
Research Article

Ferrotoxicity and Its Amelioration by Calcitriol in Cultured
Renal Cells

Chandrashekar Annamalai,1 Rohit Seth,2 and Pragasam Viswanathan 1

1Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT),

Vellore, 632 014 Tamil Nadu, India
2Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 Chhattisgarh, India

Correspondence should be addressed to Pragasam Viswanathan; pragasam.v@vit.ac.in

Received 9 November 2020; Revised 22 January 2021; Accepted 15 February 2021; Published 23 February 2021

Academic Editor: Md. Atiar Rahman

Copyright © 2021 Chandrashekar Annamalai et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Globally, acute kidney injury (AKI) is associated with significant mortality and an enormous economic burden. Whereas iron is
essential for metabolically active renal cells, it has the potential to cause renal cytotoxicity by promoting Fenton chemistry-based
oxidative stress involving lipid peroxidation. In addition, 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, is
reported to have an antioxidative role. In this study, we intended to demonstrate the impact of vitamin D on iron-mediated
oxidant stress and cytotoxicity of Vero cells exposed to iohexol, a low osmolar iodine-containing contrast media in vitro.
Cultured Vero cells were pretreated with 1,25-dihydroxyvitamin D3 dissolved in absolute ethanol (0.05%, 2.0mM) at a dose of
1mM for 6 hours. Subsequently, iohexol was added at a concentration of 100mg iodine per mL and incubated for 3 hours.
Total cellular iron content was analysed by a flame atomic absorption spectrophotometer at 372 nm. Lipid peroxidation was
determined by TBARS (thiobarbituric acid reactive species) assay. Antioxidants including total thiol content were assessed by
Ellman’s method, catalase by colorimetric method, and superoxide dismutase (SOD) by nitroblue tetrazolium assay. The cells
were stained with DAPI (4′,6-diamidino-2-phenylindole), and the cytotoxicity was evaluated by viability assay (MTT assay).
The results indicated that iohexol exposure caused a significant increase of the total iron content in Vero cells. A concomitant
increase of lipid peroxidation and decrease of total thiol protein levels, catalase, and superoxide dismutase activity were observed
along with decreased cell viability in comparison with the controls. Furthermore, these changes were significantly reversed when
the cells were pretreated with vitamin D prior to incubation with iohexol. Our findings of this in vitro model of iohexol-induced
renotoxicity lend further support to the nephrotoxic potential of iron and underpin the possible clinical utility of vitamin D for
the treatment and prevention of AKI.

1. Introduction

The prevalence of acute kidney injury (AKI) is increasing,
and besides causing significant morbidity and mortality, it
increases the risk of progression to irreversible kidney dis-
ease, thereby imposing a tremendous financial, societal, and
personal burden [1, 2]. The pathogenesis of AKI is multifac-
torial and involves a complex [3] interaction between vascu-
lar, tubular, and inflammatory factors. This is followed either
by repair and restoration of glomerular and tubular functions
or culminates in fibrosis and progression to chronic kidney
disease [4]. Currently, there is no specific and effective thera-

peutic modality and the treatment is mostly supportive in
nature [5].

Furthermore, despite the incidence being overestimated,
contrast-induced acute kidney injury (CI-AKI) still poses a
major threat to patients undergoing contrast-associated trans-
catheter diagnostic and interventional procedures by worsen-
ing short- and long-term outcomes and prolonging hospital
stay [6, 7]. Iohexol, a water-soluble, low osmolar, and nonionic
iodine-containing monomeric radiocontrast agent induces
renal damage by several mechanisms which are quite complex
and yet to be completely understood [8, 9]. Renal hypoperfu-
sion and renal medullary hypoxia [8, 10], autocrine and

Hindawi
Analytical Cellular Pathology
Volume 2021, Article ID 6634429, 13 pages
https://doi.org/10.1155/2021/6634429

https://orcid.org/0000-0003-3796-5589
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


paracrine impairment including increased endothelin and
adenosine release, lower nitric oxide metabolite concentration
and enhanced oxidative stress [11] [12], and direct cellular
damage [13] resulting in endothelial dysfunction followed by
vasoconstriction of vasa recta [14] [15], and consequent alter-
ations in renal blood flow lead to the development of contrast-
induced renal injury. High viscosity can further adversely
affect renal perfusion and urine formation [8].

