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1.  Introduction

Some special materials, called metamaterials can be 
defined as the synthetically made structures used to 
guide and influence light. They are unfamiliar complex 
materials which show properties superior to those 
available in already existing conventional materials. This 
makes metamaterials unique and different from normally 
occurring materials defined above. Unlike conventional 
materials, metamaterials show unusual properties 
because firstly, they are made of inclusions instead of 
atoms and molecules and size of these inclusions are lesser 
compared to the desired electromagnetic wavelength. 
Secondly, light3 which is defined as an electromagnetic 
radiation and a way by which information is send to 
and from internal arrangement of materials, acts as 
one-handed on interaction with the constituents (atoms 
and molecules) of conventional materials because only 
one of its component i.e. electric field investigates the 
internal structure of the material efficiently and magnetic 
field remains unused, whereas light depicts two-handed 
nature for logically designed metamaterials i.e. both the 
field components are coupled to meta-atoms strongly and 
interact with them effectively.

One unique property which arises from this two-
handed interaction is negative refractive index4. Super lens 
is one of the best examples which have been developed by 
the metamaterials displaying negative refractive index. 
Super lens has the potential of imaging rare and superior 
structures that are smaller than the wavelength of light. 
There are many other applications5 of metamaterials, 
metacoatings is one of them. It is responsible for the 
invisibility of objects i.e. it makes object invisible by 
guiding light rays around the object. If it works, it will 
be more effective than any of the currently existing 
“invisibility cloaking” devices, based on optical sensors 
and computers. 

Since, the responses of the inclusions, as well as 
their interactions with electromagnetic waves, can often 
be incorporated into continuous, effective material 
parameters. So, there is a need to work on obtaining 
parameters like permittivity and permeability of these 
materials to know about their properties more accurately. 
Permittivity can be defined as the measurement of 
resistance while forming an electric field in a material 
medium. With increase in permittivity value, amount 
of electric field or electric flux decreases in any material. 
Similarly, permeability can be defined as the measurement 
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of the resistance while forming magnetic field in a material 
medium.

Even though permittivity (€) and permeability (µ) 
decide the properties of materials, but, determining their 
values is not easy as fields are not uniform and they vary 
at every instant of time. Such fields are called local fields. 
So, there is a need to uniform fields so that € and µ values 
can easily be determined. This method of converting local 
fields to macroscopic fields by making them uniform is 
called homogenization8.

Homogenization can be applied, when the light or 
desired EM (Electromagnetic) waves have wavelength 
more than the size of the constituents of metamaterials. 
There are various homogenization techniques like Average 
Method. But, this paper deals with a new homogenization 
technique, known as Field Energy Method, which 
overcomes one major drawback of Average method. In 
Average Method, energy of the whole system is not same 
i.e. energy of the homogenized field is less than the energy 
of local field and for any system to function it is necessary 
that energy of whole system should be maintained. This 
need is fulfilled by Field Energy Method.

2.  Methodology

2.1 Differences in Field Energy Method and 
Average Method
This paper deals with the study of Field Energy Method 
and how it is better than the Average Method. In Field 
Energy Method, energy of local fields is calculated which 
is then averaged. From this averaged field energy, effective 
field is derived to obtain the expressions for parameters € 
and µ. 

Figure 1 depicts the methodology followed in Field 
Energy Method whereas in Average Method1, local fields 
are directly averaged without calculating their energies to 
get the parameters. Figure 2 shows the process followed in 
case of Average method.

Figure 1.    Field energy method.

Figure 2.    Average method.

2.1.1 Field Energy Approach
To develop the homogenization theory for metamaterials 
by Field Energy Method, expressions for local fields, 
linked with propagating mode are found by solving the 
Maxwell’s equations given below:
∇ × E =jwB     (1)
∇ × H =jwD     (2)

Where E is Electric Field, B stands for Magnetizing 
Field, D for Displacement field and H for Magnetic Field. 
All these fields form local fields. For this, we consider the 
unshaded cube with each side of 2d length as shown in 
Figure 3. 

Figure 3.    A periodic unit cell1 of length 2d with 
homogenized electric field on edges of first and 
homogenized magnetic field on edges of other cubic cell.

Apart from this, sphere located within the cube 
characterizes contents of cubic unit cell which is a periodic 
structure and repeats itself infinitely over whole material.

