3               b4         
Please cite this article in press as: Paul, G.C., Senthilkumar, S. Execution of novel exp
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The well-known fourth order RK arithmetic mean (RKAM
(4,4)) method can be written in the Butcher array form as fol-
lows (see Senthilkumar and Paul, 2012):

 0   

2
1

2
1

2
1

2
10          

1 0 0 1

1  
6
1

3
2

3
2

6
1

0

ynþ1 ¼ yn þ
h

3

k1 þ k2
2

þ k2 þ k3
2

þ k3 þ k4
2

� �
; ð13Þ

where

k1 ¼ fðxn; ynÞ;

k2 ¼ f xn þ h

2
; yn þ

hk1
2

� �
;

k3 ¼ f xn þ h

2
; yn þ

hk2
2

� �
;

k4 ¼ fðxn þ h; yn þ hk3Þ:
The fourth order RK method with Butcher array can also

be written in the modified form as (see Ponalagusamy and
Senthilkumar, 2009)

 0   

2
1

2
1

2
1 0          

2
1

 1 0 0 1 

3
1

3
1

3
1

The fourth order RK root mean square (RKRMS(4,4))
method due to Yaakub and Evans (1993) is given by

ynþ1 ¼ yn þ
h

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ k24

2

s2
4

3
5; ð14Þ

where

k1 ¼ fðxn; ynÞ;

k2 ¼ f xn þ 1

2
h; yn þ

1

2
hk1

� �
;

k3 ¼ f xn þ 1

2
h; yn þ

1

16
hk1 þ 7

16
hk2

� �
;

k4 ¼ f xn þ h; yn þ
1

8
hk1 � 17

56
hk2 þ 33

28
hk3

� �
:

It is well-known that combination of RKAM(4,4) and
RKRMS(4,4) (Eqs. (13) and (14)) leads to give a new forma-
tion of RKARMS(4,4), and is formulated by Ponalagusamy

and Senthilkumar (2009) as
licit RKARMS(4,4) technique in determining initial configurations of extra-solar
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k1 ¼ fðxn; ynÞ ¼ k�1;

k2 ¼ f xn þ h

2
; yn þ

hk1
2

� �
¼ k�2;

k3 ¼ f xn þ h

2
; yn þ

hk2
2

� �
;

k4 ¼ fðxn þ h; yn þ hk3Þ;

k3 ¼ f xn þ 1

2
h; yn þ

1

16
hk1 þ 7

16
hk2

� �
¼ k�3;

k4 ¼ f xn þ h; yn þ
1

8
hk1 � 17

56
hk2 þ 33

28
hk3

� �
¼ k�4;

ynþ1 ¼ yn þ
h

3

k1 þ k2
2

þ k2 þ k3
2

þ k3 þ k4
2

� �
; ð15Þ

y�nþ1 ¼ yn þ
h

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�21 þ k�22

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�22 þ k�23

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�23 þ k�24

2

s2
4

3
5: ð16Þ

The embedded RKARMS(4,4) method is expressed as

 0

2
1

2
1

2
1 0          

2
1

 1 0 0 1 

… … … 

                        … … … 

2
1

16
1

16
7

 1
8
1

56
17−

28
33

3
1

3
1

3
1

3
1

3
1

3
1

ET

Hence; bT ¼ yAMnþ1 ¼ yn þ
h

3

k1 þ k2
2

þ k2 þ k3
2

þ k3 þ k4
2

� �
;

ð17Þ

b̂T ¼ yRMS
nþ1 ¼ yn þ

h

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�21 þ k�22

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�22 þ k�23

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�23 þ k�24

2

s2
4

3
5;

ð18Þ

and the estimation of the LTE, ET ¼ bT � b̂T
��� ���. In the

RKARMS(4,4) method, four stages are required to obtain
the solution, which share the same set of vectors k1 and k2

using bT and b̂T approximately, but k3 and k4 use bT while

k�3 and k�4 use b̂T.

4.1. Derivation and error estimation for explicit RKARMS(4,4)

method

According to Lotkin (1951), Ralston (1957) and Lambert
(1973, 1980), the error estimate for fourth order RK schemes
Please cite this article in press as: Paul, G.C., Senthilkumar, S. Execution of novel exp
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is given wðxn; yn : hÞj j 6 ð73=720ÞML4, where L and M are

positive constants. From Eqs. (17) and (18), we obtain an esti-
mate of the LTE for the RKARMS(4,4) method as
LTE ¼ ynþ1 � y�nþ1, which may be used to control step size.