Besides, the metallobiology of iron has been in focus in
recent times due to its crucial pathophysiological role in kid-
ney diseases. In particular, iron has been increasingly impli-
cated in the induction of AKI and worse outcomes [16–20].
In this context, the cytotoxic potential of iron in contrast-
induced AKI has been put forth as an important mechanism
[18]. Iron is an indispensable component of oxygen-binding
molecules (for example, hemoglobin and myoglobin), cyto-
chromes in the electron transport chain, and as a cofactor in
many enzymes and is involved in many fundamental biologi-
cal processes [21, 22]. The kidneys play a vital role in prevent-
ing iron loss in urine by reabsorbing the filtered iron.
Furthermore, they express several proteins necessary for iron
transport and metabolic activity and are thus actively involved
in systemic iron homeostasis [23, 24]. Although iron is essen-
tial for the metabolically active renal cells [25], it has the
potential to induce renal cytotoxicity [26, 27]. This is attrib-
uted to the unique property of iron to mediate electron trans-
fer and participate in the oxidation-reduction (redox)
reactions. While this is crucial for the functioning of several
biological systems, it can render iron lethal by catalysing the
Fenton and Haber-Weiss reactions and promoting the pro-
duction of reactive oxygen species (ROS) such as hydroxyl
radicals. This further overrides the cellular antioxidant defence
mechanisms and induces oxidative injury of cell structures in
addition to causing local inflammation and vasoconstriction
[26, 27]. It is worth noting that knowledge on the complex
mechanisms of renal iron handling and iron-induced cellular
injury (ferroptosis) is limited and its understanding could
provide novel therapeutic avenues [22, 28].

Concurrently, the kidneys also possess endogenous and
exogenous protective agents to counteract cellular injury
[28]. In this context, vitamin D is known to have cytoprotec-
tive action because of its antioxidant potential [29–31]. Vita-
min D is a prohormone with no intrinsic biological activity
and is derived endogenously from the skin and exogenously
from diet and supplements [32]. Both vitamin D2 (ergocalci-
ferol) and vitamin D3 (cholecalciferol) differ in their side
chains thereby affecting the capacity to bind to vitamin D-
binding protein (DBP) as well as efficacy. Vitamin D3 is con-
siderably more effective than vitamin D2 [33, 34]. During
exposure to the sun, ultraviolet rays (270–300 nm) photolyt-
ically converts 7-dehydrocholesterol by breaking its B ring to
form previtamin D3 which undergoes thermal isomerization
to vitamin D3 [35, 36]. Vitamin D3 bound to DBP is sequen-
tially hydroxylated first in the liver by the cytochrome P450s
(microsomal CYP2R1 and mitochondrial CYP27A1) [37] to
form 25-hydroxyvitamin D3 and subsequently in the
proximal tubules of the kidney [38, 39] by 1 α-hydroxylase
(CYP27B1) to the bioactive 1,25-dihydroxyvitamin D3, also
known as calcitriol [40–42].

1,25-Dihydroxyvitamin D3 is known to possess several
pleiotropic effects [43, 44]. Apart from being a key regulator
of calcium homeostasis by modulating parathyroid hormone
secretion and increasing gut calcium absorption [45], it has
been proven to exert antioxidant [30, 31], anti-inflammatory,
antiproliferative, and antineoplastic effects [46–49] as well.
By virtue of these properties, calcitriol is cytoprotective by
nature, whereas iron, especially the free form, is potentially
cytotoxic. Furthermore, the role of vitamin D in AKI is not
clearly elucidated as in chronic kidney disease [50] and it
needs to be ascertained if vitamin D could mitigate ferrotoxi-
city induced by radiocontrast media in vitro [28].

Therefore, we sought to investigate the combined roles of
iron and vitamin D in relation to oxidative stress and neph-
rotoxicity in an in vitro model of iohexol-induced AKI using
Vero cells. The main purpose of this study was to determine
the effect of iohexol on total cellular iron concentration and
its influence on oxidative stress and cytotoxicity of Vero cells
and to study the impact of 1,25-dihydroxyvitamin D3 on
iron-mediated oxidant stress and cellular injury.

