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Abstract 

     This study investigates the dynamic properties of a sandwich beam with magnetorheological (MR) fluid as a core material 
between the two layers of the continuous elastic structure. Timoshenko beam theory has been employed to derive the governing 
differential equation of motion in the finite element form for the transverse vibration response of MR fluid sandwich beam. The 
validation of the developed finite element formulation is demonstrated by comparing the results in terms of natural frequencies 
evaluated with those of available literature. Various parametric studies are also performed in terms of variations of the natural 
frequencies and loss factor as functions of the applied magnetic field and thickness of the MR fluid layer for various boundary 
conditions.  
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1. Introduction 
 
     Vibration control of continuous elastic structures has been an active subject of research for the last few decades. 
The active vibration control concepts have evolved to achieve enhanced vibration suppression of structures and 
adapt to changes in the excitation and structural properties [1-3]. Compared with passive systems, active vibration 
control system improves the performance in terms of reduction in vibration amplitude of the structures. They, 
however, could not be justified for application when the added cost and power requirements prevail the 
performance gains. Alternatively, a range of semi-active vibration control concepts have evolved for various 
structural vibration control applications, which could offer better performance compared to both active and passive 
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systems and is economical, safe and does not require either high power actuators or large power supply [4-6]. 
Fluids with controllable rheology and thus the damping properties, such as electrorheological (ER) and 
magnetorheological (MR) fluids, have been used in various semi-active vibration control applications [7, 8]. Such 
fluids exhibit rapid change in their rheological, damping and stiffness properties with application of an electric or 
magnetic field, respectively [9]. However, the ER fluids exhibit a number of shortcomings compared to the MR 
fluids including low yield strength, requirement of high voltage and greater sensitivity to common impurities. On 
the other hand, the MR fluids are known to exhibit considerably higher dynamic yield strength and greater 
insensitivity to temperature variation and contaminants compared to ER fluids [9, 10]. The yield stress of the MR 
fluid lies in the order of 2-3 kPa in the absence of a magnetic field and it rapidly exceeds 80 kPa under the 
application of a magnetic field in the order of 3000 Oe [8]. These fluids are also considered to yield high 
bandwidth control through rapid variations in the rheological properties under a varying magnetic field. The MR 
fluids have thus been considered promising for various semi-active vibration control applications in the low to 
moderate frequency ranges, including automotive suspension, structures, etc [11-13]. 
 
     In the past few years, the vast majority of the efforts in MR fluids have been focused on designs of MR and ER 
dampers and evaluations of their potential benefits in vibration suppression in structures and systems [13-15].  The 
ER/MR fluid damping has been employed in various structural applications either through lumped damping 
elements at selected discrete locations [14] or through continuous MR/ER fluid layer treatments in selected 
structural members [16, 17]. The former approach may require multiple damping elements since suppression in 
structures may involve consideration of multiple modes of vibration [15]. This may lead to higher weight. 
Alternatively, the ER/MR sandwich structures achieved by embedding ER/MR material layers between two elastic 
metal layers can yield distributed control force along the structural member treated. This approach can ease control 
of structure vibration over a broad range of frequencies through variations in distributed stiffness and damping 
properties in response to applied electric or magnetic field. 
 
