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Abstract In this paper, second order singularly perturbed convection-diffusion Robin type

problem with a discontinuous source term is considered. Due to the discontinuity interior

layers appears in the solution. A numerical method is constructed for this problem which

involves an appropriate piecewise—uniform mesh for the boundary and interior layers. The

method is shown to be parameter uniformly convergent with respect to the singular pertur-

bation parameter. Numerical examples are presented to illustrate the theoretical results.
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Introduction

Singular perturbation problems (SPPs) model convection–diffusion process in applied math-

ematics that arise in diverse areas, including linearized Navier–Stokes equation at high

Reynolds number and the drift-diffusion equation of semiconductor device modeling, heat

and mass transfer at high Péclet number etc [1,2]. The novel aspect of the problem under

consideration is that we take a source term in the differential equation which has a jump

discontinuity at one or more points in the interior of the domain. This gives rise to an interior

layer in the exact solution of the problem, in addition to the boundary layer at the outflow

boundary point. Our goal is to construct an ε uniform numerical method for solving this
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problem, that is a numerical method which generates ε uniformly convergent numerical

approximations to the solution and its derivatives. Note that problems with discontinuous

data were treated theoretically, in the case of the solution of the convection diffusion with

Dirichlet case problem [3,4]. In [5–8] the authors discussed a self-adjoint Dirichlet type prob-

lem with discontinuous source term. Shanthi et al. has examined two parameter singularly

perturbed BVPs for second order ODEs with discontinuous source term in [9–11]. Singularly

perturbed delay differential equation is examined in [12] on an adaptively generated grid.

Motivated by the works of [3–6] we, in the present paper, develop a computational method

to solve SPBVPs for second order equations of the type:

Ly(x) ≡ εy′′(x) + a(x)y′(x) − b(x)y(x) = f (x), x ∈ (Ω− ∪ Ω+), (1)

BC1 y(0) = α1 y(0) − β1εy′(0) = p, BC2 y(1) = α2 y(1) + β2 y′(1) = q, (2)

where α1, β1 ≥ 0, α1 + β1 > 0, β2 ≥ 0 , α2 > 0 and ε > 0 is a small parameter.

a(x), b(x) are smooth functions Ω such that

a(x) ≥ α > 0, (3)

b(x) ≥ β ≥ 0. (4)

It is convenient to introduce the notation Ω = (0, 1), Ω− = (0, d), Ω+ = (d, 1), d ∈ Ω

and to denote the jump at d in any function with [w](d) = w(d+) − w(d−). Further it

is assumed that f is sufficiently smooth on Ω \ {d}; a single discontinuity in the source

term f (x) occur at a point d ∈ Ω; f (x) and its derivatives have jump discontinuity

at the same point. In general this discontinuity gives rise to an interior layer in the second

derivative of the exact solution of the problem. Because f is discontinuous at d the solution

y of (1)–(2) does not necessarily have a continuous second derivative at the point d. Thus

y /∈ C
2(Ω). But the first derivative of the solution exists and is continuous. Boundary value

problem of the type (1)–(2) model confinement of a plasma column by reaction pressure and

geophysical fluid dynamics [13].

The nature of problem discussed in the Dirichlet case α1 = 1, β1 = 0, α2 = 1 and β2 = 0

and in the Neumann case α1 = 0, β1 = 1, α2 = 0 and β2 = 1 in [14]. For detailed study

one may refer [14,15].

Various methods are available in literature to obtain numerical solution to singularly

perturbed differential equation (1) subject to Robin boundary conditions when f is smooth

on Ω [14,16–20]. Some recent works have been done in similar type of problem with smooth

data as follows. The numerical integration method for general singularly perturbed boundary

value problem with mixed boundary condition is presented in [21]. In [22] the authors have

shown the advantages of Differential Quadrature Method (DQM) for finding the numerical

solution [23]. Pratibhamoy Das et al. discussed on system of reaction diffusion differential

equations for Robin or mixed type boundary value problems by a cubic spline approximation

[24]. From this investigation the author considered a non-self adjoint Robin type problem

with discontinuous source term, and obtained a parameter uniform convergent solution for

equation (1)–(2).

“Some Analytical Results” section presents analytic behavior of the solution of the SPP

(1)–(2). The present method is described in “Discrete Problem” section. “Error Analysis”

section provides error estimates for the numerical solutions. Numerical examples are given

in “Numerical Results” section. The paper ends with a discussion.