2. Materials and Methods

2.1. Cell Culture. Vero cells (ATCC® CLL-81™) were pro-
cured from Cell Repository, National Centre for Cell Science
(NCCS), India. Dulbecco’s Modified Eagle’s Medium (HiMe-
dia Laboratories, India) containing 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin combination was
used. The cells were grown on a cover glass in 10 cm plastic
dishes placed inside an incubator at 37°C containing a humid
atmosphere consisting of 5% oxygen, 5% carbon dioxide, and
90% nitrogen until a monolayer was formed. Periodic assess-
ment of these cells was carried out to ensure freedom from
mycoplasma contamination. Upon reaching 80-95% con-
fluency, the cells were digested with trypsin, resuspended in
serum-free medium, and passaged in a 1 : 3 proportion. The
culture media was replaced every 2 to 3 days to ensure
continuous nutritional support for cell growth.

The optimal dose of iohexol was determined and the cell
viability (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide)) assay was studied by plating 1 × 104

viable cells per cm2 using 96-well plates.
Control cells were incubated similarly with sterile 0.9%

normal saline (sodium chloride injection, B.P. 0.9% w/v,
Schwitz Biotech, India) except that they were not pretreated
with vitamin D3 and iohexol. Microscopy was performed
using a Leica DM IL inverted fluorescent microscope
equipped with appropriate fluorescent filters (Leica Micro-
systems, India). Images were captured at 100x magnification
using an attached Leica DFC 450C camera and processed
with LAS X software and exported.

2.2. Preparation of 1,25-Dihydroxyvitamin D3. 1,25-Dihy-
droxyvitamin D3 (Cat: sc-202877, Santa Cruz Biotechnology
Inc., USA) dissolved in absolute ethanol (0.05%, 2.0mM,
HiMedia Laboratories, India) was used for our cell culture
studies. Vitamin D is light-sensitive and is stored away from
direct light in a brown bottle at -20°C. On the day of use,
further dilutions were made directly in the culture medium
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at the concentration of 1μM, a dose at which no significant
change in cell viability was observed to occur.

2.3. Determination of the Optimal Dose of Iohexol. Vero cells
were treated with different concentrations of iohexol
(OMNIPAQUE™, 350mg iodine per mL, GE Healthcare,
India) in a graded manner (12.5mg/mL to 200mg of iodi-
ne/mL) to determine the optimal dose at which significant
cellular injury occurred as reflected by the characteristic mor-
phological changes on microscopy in comparison with a con-
trol group. Cells exposed to iohexol show signs of rounding
up. In contrast, the control healthy cells retain their primary
elongated shape. The cell viability was further assessed by
MTT assay as described below (Figure 1) by exposing the
Vero cells to increasing doses of iohexol. An effective dose
of 100mg iodine per mL of iohexol was used for the
successive experiments.

2.4. Determination of Cellular Iron by Atomic Absorption
Spectroscopy. The concentrations of Fe in Vero cells were
measured using a flame atomic absorption spectrophotome-
ter (AAS) (Hitachi, Japan). Iron stock standard solution
(1 g/L) was purchased from Sigma-Aldrich, USA, and nitric
acid (99%) fromHiMedia Laboratories, India. Standard solu-
tions were prepared by diluting 1 g/L iron solution with 1.5%
HN03 solution at various concentrations. Samples were pre-
pared at 10-fold dilution by diluting the homogenized cell
samples with 1.5% HN03 solution. Deionized distilled water
was used as blank. Standard solution was then mixed with
distilled water, and a calibration curve was generated to
estimate the levels of iron in the deionized distilled water.
Following this, 40mL of the sample preparation was injected
into the atomic absorption spectrometry [51–54] in order to
quantify iron in the Vero cells.

2.5. Reactive Oxygen Species Production. Lipid peroxidation
was determined by TBARS (thiobarbituric acid reactive spe-
cies) assay by spectrophotometric method [55]. The antioxi-
dant status was assessed by measuring the levels of total thiol
protein using Ellman’s method [56] and the activities of cat-
alase by colorimetric method [57] and superoxide dismutase
(SOD) by nitroblue tetrazolium assay [58].

2.6. Detection of Cell Toxicity Using DAPI. Control Vero cells

resuspended with 200μL of 1μg/mL DAPI (4′,6-diamidino-
2-phenylindole dihydrochloride; Cat: D9542, Sigma-Aldrich,
USA) in phosphate-buffered saline (PBS) were incubated for
five minutes at room temperature while rotating and then
washed using PBS mixed with a solution of 0.1% sodium
azide. 2μL of these cells was transferred to a coverslip coated
with poly-l-lysine and left in the dark for five minutes. This
coverslip was subsequently placed over a glass slide contain-
ing 5μL of antifade solution and left for another five minutes
in the dark. The cells were finally examined under a fluores-
cent microscope [59, 60]. Similarly, Vero cells were
pretreated with 1μM 1,25-dihydroxyvitamin D3 with and
without 100mg/mL iohexol and investigated further.