     The dynamic properties of ER fluid based sandwich structures have been analyzed in large number of studies 
[18, 19], however very few studies have focused on investigating the dynamic characterization of MR fluid based 
sandwich structures. The dynamic responses of a MR fluid adaptive structure was investigated by Yalcintas and 
Dai [20] using the energy approach and compared the responses with those of a structure embedded with ER fluid. 
It was concluded that the natural frequencies of MR fluid based adaptive structure could be nearly twice those of 
the ER fluid based adaptive structure. The analytical solution for the dynamic responses of a MR fluid sandwich 
beam was developed by Sun et al. [21] using an energy approach and compared the results in terms of natural 
frequencies with those of experimental results. Yeh and Shih [22] analyzed the dynamic characteristics and 
instability of MR adaptive structures under buckling loads based on the DiTaranto [23] sixth-order partial 
differential equation together with the incremental harmonic balance method. Rajamohan et al. [24, 25] derived 
finite-element and Ritz formulations for a sandwich beam with uniform and partial MR-fluid treatment and 
demonstrated their validity through experiments conducted on a cantilever sandwich beam. It was demonstrated 
that the natural frequencies increase with increase in magnetic field. Prieto et al. [26] experimentally investigated 
the dynamic responses of a MR-sandwich cantilever beam subject to a uniform and non-uniform magnetic field. It 
was concluded that the natural frequency of the beam decreases as the permanent magnets are moved away from 
the fixed support. The influence of locations of the MR fluid segments on the modal damping factor was further 
investigated under different end conditions using modal strain energy approach and finite element method by 
Rajamohan et al. [27]. Optimal configurations of a partially treated MR sandwich beam were subsequently 
identified to achieve maximum modal damping factor corresponding to the first five flexural modes, considered 
either individually or simultaneously. Rajamohan et al. [28] also investigated the full state and limited state flexible 
mode shape (FMS) based controllers for the suppression of transient and forced vibration of a cantilever beam with 
full and partial magnetorheological (MR) fluid treatments. Rajamohan and Ramamoorthy [29] studied the vibration 
behavior of a non-homogeneous MR fluids based sandwich beam.  It is to be noted that all the above studies have 
considered the elastic layers as Euler’s beam and the developed formulations are applicable for thin elastic 
structures. The dynamic characteristics of the sandwich beam with thick layers of elastic layers embedded with 
MR fluid have not yet been explored. 
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     In this present study, the governing equations of a sandwich beam structure employing an MR fluid as the core 
layer are presented in the finite element form. Timoshenko beam theory has been employed to derive the governing 
differential equation of motion in the finite element form for the transverse vibration response of MR fluid 
sandwich beam. The validation of the developed finite element formulation is demonstrated by comparing the 
results in terms of natural frequencies evaluated with those of available literature. Various parametric studies are 
also performed in terms of variations of the natural frequencies and loss factor as functions of the applied magnetic 
field and thickness of the MR fluid layer for various boundary conditions.  
 
2. Mathematical Modelling of the MR Fluid Sandwich Beam 
 
(a) (b) 

 
 

 
Fig. 1. (a). The MR fluid sandwich beam; (b) Plane view of  the MR fluid layer

                                                                               
     A sandwich beam with MR fluid as the core material and elastic layers as the face material (Fig. 1(a)) is 
considered for development of the finite element model. As the Young’s modulus of the MR fluid is nearly 
negligible compared to that of the elastic layers, the normal stresses in the fluid layer are neglected. It is also 
considered that the flexural wavelengths of the face layers are less than ten times the cross sectional dimensions 
and thus the shear deformation and rotary inertia effects of the face layers are included in the formulation. Hence, 
the plane sections which are normal to the deformed centroidal axis does not remain plane after bending.  The 
damping due to elastic layers is also assumed to be negligible. Furthermore, the transverse displacement w in a 
given cross-section is assumed to be uniform. Let the longitudinal displacements of the mid-planes of the elastic 
layers in the x-direction be u1 and u3 and the longitudinal displacement component of any point in the MR fluid be 
u. The mid-layer is further assumed as a neutral layer in the transverse plane. The top and bottom surfaces are thus 
considered to undergo axial compression and tension, respectively. Consequently, the axial displacement of the 
sandwich beam is considered to be equivalent to the axial displacement at the MR fluid layer of the beam. The 
shear strain in the MR layer can be derived from [30]: 
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which yields the shear strain as a function of the layer thickness as:  
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     Let the longitudinal forces in each of the elastic layers be denoted by F1 and F3 with their lines of action in the 
midplanes of the elastic layers. These forces can be expressed as  
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 where A1 and A3 are the cross-section areas of layers 1 and 3, respectively and E1 and E3 are the corresponding 
Young’s moduli. Since the beam is assumed to be free of longitudinal forces, i.e., F1 + F3 = 0, Eq. (4), yields the 
following relationship between the longitudinal deflection of the elastic layers: 
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By integrating with respect to x, the above relation can be simply expressed as a function of the longitudinal 
deflections: 
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     A sealant material, Buna-N rubber, is also considered around the edges of the MR fluid layer to ensure uniform 
layer thickness and containment of the MR fluid within the sandwich beam (Fig. 1(b)). The mid-layer of the 
sandwich beam comprising the rubber seal and the MR fluid, however, is modelled as a homogeneous material 
layer with equivalent shear modulus expressed by moduli and widths of the two materials, such that: 
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where G  is the equivalent shear modulus of the homogeneous layer, br and b are the widths of the rubber and 
entire beam, respectively, rG and *G are the shear modulus of the rubber and MR fluid, respectively. In the pre-
yield regime, the MR material demonstrates viscoelastic behavior, which has been described in terms of the 
complex modulus *G and given by [31], 
 