The LTE for well-known RKAM(4,4) method is

yAMnþ1 ¼ yn þ LTEAM; ð19Þ
and the LTE for RKRMS(4,4) method is

yRMS
nþ1 ¼ yn þ LTERMS; ð20Þ
where yAMnþ1 and yRMS

nþ1 are numerical approximations at xnþ1

obtained by RKAM(4,4) and RKRMS(4,4), respectively, and
LTEAM and LTERMS are the LTEs for RKAM(4,4) and

RKRMS(4,4), respectively. The difference between

yAMnþ1 and yRMS
nþ1 at xnþ1 gives an error estimate as

yAMnþ1 � yRMS
nþ1 ¼ LTEAM � LTERMS: ð21Þ

The LTE for RKAM(4,4) method is given by

LTEAM ¼ h5

2880
�24ff4y þ f4fyyyy þ 2f3fyfyyy � 6f3f2yy þ 36f 2f 2y fyy

� 	
;

ð22Þ
whereas the LTE for RKRMS(4,4) method can be set to the
form

LTERMS ¼ h5

184320
�429ff 4

y � 64f 4fyyyy � 48f 3fyfyyy � 96f 3f 2yy

�
�2454f 2f 2y fyy

	
: ð23Þ

The absolute difference between LTEAM and LTERMS is
given by

LTEAM�LTERMSj j ¼ h5

184320
1107ff 4y þ128f 4fyyyy

�
þ176f 3fyfyyyþ288f 3f 2yyþ4758f 2f 2y fyy

	
: ð24Þ

As in Eq. (20), substituting f; fy; fyy, etc. in Eq. (24), it can

be written as

LTEAM � LTERMSj j 6 6457

184320
P4Qh5; ð25Þ

where P and Q are positive constants. If we let TOL ¼
5:00� 10�5, then by setting LTEAM � LTERMSj j 6 TOL, the

error control and step size selection can be determined by
Eq. (25) as

6457

184320
P4Qh5 < TOL or h <

28:54764� TOL

P4Q

� �1=5

: ð26Þ

It is pertinent to point out that in the explicit RKARMS
(4,4) method with error control program, we choose error esti-

mation as the difference between the results obtained by
RKAM(4,4) and RKRMS(4,4) methods. From Eq. (25), the
error estimation (ERREST) is expressed as (see Table 1)

ERREST ¼ yAM � yRMSj j � 6457

184320
: ð27Þ
5. Discussion on results and conclusion

We have analyzed initial configurations of protoplanets

formed via disk instability in the mass range 0.3–10 Jovian
licit RKARMS(4,4) technique in determining initial configurations of extra-solar
ysics (2016), http://dx.doi.org/10.1016/j.nrjag.2015.11.004
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Table 1 Comparison of LTE, GTE, and error estimation for RKARMS(4,4) method.

RK-embedded algorithm Local truncation error (LTE) Global truncation error (GTE) Error estimation (ERREST)

Explicit RK-embedded

arithmetic root mean

square method

LTEAM � LTERMS 6 6457
184320P

4Qh5

¼ LTEAM � LTERMSj j 6 6457
184320P

4Qh5
enj j 6 h4

164320LD

� 	
�M eDLðxn�x0Þ � 1


 �
ERREST= yAM � yRMSj j � 6457

184320

Table 2 Comparative distribution of thermodynamic variables inside a 1 Jupiter mass protoplanet.

r=R Classical Runge–Kutta 4th order method New explicit RKARMS(4,4) method

P (dynes cm�2) T (K) q (g cm�3) P (dynes cm�2) T (K) q (g cm�3)

0.99 3:8954527� 10�07 1:6102493� 1000 6:4512556� 10�15 3:8954527� 10�07 1:6102493� 1000 6:4512556� 10�15

0.90 5:4656957� 10�03 1:7901342� 1001 8:1421533� 10�12 5:3980124� 10�03 1:7845786� 1001 8:2236662� 10�12

0.80 1:3290122� 10�01 4:0709788� 1001 8:7058176� 10�11 1:3185159� 10�01 4:0629732� 1001 8:6930245� 10�11

0.70 1:0706637� 1000 7:0401377� 1001 4:0555650� 10�10 1:0644930� 1000 7:0301521� 1001 4:0473810� 10�10

0.60 5:6569018� 1000 1:0969770� 1002 1:3751831� 10�09 5:6320485� 1000 1:0958258� 1002 1:3770036� 10�09

0.50 2:4262787� 1001 1:6205682� 1002 3:9925723� 10�09 2:4183268� 1001 1:6194018� 1002 4:0165598� 10�09

0.40 9:2395087� 1001 2:3108465� 1002 1:0662455� 10�08 9:2199260� 1001 2:3100654� 1002 1:0713107� 10�08

0.30 3:2328971� 1002 3:1822282� 1002 2:7091933� 10�08 3:2309502� 1002 3:1828741� 1002 2:7168903� 10�08

0.20 1:0297073� 1003 4:1622901� 1002 6:5972184� 10�08 1:0316243� 1003 4:1668254� 1002 6:6508432� 10�08