2.7. Assessment of Cell Viability by MTT Assay. An MTT
assay was carried out to determine inhibition of cell activity

and to quantify metabolically viable cells [61]. This is a color-
imetric assay where the soluble yellow tetrazolium salt
(MTT) is reduced to insoluble blue-purple formazan crystals
[62] by the mitochondrial succinate dehydrogenase enzyme
activity [63]. Vero cells in the logarithmic growth phase were
inoculated at a seeding density of 1 × 104 cells in to a 96-well
plate. At around 80-90% confluence, varying concentrations
of iohexol (12.5, 25, 50, 75, 100, and 200mg iodine/mL) were
added and left at room temperature (37°C) for 3 hours. Sub-
sequently, 20μL (1mg/mL) of MTT labelling reagent (HiMe-
dia Laboratories, Mumbai, India) in sterile PBS was instilled
in to each well followed by incubation for 4 hours at 37°C.
The cells were then examined under a phase-contrast micro-
scope to study the cell confluency. The insoluble, purple for-
mazan crystals thus formed were dissolved by mixing the
cells with 150μL of dimethyl sulfoxide and shaking the cell
plate for 5 minutes to enable complete solubility. The cell via-
bility of the treated cells was assessed by determining the
optical density at 570 nm using a spectrometer (EPOCH-2
plate reader, BioTek Instruments, USA) and analysing the
results in comparison with the control group which displayed
100 percent viability. The procedure was repeated in Vero
cells pretreated with 1μM of 1,25-dihydroxyvitamin D3
dissolved in 2.0mM of 0.05% absolute ethanol. All the
experiments were performed four times [64, 65].

2.8. Experimental Protocol. Vero cells were treated with
iohexol at a concentration of 100mg/mL for 3 hours. The
same stimulation was replicated after pretreatment with
1,25-dihydroxyvitamin D3 dissolved in absolute ethanol
(0.05%, 2.0mM) at a dose of 1μM for another 6 hours. Con-
trol cells were exposed to 0.9% normal saline. Cellular iron
was determined by atomic absorption spectroscopy, oxida-
tive stress was assessed by the methods described above, the

cells were stained with DAPI (4′,6-diamidino-2-phenylin-
dole), and the extent of cellular injury was assessed by the
uptake of tetrazolium MTT dye by the control cells and the
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Figure 1: MTT 3-(4,5-dimethyl (thiazol-2-yl)-2,5-diphenyl
tetrazolium bromide) assay to quantify cell viability in Vero cells
exposed to graded concentrations of iohexol. One-way ANOVA
and Tukey posttest (n = 4) were used to analyse the results. ∗p <
0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 (2-tailed) in comparison with
the control.

3Analytical Cellular Pathology



Vero cells exposed to iohexol before and after pretreatment
with 1,25-dihydroxyvitamin D3.

2.9. Statistical Analysis. The experimental results from four
independent experiments (technical replicates) were repre-
sented asmeans ± standard deviation (SD). One-way analysis
of variance (ANOVA) with Tukey multiple comparison post-
test was used to study the individual variances in relation to
the control group. Pearson correlation was used to estimate
the association between different study parameters. Statistical
significance was defined at p < 0:05 (2-tailed). SPSS (IBM
Corp. Released 2017, IBM SPSS Statistics for Windows,
Version 25.0. Armonk, NY: IBM Corp.) was used to analyse
the results and GraphPad Prism Version 8.3.0 to create the
artwork and illustrations.

3. Results

3.1. Determination of the Optimal Dose of Iohexol. Vero cells
incubated with different concentrations of iohexol were

examined under a microscope. 100% confluency was
observed in the control cells which retained their primary
elongated morphology. With a progressive increase in the
concentration of iohexol, there was a concomitant increase
in cell death. At a concentration of 50mg iodine per mL
of iohexol, nearly 50% cell lysis was evident with the max-
imum lysis occurring at 200mg iodine per mL of iohexol
concentration (Figure 2).