              GiGG*                                                                               (8) 
 
where G  is storage modulus of the MR fluid, which is related to the average energy stored per unit volume of the 
material during a deformation cycle, and G is the loss modulus, a measure of the energy dissipated per unit 
volume of the material over a cycle.  
  
2.1. The energy equations 
 
     The governing equations of motion for the MR sandwich beam are formulated in the finite element form using 
Lagrange’s energy approach. To accomplish this, the total strain and kinetic energy of the system are derived. The 
strain energy due to elastic layers, 3,1V , can be derived as the summation of the elastic energy due to axial, 
transverse and shear deformations and are presented as:  
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where I1 and I3 are the second moments of inertia at the centroids of elastic layers 1 and 3,  respectively and G1, G2 
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and 1 and 3 are the shear modulus and shear correction factors of the elastic layers 1 and 3, respectively. The 
shear strain energy of the mid-layer comprising the MR fluid and the rubber compound is obtained as [24] 
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where A2 = b × h2 is the total cross sectional area of layer 2 which includes both rubber material and MR fluid. The 
total strain energy V of the sandwich beam structure is the sum of those due to elastic and fluid layers, such that 
 

321 VVVV                                                                               (12) 
 

The kinetic energy includes those associated with: (i) the transverse motion due to translation and rotation of the 
elastic layers and the MR layers (T1); (ii) the axial deformations of the elastic layers (T2); and (iii) the rotational 
deformation of the MR layer due to the strain displacement (T3). The kinetic energy associated with the transverse 
motions of the elastic and fluid layers, T1, and axial deflections of the elastic layers, T2, can be derived as: 
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where 1  and 3  are the mass densities of the elastic layers, 2  and r  are the mass densities of the fluid and the 
rubber materials, respectively. The kinetic energy associated with the rotation of the MR fluid layer, T3, can be 
expressed as [24] 
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where I2 is the second moment of inertia at the centroid of the MR fluid layer. The total kinetic energy T of the 
sandwich beam can then be obtained from 

321 TTTT                                                                                (16) 
 

Apart from the strain and kinetic energies, the work done by the excitation force, if present, also needs to be 
considered in the formulation. 
 
2.2. Finite element formulations 
 
     In the finite element formulation, a thick beam element with two end nodes and three DOF per node is 
considered. The DOF include the axial u, transverse w and rotational  displacements of the beam. The axial, 
transverse and rotational displacements can be expressed in terms of nodal displacement vectors and shape 
functions, as 

u(x,t) = Nu(x) {d(t)}                                  (17) 

w(x,t) = Nw(x) {d(t)}                                  (18) 

 (x,t) = N (x) {d(t)}                                  (19) 
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where displacement vector, d(t) ={u1, w1, 1, u2, w2, 2} and )(xuN and )(xwN  are the common linear and cubic 
polynomial beam shape functions.   
 
