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Five-stage pipelined dual-edge deblocking filter architecture for
H.265 video codec
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Abstract High-Efficiency Video Coding (HEVC/H.265) is the latest
video coding standard used in various applications. In HEVC, the quality
of the reconstructed video is enhanced by two in-loop filters (Deblocking
filter and Sample Adaptive Offset filter). In this paper, we propose an
efficient resource sharing hardware architecture for deblocking filter. This
architecture utilizes four edge filters to filter two edges of the 8 × 8 block
in parallel. The edges are filtered following the sequential filter ordering.
The proposed architecture is implemented in Verilog HDL and synthesized
using Synopsys DC. The simulation results show that this architecture can
process a 16 × 16 block in 45 clock cycles and hence an LCU in 720 clock
cycles. It utilizes an area of 93.5K in 32 nm technology supporting UHD
video which is suitable for real-time applications.
Keywords: deblocking filter, resource sharing, HEVC/H.265, hardware
architecture, video codec
Classification: Integrated circuits

1. Introduction

Tremendous advancements in the electronics industry in-
creased the production of data in the form of images and
videos. 2.4MB data is required to represent a single frame
of a color image of resolution 1028 � 768 (0.8 Megapixel),
and 25 to 30 frames per second has to be streamed to view
a video/moving image without flicker which approxi-
mately requires a minimum of 60MB of data per second.
To stream a video for one minute, we would require 3.6GB
of video data to be stored, which is impossible. Hence
various compression standards were introduced to com-
press the image/video data, which will either be stored in a
storage device or transmitted through the transmission
system. H.264 and H.265 are the compression standards
employed to compress the video data in many applications
in recent years [1]. Both the compression standards utilize
adaptive deblocking filter in both the encoder and decoder
to remove the blocking artifacts and thus to improve the
subjective quality of the video [2, 3]. Many hardware
architectures of deblocking filters are implemented for both
H.264 and H.265 coding standards, which contributes to
the optimization of the video codec. Deblocking filtering
for H.264 is performed on 4 � 4 block edges, and the
deblocking filter for H.265 is performed on 8 � 8 blocks
[4]. Novel processing order of the block edges, memory

access schemes, and the number of filter units contribute to
the optimization of the architecture. Most existing archi-
tectures are based on a single filter unit for both horizontal
and vertical filtering, and the use of different fast memory
accessing techniques to satisfy the real-time constraints.
Few architectures use parallel filter units for simultaneous
filtering for horizontal and/or vertical edges. Dual standard
deblocking filter architecture supporting both H.264 and
H.265 coding standard is also implemented in [2] and [5].
In the design of dual standard deblocking filter architecture,
common hardware components of H.264 and H.265 is
reused to reduce the power consumption.

2. Related works

In HEVC coding standard, two in-loop filters, de-block-
ing filter and Sample Adaptive Offset (SAO) filter are
applied in sequence to the reconstructed frames in order
to increase the perceptual quality of the video frames.
Deblocking filter is used to remove the blocking artifacts
and the SAO filter adds offset values, either edge offset or
band offset, to the deblocked pixel samples to improve the
visual quality [6]. Hardware architectures of the in-loop
filters in HEVC are implemented either as a combined
deblocking and SAO filters or individually as a deblocking
filter and SAO filter. The deblocking filter architectures are
implemented using parallel and pipelining fashion in order
to optimize the area and throughput. In few architectures,
the novel filter ordering is proposed to improve the per-
formance. Different architectures are implemented in [5, 7,
8, 9, 10, 11, 12, 13, 14] to realize the deblocking filter of
H.265 coding standard in hardware. It is seen that the
complexity of H.265 deblocking filter architecture is less
compared to the H.264 deblocking filter architecture [15].
Combined deblocking and SAO filter are implemented in
[8, 14, 16, 17, 18]. In [13, 19] the in-loop filtering is
implemented in parallel fashion on graphics processing
unit (GPU). The HEVC in-loop filtering is implemented
in multicore co-processor in [10]. A Convolutional Neural
Network (CNN) based in-loop filter with coding unit
classification is implemented in [20, 21]. Among the two
in-loop filters in HEVC, SAO filter alone is implemented in
[22] and deblocking filter alone is implemented in [5, 23,
24, 25, 26, 27, 28, 29]. The architecture implemented in
[24] is a multi-parallel architecture built with four parallel
filtering cores along with boundary judgment. This archi-
tecture can filter an LCU in 288 clock cycles with parallel
vertical and horizontal edge filtering order. However, it
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uses nine SRAM modules, and the area utilization of one
filter core with the boundary strength calculation without
boundary judgment module is 31.58K. Since four such
filter cores are used, the area utilization is extremely high.
The area utilization in this architecture can be greatly
reduced by the resource sharing of common units by ex-
ploiting the filtering equations. This architecture achieves a
target frequency of 278MHz, which is suitable for real-
time applications. Deblocking filter implemented in [23],
filters an LCU in 768 clock cycles with the area complexity
of 466.5K. This architecture uses a novel memory restruc-
turing and data access schemes based on the proposed edge
filter order. Though it is claimed that it achieves high
throughput, more efficient architectures are studied in the
literature. Also, the design complexity is very high in this
architecture. Deblocking filter architectures supporting
dual-standard (both H.264 and H.265) are implemented
in [2] and [5]. Even though H.265 is the successor of
H.264, these architectures are implemented to provide
backward compatibility and to support applications using
H.264 coding standard.