Throughout this paper, C denotes a generic positive constant that is independent of nodal

point (i), mesh size (h) and the singular perturbation parameter (ε). We measure all functions
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in the maximum point wise norm, which we denote by ‖w‖D= supx∈D |w(x)|, where D

is an open connected set.

Some Analytical Results

In this section, we provide a comparison principle for the following problem. Consequence of

this principle gives the stability result for the same problem. By a suitable choice of the barrier

function and the procedure adapted from [3,16,25], we can prove the following theorems.

Theorem 1 The problem (1)–(2) has a solution u ∈ C
1(Ω) ∩ C2(Ω− ∪ Ω+).

Theorem 2 (Comparison Principle) Suppose that a function u ∈ C
1(Ω) ∩ C

2(Ω− ∪ Ω+),

satisfies BC1u(0) ≥ 0, BC2u(1) ≥ 0 and Lu(x) ≤ 0, ∀ x ∈ Ω− ∪ Ω+ and [u′](d) ≤ 0,

then u(x) ≥ 0, ∀ x ∈ Ω.

An immediate consequence of the comparison principle is the following stability result.

Theorem 3 (Stability Result) Consider the BVP (1)–(2) subject to the conditions (3)–(4).

If u ∈ C
1(Ω) ∩ C

2(Ω− ∪ Ω+) then

‖u‖�̄ ≤ Cmax {|BC1u(0)| , |BC2u(1)| , |Lu|�−∪�+} .

Theorem 4 For each integer k, satisfying 0 ≤ k ≤ 4, the solution u of (1)–(2) satisfy the

bounds
∥

∥

∥
uk

∥

∥

∥

�̄\{d}
≤ Cε−k .

To establish the parameter-robust properties of the numerical methods involved in this

paper, the following decomposition of u into smooth v and singular w components is required.

The smooth component v is defined as the solution of

av′
0 − bv0 = f, x ∈ Ω− ∪ Ω+, BC2v0(1) = q. (5)

av′
1 − bv1 = −v′′

0 , x ∈ Ω− ∪ Ω+, BC2v1(1) = 0. (6)

Note that v = v0 + εv1 + ε2v2 , where v2 ∈ C
1(Ω̄) ∩ C2(Ω− ∪ Ω+) and

Lv2 = −v′′
1 , BC1v2(0) = v2(d) = BC2v2(1) = 0.

As in [14,16], we can obtain the following bounds on the derivatives of v for k = 1, 2, 3.

‖v‖ ≤ C,

∥

∥

∥
v(k)

∥

∥

∥

�−∪�+
≤ C(1 + ε(2−k)). (7)

Note also that | [v′](d) | ≤ C, | [v′′](d) | ≤ C. Define the singular component of the

decomposition as follows. Find w ∈ C
0(Ω) such that

Lw = 0, x ∈ Ω− ∪ Ω+,

BC1w(0) = y(0) − v(0), BC2w(1) = 0, [w′](d) = −[v′](d).
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We can further decompose w as

w = w1 + w2,

where w1 lois the boundary layer function satisfying

w1 ∈ C2(Ω), Lw1 = 0, x ∈ Ω, (8)

BC1w(0) = y(0) − v(0), BC2w(1) = 0 (9)

and w2 is the interior layer function satisfying

w2 ∈ C0(Ω), Lw2 = 0, x ∈ Ω− ∪ Ω+, (10)

BC1w2(0) = 0, BC2w2(1) = 0, (11)

[w′
2](d) = −[v′](d). (12)

The procedure adopted from [16] and suitable barrier function, one can obtain the results

of the following Lemma 1, 2 and 3.

Lemma 1 [14,16] For each integer k satisfying 0 ≤ k ≤ 3, the solution w1 of (8),(9) satisfies

the bounds
∣

∣

∣
w

(k)
1 (x)

∣

∣

∣
≤ Cε−ke−αx/ε, x ∈ Ω−

where C is a constant independent of ε.

Lemma 2 For each integer k, satisfying 1 ≤ k ≤ 3, the solution w2 of (10)–(12) satisfies

the bounds

|w2(x)|≤ C

|wk
2(x)|≤

{

C(ε(1−k)e−αx/ε), x ∈ Ω−

C(ε(1−k)e−α(x−d)/ε), x ∈ Ω+,

where C is a constant independent of ε.