     Lagrange’s equations are used to develop the governing differential equations in finite element form. In general 
form, Lagrange’s equation can be written as 
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where n is the total DOF considered in the formulation and Qi is the generalized force corresponding to the i th 
DOF. Upon substituting for the energy expressions in Eq. (12) and Eq. (16) together with the deflection functions 
in Eq. (17), Eq. (18), and Eq. (19), the governing equations of motion for the MR sandwich beam element in the 
finite element form can be obtained as 
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where m  and k are the element mass matrix and stiffness matrix, respectively and f is the element force 
vector. Assembling the mass and stiffness matrices and the force vector for all the elements yields the system of 
governing equations of motion of the MR sandwich beam in the finite element form, which can be expressed in the 
following general form: 
 

FdKdM                                                                 (22) 
 
where M , K  and F are the system mass and stiffness matrices, and the force vector, respectively. 
 
3. Validation 
 
     The effectiveness of the developed finite element formulation for a MR fluid sandwich beam is demonstrated 
by comparing the results in terms of natural frequencies available in literature [24]. In the literature [24], the finite 
element formulation has been developed for a MR fluid sandwich beam neglecting the shear deformation and 
rotary inertia effects of the elastic face layers to facilitate the investigation of the dynamic properties of a thin face 
layers based MR fluid sandwich beam. Even though the finite element formulation in the present study 
accommodates the shear deformation and rotary inertia effects existing in the face layers, the validation of the 
developed finite element formulation is demonstrated by comparing the natural frequencies evaluated in literature 
[24]. The simulation is performed for a thin face layers based MR fluid sandwich beam with dimensions of elastic 
layers 300×30×1 mm with identical thickness of MR fluid layer.  The various material properties considered are:  
E1=E3=68 GPa; G1=G3=26 GPa; 1= 3=2700 kg/m3; 2=3500 kg/m3; r=1233 kg/m3.The shear modulus functions 
of MR fluid considered for the simulation is [24]: 
 

632 10893.0109975.43691.3 BBBG           
 (23) 

632 101855.0108124.09.0 BBBG  
 

where B is the applied magnetic field intensity in gauss (G). The first five natural frequencies are evaluated at two 
different magnetic fields under simply supported at both ends and the results are presented together with the per 
cent deviation in Table 1. It can be seen that a good agreement has been observed between the results obtained in 
the literature [24] and present finite element formulation in which the shear deformation and rotary inertia effects 
are included. 
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Table 1. Comparison of natural frequencies of the MR fluid sandwich beam obtained using the developed finite element method and with 
literature [24] under simply supported end conditions 
  

Mode 
No. 

Natural frequency (Hz) 
 Magnetic field = 0 G  Magnetic field = 250 G 

 Present FEM Literature [24] % deviation Present FEM Literature [24] % deviation 
1 40.74 40.31 1.06 51.88 50.92 1.85 
2 105.70 103.10 2.46 123.56 120.32 2.62 
3 206.51 200.07 3.12 229.01 222.24 2.96 
4 344.72 332.45 3.56 369.67 357.33 3.34 
5 521.57 501.67 3.82 547.94 528.15 3.61 

 
  4. Results and Discussion  
 
     The various parameters such as field intensity, fluid layer thickness, beam geometry, boundary conditions and 
shear corrections factors influence the dynamic properties of a MR fluid sandwich beam. The proposed finite 
element model which takes into account the shear deformation and the rotary inertia effects of the thick elastic 
layer is used to study the effects of variations in the magnetic field intensity and the MR fluid layer thickness on 
the properties of the beam in terms of natural frequencies and the loss factors for different boundary conditions. 
The simulation results are obtained by considering identical baseline thickness of 5 mm of the elastic and fluid 
layers, while the material and all other geometric properties of the layers are identical to those described previously 
in section 3. 
 
