Header menu link for other important links
X
Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design
Published in Springer Science and Business Media LLC
2018
PMID: 30155633
Volume: 25
   
Issue: 30
Pages: 30236 - 30254
Abstract
The adsorption of crystal violet (CV) and malachite green (MG) dyes using carbon-coated Zn-Al-layered double hydroxide (C-Zn-Al LDH) was investigated in this work. The characterisation of both Zn-Al LDH and C-Zn-Al LDH was performed using XRD, SEM, TEM, EDX, XPS, FTIR, BET and TGA. The results indicated that carbon particles were effectively coated on Zn-Al LDH surface. The average total pore volume and pore diameter of C-Zn-Al LDH were observed as 0.007 cc/g and 3.115 nm. The impact of parameters like initial dye concentration, pH and adsorbent dosage on the dye removal efficiency was confirmed by carrying out Box-Behnken design experiments. Langmuir isotherm was well suited for both CV and MG adsorption among other isotherm models. The adsorption capacity was maximally obtained as 129.87 and 126.58 mg/g for CV and MG respectively. Pseudo-second order fits the adsorption kinetics than any other kinetic models for both the dyes. The thermodynamic study indicates that the adsorption process of CV was exothermic, whereas for MG was endothermic. Electrostatic attraction, H-bonding, n-π and π- π interactions were mainly influenced in the adsorption process. This study concludes that C-Zn-Al LDH is an efficient adsorbent for the CV and MG dye removal from aqueous solutions. Graphical abstract ᅟ Graphical abstract contains text below the minimum required font size of 6pts inside the artwork, and there is no sufficient space available for the text to be enlarged. Please provide replacement figure file.Graphical abstract contains text is rewritten with the maximum required font size inside the artwork and provided sufficient space between the text which is enlarged.The new Graphical abstract is attached as an image in the attachment file for your further usage.
About the journal
JournalData powered by TypesetEnvironmental Science and Pollution Research
PublisherData powered by TypesetSpringer Science and Business Media LLC
ISSN0944-1344
Open Access0