Discrete Problem

A fitted mesh method for problem (1)–(2) is now described. On Ω a piecewise uniform

mesh of N mesh intervals is constructed as follows. The interval Ω is subdivided into four

subintervals.

[0, τ1] ∪ [τ1, d] ∪ [d, d + τ2] ∪ [d + τ2, 1]

for some τ1, τ2 that satisfies 0 < τ1 ≤ d/2, 0 ≤ τ2 ≤
1 − d

2
. On each subinterval a

uniform mesh with
N

4
mesh-intervals is placed. The interior points of the mesh are denoted

by

�N
ε =

{

xi : 1 ≤ i ≤
N

2
− 1

}

∪

{

xi :
N

2
+ 1 ≤ i ≤ N − 1

}

.

Clearly xN/2 = d and Ω
N

ε = {xi }
N
0 . Note that this mesh is a uniform mesh when τ1 =

d

2

and τ2 =
1 − d

2
. It is fitted to the singular perturbation problem (13)–(14) by choosing τ1

and τ2 to be the following functions of N and ε
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τ1 = min

{

d

2
, (ε/α) ln N

}

and τ2 = min

{

1 − d

2
, (ε/α) ln N

}

.

We introduce the following notation for four mesh widths

h1 = 4τ1/N , H1 = 4(d − τ1)/N , h2 = 4τ2/N , H2 = 4(1 − d − τ2)/N .

On the piecewise-uniform mesh Ω
N

ε a standard centered finite difference operator is

used. Then the fitted mesh method for (1)–(2) is

L
y
i ≡ εδ2 yi + a(xi )D+yi − b(xi )yi = f (xi ), ∀ xi ∈ Ω N

ε (13)

BC N
1 y0 = α1 y0 − β1εD+y0 = r, BC N

2 yN = α2 yN + β2 D−yN = s,

D−yε(xN/2) = D+yε(xN/2), (14)

where,

δ2 Zi =

(

Zi+1 − Zi

xi+1 − xi

−
Zi − Zi−1

xi − xi−1

)

2

xi+1 − xi−1
,

D+ Zi =
Zi+1 − Zi

xi+1 − xi

, and D− Zi =
Zi − Zi−1

xi − xi−1
.

Lemma 3 Suppose that a mesh function Z satisfies BC N
1 Z(x0) ≥ 0, BC N

2 Z(xN ) ≥

0, L N Z(xi ) ≥ 0 for all xi ∈ Ω N
ε , and D+ Z(xN/2) − D− Z(xN/2) ≤ 0, then Z(xi ) ≥ 0 for

all xi ∈ Ω
N

ε .

Error Analysis

Define the function V to be the solution of

L N V = f (xi ), ∀ xi ∈ Ω N
ε

BC N
1 V (0) = BC1v(0), V (d) = v(d), BC N

2 V (1) = BC2v(1).

Using a standard stability and consistency argument coupled with the obvious barrier func-

tions on each interval [0, d], [d, 1] separately, by [14], one can deduce that

|V (xi ) − v(xi )|≤

{

C N−1(d − xi ), xi ≤ d,

C N−1(1 − xi ), xi ≥ d.
(15)

We define W to be the solution of

L N W = 0, ∀ xi ∈ Ω N
ε

BC N
1 W (0) = BC1w(0), BC N

2 W (1) = BC2w(1), [DW (d)] = −[DV (d)],

where throughout this section, we denote the jump in the discrete derivative of mesh function

Z at the point xi = d by

[DZ(d)] = D+ Z(d) − D− Z(d).

Analogously to the continuous case we can further decompose W as

W = W1 + W2,
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where W1 ( the discrete analogue of the boundary layer function w1) is defined as solution

of

L N W1 = 0, ∀ xi ∈ Ω N
ε ∪ {d} (16)

BC N
1 W1(0) = BC1w1(0), BC N

2 W1(1) = 0 (17)

and W2 ( the discrete analogue of the interior layer function w2) is defined as solution of

L N W2 = 0, ∀ xi ∈ Ω N
ε (18)

BC N
1 W2(1) = 0, BC N

2 W2(1) = 0 (19)

[DW2(d)] = −[DV (d)] − [DW1(d)] (20)

As in [14],

|W1 − w1| ≤ C N−1 ln N , xi ∈ �N
ε ∪ {d}. (21)

And | W1 |≤ C N−1 for all xi ≥ d. Note that the jump at x = d in the derivative of weak

interior layer function w2 is bounded. The next lemma establishes the discrete counterpart

of this.