Vero cells were further exposed to increasing doses of
iohexol to determine cell viability using MTT assay. As illus-
trated in Figure 1, in the dose-response study, the effect of
iohexol was noted to be concentration-dependent. A signifi-
cant decrease in cell viability was conspicuous starting from
a concentration of 50mg iodine per mL of iohexol with
respect to the control (100% viable cells). Cell survival was
the lowest at the maximum iohexol concentration of
200mg iodine per mL (Figure 1). An effective dose of
100mg iodine per mL of iohexol was used for the successive
experiments.

Control 12.5 mg I/mL 25 mg I/mL 50 mg I/mL

75 mg I/mL 100 mg I/mL 200 mg I/mL

100× 100× 100× 100×

100× 100× 100×

Figure 2: Vero cells under the microscope after subjecting to different doses of iohexol containing increasing concentration of iodine (I)
(n = 4). Magnification 100x. The control group displays healthy, growing cells with elongated morphology (black arrows), whereas the
cells incubated with iohexol show signs of rounding up.

Table 1: Descriptive statistics.

Control
(n = 4)

Vitamin D
(n = 4)

Iohexol
(n = 4)

Iohexol+vitamin D
(n = 4)

Total cellular iron (nmol/mg protein) 10:4 ± 1:2 10:8 ± 1:0 52:4 ± 9:1∗∗∗ 28:0 ± 4:7∗∗$$$

Lipid peroxidation (mg/mg protein) 0:2 ± 0:0 0:3 ± 0:1 0:6 ± 0:1∗∗∗ 0:4 ± 0:0∗$$$

Thiol protein (units/mg protein) 0:8 ± 0:1 0:7 ± 0:1 0:1 ± 0:0∗∗∗ 0:5 ± 0:2∗∗$$

Catalase (units/mg protein) 13:1 ± 0:2 12:2 ± 0:6∗ 1:0 ± 0:1∗∗∗ 6:4 ± 0:4∗∗∗$$$

Superoxide dismutase (units/mg protein) 100:0 ± 0:0 97:4 ± 0:8 72:4 ± 2:7∗∗∗ 91:43 ± 1:7∗∗∗$$$

Cell viability (%) 100:0 ± 0:0 96:7 ± 9:6 66:6 ± 7:5∗∗ 87:6 ± 13:6$

Results were represented asmean ± SD. One-way ANOVA and Tukey posttest (n = 4) were used to analyse the results. p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 (2-
tailed) versus control; $p < 0:05; $$p < 0:01, and $$$

p < 0:001 (2-tailed) iohexol versus iohexol+vitamin D groups.
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3.2. Total Cellular Iron. Iohexol exposure caused a significant
increase in the total iron content in the Vero cells
(52:4 ± 9:1 nmol/mg protein, p < 0:001) compared with the
control cells (10:4 ± 1:2 nmol/mg protein) and the cells incu-
bated with vitamin D alone (10:8 ± 1:0 nmol/mg protein).
The iron concentration was, however, noted to be signifi-
cantly reduced in the cells pretreated with vitamin D
(28:0 ± 4:7 nmol/mg protein) (Table 1, Figure 3).

3.3. Reactive Oxygen Species Production. Similar conditions
were reproduced to assess the oxidative stress markers in
Vero cells (Figure 4). There was a considerable increase in
lipid peroxidation in cells exposed to iohexol alone
(0:6 ± 0:1mg/mg protein, p < 0:001) compared with the con-
trol cells (0:2 ± 0:0mg/mg protein). Furthermore, a concom-
itant reduction in the antioxidant levels, namely, total thiol
protein (0:5 ± 0:2 units/mg protein, p < 0:01), catalase
(6:4 ± 0:4 units/mg protein, p < 0:001), and superoxide
dismutase (91:4 ± 1:7 units/mg protein, p < 0:001), was
observed in those cells. On the other hand, these changes
were significantly reversed when the cells were treated with
vitamin D prior to incubation with iohexol (Figure 4,
Table 1). The cells treated with both vitamin D and iohexol
displayed a relatively decreased oxidative stress than when
treated with iohexol alone. Similarly, not much difference
in these levels existed between the control cells and the cells
exposed to calcitriol alone (Table 1, Figure 4).

3.4. Cell Toxicity Test Using DAPI Staining. Vero cells treated
with iohexol alone and after pretreatment with vitamin D3
were analysed after staining with DAPI. The morphology of
the cells was investigated under a fluorescent microscope.
The dead cells displayed a distorted appearance with
fragmented or condensed nuclei (Figure 5).