4.1. Effect of the magnetic field intensity on natural frequencies and loss factors 
 
     The effect of magnetic field intensity on the variation of natural frequencies of thick face layers and MR fluid 
core layer sandwich beam is investigated by performing the simulation at various magnetic field intensities under 
various boundary conditions including simply supported (SSB), clamped free (CFB) and clamped-clamped (CCB) 
conditions. The results are presented in Table 2.     
 
Table  2. Influence of variations in the magnetic field intensity on the natural frequencies of the MR fluid sandwich beam for different boundary 
conditions 
 

Magnetic 
field intensity (G) 

 
Boundary 
conditions 

Natural frequency (Hz) 
Mode 

1 2 3 4 5 

0 
SSB 104.28 396.96 882.36 1557.60 2419.30 
CFB 42.38 227.44 616.92 1196.10 1962.90 
CCB 224.91 613.11 1193.10 1959.80 2909.90 

100 
SSB 106.72 399.54 884.98 1560.20 2421.90 
CFB 44.78 230.95 620.15 1199.10 1965.90 
CCB 226.33 615.05 1195.20 1962.10 2912.30 

200 
SSB 108.76 401.73 887.21 1562.50 2424.10 
CFB 46.65 233.87 622.88 1201.80 1968.50 
CCB 227.53 616.71 1197.10 1964.00 2914.30 

300 
SSB 110.43 403.54 889.05 1564.30 2426.00 
CFB 47.42 235.24 624.13 1203.90 1970.60 
CCB 228.52 618.08 1198.60 1965.60 2915.90 

      
     It can be realized from the results that the natural frequencies corresponding to all the modes increase with 
increase in the magnetic field, irrespective of the boundary conditions. A similar trend in the natural frequencies 
has also been reported in literature [24]. The increase in natural frequencies with increasing magnetic field is 
attributed to increase in the complex shear modulus of the MR fluid and thus the structure stiffness under higher 
magnetic field. It is also shown that the clamped-clamped condition yields the highest natural frequencies, while 
the natural frequencies of the clamped free beam are the lowest for all modes considered, irrespective of the 
magnetic field intensity. The results also suggest that an increase in the field intensity generally yields the largest 
stiffness increase for all the modes for the relatively soft clamped free condition, and relatively smallest change in 
stiffness for the relatively stiff clamped-clamped beam. 
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(a)

 

(b)

 

 

 
Fig.2. Influence of variations in the magnetic field intensity, B, on the loss factor   
corresponding to various modes under (a) Simply Supported Beam; (b) Clamped Free Beam 

      Fig. 3. Effect of boundary conditions on  
      loss factors corresponding to the first     
      five modes 

 
     The loss factor due to the MR fluid sandwich beam is computed as the ratio of the square of the imaginary 
component of the complex natural frequency to that of the real component [17, 26]. The variations in the loss 
factors of the beam with simply supported and clamped free boundary conditions for different field intensities are 
computed corresponding to the first five modes and are presented in Fig. 2. The results generally show an increase 
in the loss factors with increase in the magnetic field for both the boundary conditions. The loss factor is merely 
the ratio of energy dissipated per radian to the total strain energy V, both of which increase with the magnetic field. 
Furthermore, the dissipated energy is directly related to the loss modulus, which increases with the field intensity 
as seen in Eq. (23). The relative increase in the loss modulus and thus the dissipated energy with increase in the 
magnetic field, however, is greater than that in the total strain energy which leads to higher loss moduli under 
increasing magnetic field. It can also be observed that the loss factors decreases in higher modes compared to those 
of the fundamental mode. However, the similar trend could not be observed in camped free end condition, 
particularly in fundamental mode, in literature [24] in which the shear deformation and rotary inertia effects of the 
elastic layers are neglected. Hence, it can be concluded that the loss factors could be increased with increase in 
magnetic field at all the modes considered irrespective of the boundary conditions if the elastic layers are thick 
with inclusion of the shear deformation and rotary inertia effects.  
 