The procedure given in page. 140 of [3] is also valid for BC N
1 y0 and BC N

2 yN with the

same barrier function. Therefore, from Lemma 4 and Lemma 5 of [3], we obtain

Lemma 4 Assuming N ≥ 8 then

|W2(xi ) − w2(xi )| ≤ C(ε + N−1) ≤ C N−1 ln N .

Let us first consider the magnitude of the truncation error at the point of discontinuity

x = d . Using the procedure following in [3] and the derivative estimate established in [14]

the following result can be obtain

|[D(V − v)(d)]| ≤ C(εN )−1 and |[D(W2 − w2)(d)]| ≤ C N−1 ln N/ε.

Define the barrier function φi [3] to be

φi = C N−1 ln N

{

1, xi ≤ d

ψ, xi ≥ d
+ C N−1 ln N (1 − xi ),

where ψ is the solution of

εδ2ψ + αD+ψ − bψ = 0, xi ∈ Ω+ ∩ Ω N
ε

ψ(d) = 1, BC N
2 ψ(1) = 0.

Theorem 5 Let U, u be the solution of L N , L respectively. Assume that N ≥ 8, then

‖Ũ − u‖Ω ≤ C N−1 ln N ,

ε ‖D+Ũ − u′‖Ω ≤ C N−1 ln N ,

where Ũ is the piecewise linear interpolant of U on Ω and C is a constant independent of

N and ε.

Proof Using (15), (21) and Lemma 4 it is easy to derive
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Table 1 Maximum pointwise error E N
ε and order of convergence ρN for the Example 1

ε Number of mesh points

26 27 28 29 210 211

20 1.1329E−02 5.5712E−03 2.6949E−03 1.2574E−03 5.3885E−04 1.7961E−04

2−1 6.8319E−03 3.2397E−03 1.5367E−03 7.0975E−04 3.0258E−04 1.0059E−04

2−2 8.7403E−03 4.4761E−03 2.2085E−03 1.0406E−03 4.4812E−04 1.4973E−04

2−3 2.1626E−02 1.0694E−02 5.1847E−03 2.4216E−03 1.0382E−03 3.4615E−04

2−4 2.0405E−02 1.0005E−02 4.8332E−03 2.2538E−03 9.6554E−04 3.2179E−04

2−5 1.7981E−02 1.0249E−02 5.6613E−03 2.2538E−03 1.4016E−03 5.1662E−04

2−6 2.0072E−02 1.1136E−02 6.0306E−03 3.1191E−03 1.4580E−03 5.2160E−04

2−7 2.2061E−02 1.2045E−02 6.4104E−03 3.2729E−03 1.5180E−03 5.4072E−04

2−8 2.3563E−02 1.2830E−02 6.7717E−03 3.4147E−03 1.5689E−03 5.5587E−04

2−9 2.4610E−02 1.3410E−02 7.0775E−03 3.5532E−03 1.6202E−03 5.6995E−04

2−10 2.5198E−02 1.3801E−02 7.3129E−03 3.6779E−03 1.6744E−03 5.8585E−04

2−11 2.5506E−02 1.4019E−02 7.4585E−03 3.7681E−03 1.7215E−03 6.0295E−04

2−12 2.5658E−02 1.4128E−02 7.5359E−03 3.8225E−03 1.7536E−03 6.1686E−04

E N 2.5658E−02 1.4128E−02 7.5359E−03 3.8225E−03 1.7536E−03 6.1686E−04

ρ 8.6085E−01 9.0671E−01 9.7927E−01 1.1242E+00 1.5073E+00

‖Ũ − u‖Ω ≤ C N−1 ln N

To extend this one can follow the procedure adopted in [14] and [15]. To obtain the bound

on the errors in approximations to the scaled derivative, we apply the arguments from [15]

and the procedure adopted in [3] separately on each subdomain [0, d] and [d, 1] to get

ε ‖D̄+y − y′‖Ω ≤ C N−1 ln N

ε ‖D̄+V − v′‖Ω ≤ C N−1 ln N

ε ‖D̄+(W1 − w1)‖[0,d) ≤ C N−1 ln N

and from the proof of Lemma 4 of [3]

ε ‖D̄+(W1 − w1)‖[d,1)≤ C N−1 ln N .

On the subdomain [d, 1], we also apply these arguments to get

ε ‖D̄+(W2 − w2)(xi )‖≤ C N−1 ln N , xi ≥ d.