3.5. Detection of Cell Viability by MTT Assay. Compared with
the control group, cell viability was noted to decrease

dramatically in iohexol-treated cells (p < 0:001) in a
concentration-dependent manner. This was indicated by
the lower absorbance rates of the experimental samples com-
pared with negative control on MTT assay. However, prior
exposure to vitamin D appeared to counteract the reduction
in cell viability (p < 0:05) (Figure 6).

3.6. Correlation of Iron with Oxidative Stress and Cell
Viability. Total cellular iron showed a positive correlation
with lipid peroxidation (Figure 7(a)) and a strong negative
linear relationship with the antioxidants, namely, thiol pro-
tein, catalase, and superoxide dismutase (Figures 7(b)–7(d))
and with cell viability (Figure 7(e)).

4. Discussion

Although iron is an essential element, its ability to switch
between ferrous and ferric states can be deleterious to renal
cells. Renal cells possess highly regulated mechanisms to con-
trol cellular iron levels. Dysregulation of these mechanisms
leads to disrupted cellular iron trafficking and consequent
iron accumulation and altered iron homeostasis. Accord-
ingly, suitable adaptive mechanisms are activated to enable
the renal cells to remain viable. Here, we showed that calci-
triol exerted a protective role against ferrotoxicity induced
by iohexol in Vero cells. In the iohexol-treated cells, iron-
mediated oxidative stress and a decrease in cell viability were
reversed in the cells exposed to calcitriol.

This study exhibited a significant elevation in the total iron
content in the Vero cells following exposure to the optimal
dose of iohexol (Table 1, Figures 1–3). This was accompanied
by increased oxidative stress and a significant decline in the
antioxidant concentrations including those of the thiol pro-
tein, catalase, and superoxide dismutase (Table 1, Figure 4).
In addition, significant cell death was visible on DAPI staining
(Figure 5) along with a remarkable decrease in cell viability in
a concentration-dependent manner (Figure 6). Strikingly,
there existed a meaningful correlation between iron, oxidative
stress, and cell viability (Figure 7). These findings are consis-
tent with those of other studies in which iron and iron-
containing proteins were revealed to cause direct injury to
renal tubular cells in vivo using the whole kidney [66–68]
and isolated proximal renal tubules [69, 70] and in other
in vitro studies [71–74]. Similarly, García-Alfonso et al. proved
ferrous [Fe(II)] and ferric [Fe(III)] forms of iron to produce a
dose-dependent toxicity in Vero cells [75]. Iron-induced oxi-
dative stress and cell death (ferroptosis) were also demon-
strated in some rat and murine experimental AKI [20, 76–
81]. Further, there occurred an increase in the kidney and uri-
nary iron content in both animal models of AKI [82–85] and
in humans [86–89]. Interestingly, the use of iron chelators was
shown to reduce lipid peroxidation and improve renal
functions [74, 90–93].

Most mammalian cells are protected from the detrimen-
tal effects of oxidant stress by tight control of iron homeosta-
sis involving the processes of iron uptake, utilization, and
storage. For instance, iron is transported in the circulation
bound to transferrin [94] and sequestered inside the cell by
ferritin [95] while hepcidin regulates the intake of iron and
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Figure 3: Relative concentrations of total cellular iron determined
by atomic absorption spectroscopy in Vero cells treated with
iohexol at a concentration of 100mg iodine/mL or pretreated with
1μM vitamin D3. Results are represented as mean ± SD. One-way
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its distribution by binding to the basolateral membrane fer-
roportin, an iron exporter and facilitating its internalization
and degradation [96–98]. As a result, very minute quantities
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Figure 4: Levels of (a) lipid peroxidation, (b) thiol protein, (c) catalase, and (d) superoxide dismutase activity in Vero cells treated with
iohexol at a concentration of 100mg iodine/mL or pretreated with 1μM vitamin D3. Results are represented as mean ± SD. One-way
ANOVA and Tukey posttest (n = 4) were used to analyse the results. ns: not significant; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 (2-tailed)
versus control; $p < 0:05, $$p < 0:01, and $$$

p < 0:001 (2-tailed) iohexol (I) versus iohexol+vitamin D (I+Vit D) groups.
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Figure 5: Fluorescent micrographs of Vero cells stained with DAPI