3. Five-stage pipelined dual parallel edge deblocking
filter (V-DPEDBF)

The proposed V-DPEDBF architecture is shown in Fig. 1
has three main units, viz i) Control unit, ii) Boundary
Strength (BS) Calculation unit and iii) Filter unit. The
control unit is responsible for controlling all the operations
of the deblocking filter. The control unit is enabled when it
receives the deblocking filter enable signal from the exter-
nal world. All the operations, such as to read data from the
external memory, to read data from the internal memory,
write data to the internal memory and write data to the
external memory, enabling the BS calculation unit and
enabling the filter unit are monitored and administered by
the control unit. The BS calculation unit is responsible for
calculating the boundary strength parameter values, which
ranges from 0 to 2. Based on the BS value, the filter unit
performs the filtering operation.

3.1 Control unit
The control unit of the H.265 deblocking filter has a state
machine to control all the deblocking filtering operation.
The control unit is enabled by an enable signal from the
external unit. When this signal is low, all the filtering
process is turned off, and thus the deblocking filter is in

power save mode. When this signal goes high, the control
unit enables the deblocking filter operation by triggering
the state machine. Deblocking filter operation is performed
in five stages, such as memory read, parameter calculation,
filter decision, filter, and memory write. Initially, the state
machine generates a control signal to read the pixel data
from the external memory. The data from the external
memory is read as 4 � 4 blocks (128 bits) per clock cycle.
The data read ordering from the external memory for an
LCU is shown in Fig. 2(a) and the data read ordering from
the external memory for a 16 � 16 block is shown in
Fig. 2(b) and Fig. 2(c). Once four 4 � 4 blocks of data
are ready, the state machine generates control signals to
enable the BS calculation unit and the filter unit.

Based on the calculated BS value, the vertical edges
V1 and V2 of the 16 � 16 Luma block are filtered in
parallel, and the filtered data is transposed and written to
the internal memory (blocks 1–8). Once the twelfth block
of data is available, the filter unit is triggered again to filter
the edges V3 and V4 and the vertically filtered data is
transposed and written to the internal memory (blocks 9–
16). The control unit then generates control signals to read
the data from the internal memory for horizontal filtering.
The horizontal edges H1 and H2 are filtered in parallel and
transposed before being written into the external frame
memory. Then the edges H3 and H4 are filtered in parallel,
transposed and is written to the external frame buffer. The
same approach is followed for the Chroma Cb and Cr
blocks to perform the vertical filtering followed by the
horizontal filtering of the edges V5, V6, H5, and H6. The
filtered data is finally written to the external memory as
4 � 4 blocks, i.e., 128 bits per clock cycle.

3.2 BS calculation unit
The BS calculation unit reckons the boundary strength
value based on the received control signals to compute
the BS. Based on the control signals, the BS value is
computed as in Fig. 3. The evaluated BS value ranges
from 0 to 2 where the value 0 indicates no filtering; value
1 stipulates the use of weak/normal filter and the value 2
specifies the use of strong filter.
• If the pixel block of data read from the external

memory is from the edge of the frame, either the left
edge or the top edge, then the BS value is 0.

• If the data is not from the frame edge and if the two
adjacent 8 � 8 blocks are not intra-coded and the two

Fig. 1. Top-level architectural diagram of V-DPEDBF for H.265.

(a) (b) (c)

Fig. 2. (a) Read ordering of an LCU from external memory (b), (c) Read
ordering from external memory for a 16 � 16 block.
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adjacent blocks do not have non-zero transform co-
efficients and if the difference of the motion vector is
less than 4, then the BS value is 0.