In region, inside cube and outside the inclusion 
relationship among Ex, Ey and Bz fields is given by 
Maxwell’s Equation 1 as:
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We obtain Equations 6, 7 and 8 when Equations 3, 4 
and 5 are integrated over positive surfaces of x, y and z, 
respectively such that, x = y = z = +d.
Homogenized field expressions1 derived for Average 
Method by using general definitions of same are:

Eef z (d,d,0) -Eef z (d,-d,0) - Eef y (d,0,d) + Eef y (d,0,-d) = 
jw(2d) Bef x (d,0,0)    (9)

Eef x (0,d,d) - Eef x (0,d,-d) - Eef z (d,d,0) +Eef z (-d,d,0)=jw(2d) 
Bef y (0,d,0)     (10)

Eef x (0,d,d) - Eef x (0,-d,d) - Eef y (d,0,d) + Eef y (-d,0,d) 
=jw(2d) Bef z (0,0,d)    (11)

Energy Approach presents itself with the help of following 
definitions:
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Equations 12 and 13 have line integrals over the 
boundaries of z = +d face of unit cell and Equation 14 has 
surface integral ( ∫∫ ) ( ∫∫ ) over the face. Similar equations 
having line and surface integrals can be obtained for 
the x = +d and y = +d faces. Equations 6, 7 and 8 show 
relationship between the line integrals of electric field 
around the boundary of a given face of cubic cell and 
surface integral of magnetic field over the same face.

Using definitions of Equations 12, 13 and 14 to replace 
the components of Equations 9, 10 and 11 we get,

Till now, Equation 1 given by Maxwell has been 
used to find out the local fields and homogenized field 
expressions, but now Maxwell’s Equation 2 will be 
used. According to Equation 1 circular electric field 

Putting values of  from Equation 34 and 
 from Equation 12 we get,
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   €x= €0    (36)
Similarly, calculation for permeability is done:

Using relation7, B = µH
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     (37)

Just like Equation 27 and 28 are defined from general 
definitions of Field Energy Method, we get expression for  
as,
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Putting values of  from Equation 14 and 
 from Equation 38 we get,
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Using definitions of Equations 27, 28 and 29 to replace 
the components of Equations 24, 25 and 26 we get,

Equations 30, 31 and 32 are the homogenized field 
expressions for Field Energy Approach which relate 
magnetic field line integral to the electric field surface 
integral.

To solve the equations and obtain parameters for 
empty unit cell, constitutive relation between fields E, D 
and B, H is used. But, since light entering metamaterial 
vary as Ex(x, y, z) = E0.exp (jqyy) and Hz(x, y, z) = H0.exp 
(jqyy), when y is direction of propagation of wave and qy 
is wave number, so above mentioned relation is also used 
apart from constitutive relation. We assume electric field 
to be in x and magnetic field in z -direction respectively.
Using relation6, D = €E

( )
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€
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Just like Equation 29 is defined from general 
definitions of Field Energy Method, we get expression for 

 as,
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gives magnetic field and Equation 2 states that circular 
magnetic field results in electric field. Components of the 
Equation 2 are:

We obtain Equations 21, 22 and 23 when Equations 
18, 19 and 20 are integrated over positive surfaces of x, y 
and z, respectively.

Homogenized field expressions1 derived for Average 
Method by using general definitions of same are:  

Field Energy Approach presents itself with the help of 
following definitions:
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If similar procedure is followed for unit cell having 
uniform medium, as mentioned above for empty unit 
then following expressions are obtained for  and  as,

 €x = €0. €r    (40)
And,
 µz = µ0.µr    (41)

Here, €0 is permittivity of free space and €r is relative 
permittivity. Similarly, µ0 permeability of free space and µr 

is relative permeability.

3.  Analysis

For Average Method, a process is followed in which any 
function is taken as f(x) which can be Electric or Magnetic 
field. Then average of this function is obtained as:

( )
( )

( )
b

avg a

1f x f x . dx
b a

=
- ò

From the above expression which we got for average 
function or field, energy is calculated for comparing it 
with the energy obtained in case of Field Energy Method.
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=
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Similarly, on following steps for Field Energy Method 
we get,

Energy = |f(x)|2

Total Energy = ( )
b 2
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f x . dxò
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From Equations 42 and 43, we can observe that energy 
in case of Field Energy Method is more and maintained 
than in case of Average Method.

Therefore, the expressions for permittivity (€) and 
permeability (µ) for an empty unit cell (with free space 
medium) of a metamaterial in Field Energy Method have 
been obtained correct and expected i.e. € and µ were 
equal to €0 and µ0 respectively. Whereas in case of Average 
Method, the expressions of permittivity and permeability 
for an empty unit cell of a metamaterial were found to 
be approximate because of the extra sine term as shown 
below

( )0.sin q d
q d

y
x

y

€
€ =

( )0 .sin q d
q d

y
z

y

m
m =

In the similar way, correct and error free expressions 
have been obtained for a uniform medium as given by 
Equations 40 and 41.

4.  Conclusion

In this work, the Field Energy Method is explored, than 
Average Method due to the fact that energy of the system 
is maintained in this method. Apart from this, results 
obtained for Field Energy Method are accurate whereas 
for Average Method, they are approximate. Initial 
work involves obtaining expressions for Field Energy 
Method to calculate parameters € and µ. The future work 
would include taking any example metamaterial and 
implementing the Energy Method for it.
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