Based on the simple argument given in [3]. We can prove

ε||D̄+W2 − w2(xi )|| ≤ C N−1lnN , xi < d.

which completes the proof. ⊓⊔

123



498 Int. J. Appl. Comput. Math (2015) 1:491–501

Table 2 Maximum pointwise error E N
ε and order of convergence ρN for the Example 2

ε Number of mesh points

26 27 28 29 210 211

20 6.6163E−02 3.2658E−02 1.5827E−02 7.3916E−03 3.1691E−03 1.0566E−03

2−1 6.4196E−02 3.1037E−02 1.4876E−02 6.9081E−03 2.9532E−03 9.8316E−04

2−2 2.1351E−01 1.0537E−01 5.1051E−02 2.3838E−02 1.0219E−02 3.4070E−03

2−3 3.4614E−01 1.6986E−01 8.2076E−02 3.8274E−02 1.6397E−02 5.4647E−03

2−4 4.7760E−01 2.4152E−01 1.1853E−01 5.5717E−02 2.3969E−02 8.0047E−03

2−5 8.4233E−01 4.5042E−01 2.2634E−01 1.0795E−01 4.6763E−02 1.5672E−02

2−6 9.0232E−01 5.4579E−01 3.0795E−01 1.6300E−01 7.7457E−02 2.8493E−02

2−7 9.3284E−01 5.6182E−01 3.1678E−01 1.6732E−01 7.8777E−02 2.8312E−02

2−8 9.4993E−01 5.7117E−01 3.2238E−01 1.7024E−01 8.0147E−02 2.8806E−02

2−9 9.5888E−01 5.7609E−01 3.2530E−01 1.7176E−01 8.0859E−02 2.9063E−02

2−10 9.6347E−01 5.7862E−01 3.2680E−01 1.7253E−01 8.1223E−02 2.9195E−02

2−11 9.6580E−01 5.7991E−01 3.2756E−01 1.7293E−01 8.1407E−02 2.9261E−02

2−12 9.6698E−01 5.8056E−01 3.2795E−01 1.7313E−01 8.1501E−02 2.9295E−02

E N 9.6698E−01 5.8056E−01 3.2795E−01 1.7313E−01 8.1501E−02 2.9295E−02

ρ 7.3604E−01 8.2399E−01 9.2161E−01 1.0870E+00 1.4762E+00

Numerical Results

In this section, two examples are given to illustrate the computational methods discussed in

this paper.

Consider the singularly perturbed BVPs with discontinuous source term:

Example 1

εy′′(x) + y′(x) = f (x), x ∈ Ω− ∪ Ω+,

y(0) − εy′(0) = 1, y(1) + y′(1) = −1,

where

f (x) =

{

0.7, for 0 ≤ x ≤ 0.5,

−0.6, for 0.5 < x ≤ 1.

Example 2

εy′′(x) +
1

1 + x
y′(x) = f (x), x ∈ Ω− ∪ Ω+,

y(0) − εy′(0) = 1, y(1) + y′(1) = 1,

where

f (x) =

{

1 + x, for 0 ≤ x ≤ 0.5,

4.0, for 0.5 < x ≤ 1.

which validate the theoretical results established in the previous section. The nodal errors

and orders of convergence are estimated using the interpolation principle. Define the nodal
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Fig. 1 Solution plot of N = 32, 64, 128 and ε = 2−5 for the Problem 1
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Fig. 2 Solution plot of N = 32, 64, 128 and ε = 2−5 for the Problem 2

error of interpolation principle, the difference between the numerical solutions for various

values of N and N=4096.

E N
ε ≡ max

xi ∈Ω
N
ε

|U N
ε (xi ) − Ū 4096

ε (xi )| and E N = max
ε

E N
ε .

From these quantities the parameter-robust order of convergence are computed from

ρN = log2

(

E N

E2N

)

.

Tables 1 and 2 present values of the maximum pointwise error E N
ε and order of convergence

ρN for the Examples 1 and 2 respectively. The numerical solutions of the Example 1 and 2

are presented in Figs. 1 and 2.
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Conclusion

A singularly perturbed second-order ODEs of Robin type BVPs with discontinuous source

term is considered. Due to discontinuity in the source term there is an interior layer occurring.

To fit the interior and boundary layer a suitable piecewise uniform mesh is constructed. The

numerical method generates ε-uniform convergence in the global maximum norm of the

approximations. The numerical approximation coincides with theoretical result.
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