Header menu link for other important links
X
Exploring the heat transfer and entropy generation of Ag/Fe 3 O 4 -blood nanofluid flow in a porous tube: a collocation solution
H.T. Basha,
Published in Springer Science and Business Media Deutschland GmbH
2021
PMID: 33721123
Volume: 44
   
Issue: 3
Abstract
Abstract: Evaluating the entropy generation is essential in thermal systems to avoid the unnecessarily wasted thermal energy during the thermal processes. Nowadays, researchers are greatly fascinated to scrutinize the entropy generation in a human system because it is utilized as a thermodynamic approach to understand the heat transfer characteristics of cancer systems or wounded tissue and their accessibility status. Further, numerous nanoparticles have been employed as an agent to control the heat transfer of blood and wounded tissue. As a result, the present model manifests the entropy generation, flow characteristics and heat transport of Ag/Fe3O4-blood flow of a nanofluid in a permeable circular tube with the influence of variable electrical conductivity and linear radiation. Nonlinear transport equations are converted into ordinary differential equations by suitable similarity variables which are solved with weighted residual method. Significant parameters like Reynolds number, dimensionless permeability parameter, extending/contracting parameter, Eckert number and Hartmann number on the radial pressure, axial velocity, radial velocity and temperature are explored through graphs. The obtained results show that temperature distribution of Fe3O4 nanoparticles is higher than Ag nanoparticle, in case of suction. The dimensionless permeability parameter has an opposite nature on the radial pressure for the suction and injection cases. Growing values of Hartmann number enhance the total entropy generation for the cases of suction and injection. Graphic Abstract: [Figure not available: see fulltext.] © 2021, The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.
About the journal
JournalData powered by TypesetEuropean Physical Journal E
PublisherData powered by TypesetSpringer Science and Business Media Deutschland GmbH
ISSN12928941