• If the data is not from the frame edge and if the two
adjacent 8 � 8 blocks are not intra-coded and the two
adjacent blocks do not have non-zero transform co-
efficients and if the difference of the motion vector is
greater than or equal to 4, then the BS value is 1.

• If the data is not from the frame edge and if the two
adjacent 8 � 8 blocks are not intra-coded and the two
adjacent blocks do have non-zero transform co-effi-
cient, then the BS value is 1.

• If the data is not from the frame edge and if the two
adjacent 8 � 8 blocks are intra-coded, then the BS
value is 2.

3.3 Filter unit
The filter unit is the sophisticated computational unit which
is enabled by the control unit once the data is ready for the
filtering operation. The architectural diagram of the filter
unit is shown in Fig. 4. The filter unit encompasses i)
Parameter Calculation unit, ii) Buffers, iii) Filter decision
unit, iv) Internal Memory unit and v) Filter modules viz.,
strong filter and weak filter.

3.3.1 Parameter calculation unit
This block is used to compute the filtering parameters like

β and tc based on table 8–12 of [30]. These parameters are
dependent on the BS value and the quantization parameter
values of the adjacent P and Q blocks named as QPp and
QPq respectively. Parameter Calculation unit is a LUT that
has the outputs β and tc which are dependent on the inputs
BS, QPp and QPq.

3.3.2 Buffers
There are eight buffers used in the filter unit, and each buffer
can hold a 4 � 4 pixel block of data (128 bits). Initially, all
the buffers are initialized with zeros. When the control unit
starts to read the data from the external memory, the data
blocks 1–4 shown in Fig. 2(b) are loaded to the buffers
Q1_BUF, Q2_BUF, Q3_BUF, and Q4_BUF respectively and
filtering is performed along the vertical edges V1 and V2.
Meanwhile, the pixel blocks 5–8 are loaded to the buffers
P1_BUF, P2_BUF, P3_BUF, and P4_BUF respectively.
Fig. 5 shows the mapping of each 4 � 4 pixel block to the
corresponding buffer for both luma and chroma blocks. On
completion of the vertical edge filtering of the edges V1 and
V2, the filtered data is written into the internal memory.
The same strategy is followed for filtering the edges V3 and
V4. The data from the internal memory is again loaded to
these buffers for horizontal filtering following the same
technique as in vertical filtering.

3.3.3 Filter decision unit
The filter decision unit decides the type of filtering that has
to be applied for a 4 � 4 block based on the parameters β, tc
and the pixel threshold values of the two adjacent blocks.

3.3.4 Internal memory unit
The internal memory has four dual-port RAM, which is
used to hold the vertically filtered data. The size of each
RAM is 64 bytes, which is divided into four segments,
where each segment can hold a 4 � 4 block of data (128 bits
or 16 bytes). Each 4 � 4 vertically filtered pixel data blocks
is stored in these four RAMs. Fig. 6 shows the mapping of
the data from the internal memory to the internal buffers for
both luma and the chroma Cb, Cr blocks. This novel data
storing technique reduces the access cycles of the external
memory and circumvents the use of transpose buffers. For
chroma blocks, only the first two memory locations are
used, and the remaining two locations are unused.

3.3.5 Filter modules
The filter modules have strong filter and weak/normal
filter. Based on the filtering decisions from the filter deci-
sion unit, either the strong filter or the weak filter is enabled
to perform the filtering operation. In case if the filtering

Fig. 3. Boundary strength computation.

Fig. 4. Filter unit of V-DPEDBF architecture.

Fig. 5. Pixel block to buffer mapping.
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decision unit decides no filtering, then the filtering process
is bypassed. The strong or weak filtering is performed
based on the equations specified in [30]. By exploiting
the similarities in the equations, a resource sharing archi-
tecture of the filter module is designed to optimize the area.
The filtered pixel data block is then written to the internal
memory after vertical filtering and to the external memory
after the horizontal filtering.

