Header menu link for other important links
X
Fact-Finding on Physical and Mechanical Properties of 3Y-TZP Toughened Alumina (ZTA) Composites Incorporation of Functionalized Multi-walled Carbon Nanotubes
Manikandan D,
Published in Springer Singapore
2019
Pages: 249 - 259
Abstract
Zirconia-toughened alumina (ZTA) has been the famous composite utilized for the fabrication of articulating components in a hip joint prosthetics. The demand for longer life and better performance the material characteristics of the articulating components have to be enhanced. In recent literatures it has been described that the addition of multi-walled carbon nanotubes (MWCNT) into an alumina matrix of zirconia-toughened alumina, ZTA to improve the flexural strength, fracture toughness, and fatigue resistance. The intent of the current work is to establish and authenticate that the material’s toughness and hardness could be significantly tailored by preparing 3Y-TZP toughened alumina (ZTA) composites by the combination of functionalized MWCNT using conventional sintering method. For this method, homogenous spreading of CNTs in ceramic matrix has been reached from 0.5 wt% up to 1.8 wt% CNTs using ball milling then compacted and finally sintered. The density and micro hardness were studied related to the experimental runs established using box-behnken design. A clear enhancement in the physical properties was achieved after the adding MWCNTs at the range of 0.5 to 1.8 wt% and sintering temperature varied from 1500 to 1600 °C. The addition of MWCNT in the matrix exhibited the better porosity, density over 3Y-TZP toughened alumina (ZTA) sintered at the same temperature. This results designates that the properties of Zirconia-toughened alumina (ZTA) with MWCNT reinforcements based composites are strongly rely on the process of adding CNT and sintering. The optimized process parameter were also identified form the studies. © 2019, Springer Nature Singapore Pte Ltd.
About the journal
JournalData powered by TypesetLecture Notes in Mechanical Engineering Advances in Materials and Metallurgy
PublisherData powered by TypesetSpringer Singapore
ISSN2195-4356
Open AccessNo