0.10 2:7969290� 1003 4:9796902� 1002 1:4978163� 10�07 2:8170636� 1003 4:9933180� 1002 1:5070511� 10�07

0.01 1:0954682� 1004 6:1391756� 1002 4:7584900� 10�07 1:1489201� 1004 6:2424341� 1002 4:9146509� 10�07
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masses by a newly proposed explicit RKARMS(4,4) method
under approximate zero boundary conditions. Each of the pro-

toplanets has been assumed to be a sphere of solar composi-
tion, which is in a steady state of quasi–static equilibrium
where ideal gas law holds well, and the energy equation

assumes the conduction–radiation heat transport. Fig. 1
depicts initial temperature–pressure profiles of the protoplan-
ets with assumed masses. It can be shown from the figure that

after a point little depth from the surface down to the core
region, the temperature increases with the increasing mass of
the protoplanets, whereas the pressure also increases with their
increasing mass except for the protoplanets with masses 1MJ

and 10 MJ. The results of our calculation agree fairly well with
the estimates obtained in the investigations of Helled and
Schubert (2008), Paul and Bhattacharjee (2013), and Paul

et al. (2013). Fig. 2 shows initial density distribution inside
the assumed protoplanets. The figure shows that mater is not
distributed uniformly in the atmosphere, and there may have

variation in parameters due to gravitational stratification. This
is as to be expected for initial unsegregated protoplanets. It can
be observed from the figure that the central density of the pro-
toplanet with mass 1 MJ is higher than the central condensa-

tions of the other considered protoplanets and the
protoplanet with mass 3 MJ is found to be rarer concerning
both center and surface among all the protoplanets with

assumed masses.
Density distribution obtained in the study can be found to

be comparable with the ones obtained in the study of Paul

et al. (2013). But Helled and Schubert (2008) showed that
the surface density of such protoplanets decreases with their
decreasing mass and central density increases with their

increasing mass. It is pertinent to point out here that, in reality,
not a single protoplanet formed by disk instability exists in the
literature with its definite structures (Helled and Bodenheimer,
2011; Paul and Bhattacharjee, 2013). However, the system
Please cite this article in press as: Paul, G.C., Senthilkumar, S. Execution of novel exp
protoplanets formed by disk instability. NRIAG Journal of Astronomy and Geoph
possesses a unique solution suggesting that disk instability is
a reasonable hypothesis in planetary formation. The results

of our calculation may be important in the study of evolution
of extrasolar giant planets. A direct comparison of the results
employing the proposed RKARMS(4,4) method is made with

the results obtained by the classical Runge–Kutta 4th order
(RK(4,4)) method. Only the results for 1 MJ are presented
(see Table 2) because to void space consumption. From the

table it is found that the results by the explicit RKARMS
(4,4) method are comparable with the results obtained by the
RK(4,4) method, which can be seen to be true for all the pro-
toplanetary masses considered. We have evaluated error esti-

mation (ERREST) for the proposed method through the
results of the investigation. The results for 1 MJ and 10MJ

protoplanets are presented in Fig. 3 for sake of brevity. It is

inferred from Fig. 3 that the error estimations are quite reason-
able. We have tested our results for varying end points with all
the possible step sizes, for which the MKARMS(4,4) method is

valid. The results are found to be insensitive to the choice of
the end points. In order to compare the computational effi-
ciency of the RKARMS(4,4) method with that of the RK
(4,4) method, both the codes were run on the same computer

with step size 0.0001. The total computational time was found
to be less for the RKARMS(4,4) method (5.978359 s) in com-
parison with that for the RK(4,4) method (6.065116 s). Thus

the RKARMS(4,4) method is found to be more optimal in
solving structure equations of protoplanets in comparison with
the classical RK(4,4) method with respect to the central pro-

cessing unit (CPU) time and accuracy.
In our calculation, to make the work simple, the protoplan-

ets are assumed to be spheres of gas and dust where ideal gas

law holds well. But the Clapeyron equation of state (ideal gas
law) is appropriate only for the gases with no high pressure.
Also, in our calculations, we have neglected radiation effect
from the parent star. Furthermore, the disturbances from the
licit RKARMS(4,4) technique in determining initial configurations of extra-solar
ysics (2016), http://dx.doi.org/10.1016/j.nrjag.2015.11.004
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parent star and the mutual attraction among the protoplanets
have not been considered. But future work will be concen-
trated on the evolution of extrasolar planets formed via disk

instability including the factors mentioned above using an
appropriate equation of state, where our intention is to imple-
ment parallel numerical algorithms that employ large number

of processors. The processors perform various tasks indepen-
dently and simultaneously, thereby, improving the speed of
execution of complex programs dramatically. Parallel comput-

ers match the speed of supercomputers at a fraction of the cost.
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