(4′,6-diamidino-2-phenylindole) demonstrating more prominent
nuclear condensation (shown in blue) in the iohexol-treated (I100)
group (white arrows) compared to the iohexol+vitamin D-treated
(Vit D+I100) group. Magnification 100x.
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Figure 6: MTT 3-(4,5-dimethyl (thiazol-2-yl)-2,5-diphenyl
tetrazolium bromide) assay to quantify cell viability in Vero cells
exposed to iohexol and vitamin D3. Results are represented as
mean ± SD. One-way ANOVA and Tukey posttest (n = 4) were
used to analyse the results. ns: not significant; ∗p < 0:05, ∗∗p < 0:01
, and ∗∗∗p < 0:001 (2-tailed) in comparison with the control;
$
p < 0:05, $$p < 0:01, and $$$

p < 0:001 (2-tailed) iohexol (I) versus
iohexol+vitamin D (I+Vit D) groups.
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of highly reactive and toxic free or labile iron are present in
the circulation [21, 26, 99]. On the other hand, antioxidant
renoprotective mechanisms also exist inside the kidney cells
including superoxide dismutase and catalase to prevent oxi-
dative injury [28]. Noteworthily, owing to its antioxidative
property, vitamin D has been shown to provide cytoprotec-
tion [29–31].

This study noticed that cells treated with both calcitriol
and iohexol tended to have decreased levels of cellular iron
as well as a reduction in oxidative stress together with a con-
comitant elevation in the concentrations of antioxidants,
namely, the thiol protein, catalase, and superoxide dismutase,
in comparison with those cells incubated with iohexol alone.
As vitamin D is known to be cytoprotective, one can specu-

late that the Vero cells incubated without 1,25-dihydroxyvi-
tamin D3 were protected from the oxidative damage
induced by iron.

This was supported by compelling evidence of renopro-
tection exerted by calcitriol and its analogues in several
experimental cell cultures and animal models. While some
studies have reported a reduction in malondialdehyde levels
by vitamin D [100] [101], others have illustrated an increase
in the antioxidants like glutathione [102]. In an in vitro study
by Weih et al., calcitriol was noted to inhibit the proliferation
of opossum kidney (OK) cells [103]. Paricalcitol, the syn-
thetic vitamin D analogue, was elucidated by Ari et al. [100]
to circumvent contrast-induced nephropathy by reducing
oxidative stress. By virtue of its antioxidant effects, vitamin
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Figure 7: Scatter plot depicting the correlation between total cellular iron, oxidative stress, and cell viability in cells treated with iohexol: (a)
lipid peroxidation, (b) thiol protein, (c) catalase, (d) superoxide dismutase activity, and (e) cell viability. NBT: nitroblue tetrazolium.
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D was found to protect against AKI induced by aminoglyco-
side [102, 104], cyclosporine [105], rhabdomyolysis [106],
and lipopolysaccharide [107]. Moreover, deficient calcitriol
levels appeared to exacerbate inflammatory responses in rats
with ischemia reperfusion injury [108]. Low vitamin D levels
were also found to increase the risk of AKI and to predict
mortality in critically ill patients [109, 110], denoting the sig-
nificance of maintaining adequate vitamin D levels.

As described earlier, although contrast-induced acute
kidney injury results from numerous pathophysiological pro-
cesses such as ischemia due to changes in renal blood flow,
direct renal tubular toxicity, and intratubular obstruction
by the contrast material [8, 9], it would be helpful to analyse
individual mechanisms independently in vitro utilizing a
highly controlled cell culture system without the confound-
ing factors encountered in vivo. Investigating the role of
iron-mediated cytotoxicity without the influence of tubular
and prerenal factors would therefore be very informative.
This study accomplishes this objective and is the first to high-
light such a reduction in iron-induced oxidative stress and
injury by vitamin D in Vero cells exposed to iohexol. Of note,
this study is an extension of a similar work carried out in
Wistar rats by us [111], thereby providing comprehensive

insights in to the pathophysiology of iohexol-induced ferro-
toxicity and its possible amelioration by vitamin D both
in vitro and in vivo. This cell model also paves way for the
generation of an assay for preclinical testing of novel radio-
contrast agents as well as for developing strategies to devise
safer molecules. For a better understanding, the possible link
between vitamin D and iron pathophysiological mechanisms
inside the renal cell in the context of iohexol-induced neph-
rotoxicity is schematically represented in Figure 8.