     The influence of loss factors under various boundary conditions of MR fluid sandwich beam are investigated by 
performing the simulation under various boundary conditions at a magnetic field of 300 G and the results are 
shown in Fig. 3. It can be seen that the loss factors decrease at higher modes at all the boundary conditions 
considered. It can also be shown that clamped free end conditions yields highest loss factors and clamped-clamped 
beam yields the lowest loss factors at all the modes. It can be attributed to the fact that the strain energy of the 
clamped free beam is lower than those of simply supported and clamped-clamped beams. 
 
4.2. Influences of the MR layer thickness on natural frequencies and loss factor 
 
     The effect of MR fluid layer thickness on the natural frequencies and the loss factor is investigated by 
evaluating the natural frequencies and loss factors at a magnetic field of 300 G under the clamped-clamped end 
condition at various thickness ratio of (h2/h1) and the results are shown in Fig. 4. The results generally show a 
decrease in the natural frequencies with increase in thickness of the MR layer. A significant variation can be 
observed in higher modes compared to that of lower modes. This can be attributed to the fact that the relative 
variation in the mass of the structure is higher than that of the stiffness when the thickness of the MR fluid layer 
increases. Such variation has also been reported in the literature [24]. 
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     (a) 

     
 

(b) 

 

Fig.4. Influence of the thickness ratio (h2/h1) of the MR fluid layer at a magnetic field of 300 G under clamped-clamped end conditions   
(a) on the natural frequency and (b) on the loss factor 

      
     A comparison of the loss factor of the beam structures with different thickness of the MR layer at a magnetic 
field of 300 G for the clamped-clamped end conditions is also presented in Fig. 4 (b). The results show that 
significant   in loss factor could be observed upto the ratio (h2/h1) of 0.75. When the thickness of the MR layer is 
increased, both the dissipated energy and the strain energy are increased. Hence, with increase in the thickness of 
the MR layer, the relative change in the dissipated energy would be considerably lower than that of the strain 
energy, which results in decrease in the loss factor. However, significant variation in loss factor could not be 
observed all the higher modes beyond the ratio (h2/h1) of 0.75. 
 
4. Conclusions 
 
     In this study, the dynamic characterization of the MR fluid sandwich beam is performed considering the effect 
of shear deformation and rotary inertia effects of the elastic face layers. Mathematical modelling was developed 
using the finite element method by including the shear deformation and rotary inertia effects of the elastic layers. 
The controllable capabilities of MR fluid in a continuous elastic structure were investigated through conducting 
various parametric studies. It has been shown that the natural frequencies and loss factors for all the modes of the 
MR multi-layer beam could be increased by increasing the strength of the magnetic field. It has also been observed 
that the clamped-clamped and clamped free beams yield the highest and lowest natural frequencies, respectively, 
irrespective of the magnetic field. It is also shown that the loss factors decreases in higher modes compared to 
those of the fundamental mode. However, the similar trend could not be observed in camped-free end conditions, 
particularly in fundamental mode. It can be also concluded that the loss factors could be increased with increase in 
magnetic field at all the modes considered irrespective of the boundary conditions if the elastic layers are thick 
with inclusion of the shear deformation and rotary inertia effects. A decrease in the natural frequencies with 
increase in thickness of the MR layer is also observed. A significant variation in loss factors can be seen at 
fundamental modes compared to that of higher modes when the thickness of MR fluid is increased. It is also 
concluded that a significant variation in loss factor could not be observed at all the modes beyond a certain 
thickness ratio (h2/h1) of the MR fluid layer and the elastic layer. This shows that MR fluids can be effectively used 
in vibration control of multi-layer structures. 
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