There are certain limitations to our study. Firstly, metal
ions including iron exist in free and bound forms [116].
Our study determined the total cellular iron using atomic
absorption spectroscopy. It would have been desirable to
examine the role of free iron, also known as labile or catalytic
iron [26], in the cells in order to investigate its biological role
as well as ferrotoxicity in a more intricate manner. Nonethe-
less, we could illustrate an increase in the overall cellular iron
concentration in the Vero cells following iohexol use and a
corresponding reduction in its levels following exposure to
vitamin D, which clearly signify the existence of iron dysho-
meostasis in this in vitro model of CI-AKI.

Next, this study did not assess the impact of calcitriol and
iron on other intracellular mediators of iron handling
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Figure 8: Mechanistic diagram illustrating the renoprotective role of calcitriol in iohexol-induced AKI. Iohexol increases the intracellular
release of catalytic iron, for example, from mitochondria (MT) during the process of renal tissue injury. Concurrently, 1 α-hydroxylase
(CYPB21) catalyses the conversion of 25-hydroxyvitamin D3 (25[OH]D) to active 1,25-dihydroxyvitamin D3 (I,25[OH]2D3), also known
as calcitriol. Calcitriol binds to vitamin D receptor (VDR) which then binds to the proximal promoter region of HAMP gene containing
vitamin D-responsive elements (VDREs) leading to suppression of HAMP gene and therefore hepcidin protein expression directly [112].
Vitamin D also indirectly reduces prohepcidin inflammatory cytokines, IL-6 and IL-1β [113] and MCP-1 [114]. Furthermore, vitamin D
possesses antioxidant property and it relieves endoplasmic reticulum stress which is an inducer of hepcidin expression that could result in
dysregulated cellular iron homeostasis [115]. Transferrin-bound iron (TBI) enters the cytosol through transferrin receptor protein (TfR1
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including ferritin, hepcidin, and ferroportin. Lastly, iron che-
lators have been proven efficacious in animals inflicted with
AKI by decreasing the luminal or intracellular iron levels
[90]. These were, however, not used in this study. Perhaps,
their use to diminish iron concentration and the resultant
oxidative stress would have seemed more informative when
interpreted in correlation with the cytoprotective effect of
vitamin D. Importantly, it has to be understood that the mere
association between iron and vitamin D noted in this
research work is not a compelling evidence per se to infer that
vitamin D annihilates ferrotoxicity. Notwithstanding this
shortcoming, the fact that calcitriol has several pleiotropic
effects and supported by the ample evidence demonstrating
the cytoprotection it offers in several models of AKI and also
in an in vivo experiment performed by us using Wistar rats
[111], it seems rational to corroborate the role of vitamin D
in overcoming iron-induced renal cytotoxicity. Yet, it is
imperative to have more conclusive proof in this respect by
means of effective translational research.

There are few key recommendations for future investiga-
tions depending on the present study. It will be important to
further characterize and better understand the regulatory
links between calcitriol and iron, especially at the cellular
level involving the ferritin and the hepcidin-ferroportin axis
and the associated downstream pathways by way of in-
depth exploration using in vitro and in vivo models. Treat-
ment of AKI is challenging owing to the complex nature of
its pathogenicity and currently is largely supportive with
there being no panacea for its optimal treatment. Conse-
quently, multitarget therapeutic strategies are likely to be
more effective. In the light of this as well as based on our
study results, it would be worthwhile to evaluate the desirable
effects of calcitriol in relation to iron chelating agents to over-
come iron-induced cellular injury, ideally in subjects with
AKI due to varied aetiology and severity. Also, it is of para-
mount importance to translate the findings of this cell culture
study to patients by formulating treatment protocols follow-
ing further validation through well-designed, randomized
controlled clinical trials.

5. Conclusions

Our study findings further substantiate the crucial role
played by iron in inducing renal cytotoxicity via oxidant
stress in this model of iohexol-induced nephrotoxicity. Pre-
treatment with calcitriol protects the cells by significantly
diminishing oxidative stress and ferrotoxicity and thereby
enhancing cell viability. Overall, this work attempts to dem-
onstrate an association between iron and vitamin D in the
pathophysiology of AKI and provides some useful insights
on iron being a vital target in the amelioration of nephrotox-
icity, specifically by employing strategies to eliminate luminal
or intracellular iron in addition to timely administration of
vitamin D.
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