3.4 Resource sharing architecture
The strong and the weak filter are designed based on the
deblocking filtering algorithm given in [23] complies with
the HEVC standard. Based on the similarities in the filter-
ing equations, the filter architecture is designed to share the
common resources which subsequently reduces the area
and hence the power. The clip3 function is to modify the
pixels of the two adjacent blocks for the strong filter. The
third argument of the clip3 function is an equation which
involves two or more of the pixel values of the adjacent P
and Q blocks. These equations are implemented in the
hardware using adders and shifters. It is noted that p0 þ q0
is used in all the equations and p0 þ q0 þ 2 is used in most
of the equations. Also, p1 þ 2 and q1 þ 2 are used twice.
Hence to add p0 þ q0 one 8 bit adder is used and the output
is shared to all the equations, and the output of this adder is

provided as input to another adder whose other input is 2
which gives the output p0 þ q0 þ 2 and this value is used in
the respective equations. Similarly, p1 þ 2 and q1 þ 2 are
implemented using two more adders and the output of
these adders are used wherever required. Thus by sharing
the common resources, an area-efficient filter is imple-
mented. The resource sharing architecture of the third
argument of the clip3 function for the strong filter is shown
in Fig. 7.

4. Results and discussion

The proposed architecture is implemented using Verilog
HDL and is synthesized using Synopsys DC targeting for
90 nm and 32 nm technology library. Table I shows the
area utilization of various modules, and Table II shows the
summary of the hardware implementation results. The im-
plemented architecture has an area utilization of 120.6K
with 90 nm technology library and 93.5K with 32 nm
technology library. It uses four dual-port RAM of size 64
bytes each. This architecture, with few internal buffers and
a novel internal memory organization strategy, avoids the
usage of transpose buffers and reduces the external mem-
ory access cycles and hence achieves optimized perform-
ance. The simulation results show that the implemented
architecture can process a 16 � 16 block in 45 clock cycles.
The filtering operation performed on every clock cycle is
shown in Fig. 8. It takes 35 clock cycles to filter the Luma
block and 20 clock cycles to filter the Chroma Cb and Cr
blocks with an overlap of 10 clock cycles. The input data
path is set to 128 bits to read a 4 � 4 block of data per
cycle. In a 16 � 16 block, there are sixteen 4 � 4 blocks,
and hence it requires 16 clock cycles to read a 16 � 16

Luma block from the external memory. As filtering is done

(a)

(b)

Fig. 6. Internal memory to buffer mapping before horizontal filtering. Fig. 7. The partial architecture of strong filter using resource sharing.
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along the edges of 8 � 8 blocks, vertical filtering is done
immediately on receiving the 4th block and then after
receiving the 12th-pixel block. The filtered block of data
is transposed and written into the internal memory, which is
then fetched again for horizontal filtering. It takes four
clock cycles to read the data from the internal memory and
16 clock cycles to write the filtered data to the external
memory. Overall it takes 35 clock cycles to filter the luma
block. Similarly, for the chroma Cb and Cr blocks, eight
clock cycles are required to read eight 4 � 4 blocks of data
from the external memory, and once the blocks are filtered,
the data is transposed and written into the internal memory.
It takes two clock cycles to read the data from the internal
memory and eight clock cycles to filter the data and write
the data to the external memory. Thus it takes 20 clock
cycles to filter the chroma block. Chroma block filtering is
performed only if the calculated BS value is equal to 2. If
the BS value is less than 2, then the skip mode is selected,
and the overall filtering of a 16 � 16 block is done within
35 clock cycles. Table III shows the comparison of this
work with the previous architectures. Throughput for
V-DPEDBF architecture is computed as in Eq. (1).

Throughput ðkLCU=sÞ

¼ Frequency ðkHzÞ
Processing time ðcycles=LCUÞ

ð1Þ

It is noted that the throughput of DPEDBF is 463 kLCU/s
in 32 nm technology and 139 kLCU/s in 90 nm technology.
The throughput achieved in 90 nm technology is margin-
ally higher than the throughput of the architecture imple-
mented in [23]. Though the architecture implemented in
[18] achieves high throughput, the area and power con-
sumption are very high. Our proposed V-DPEDBF
achieves 79.67% lesser area and 96.2% lesser power with
the compensation in the throughput, which is 93.3% lesser
compared to [18]. The architecture implemented in 32 nm
technology achieves a frequency of 333.33MHz with the
target area of 93.5K, which shows the scope of this
architecture for real-time applications in hand-held elec-
tronic gadgets.

5. Conclusion

This work proposes a parallel deblocking filter architecture
for the H.265 coding standard with five pipeline stages.
This architecture can filter the edges of two 8 � 8 blocks in
parallel and filters the luma block in 35 clock cycles and
the chroma Cb and Cr blocks in 20 clock cycles with the
overlap of 10 clock cycles. So the overall processing cycles
for a 16 � 16 block is 45 clock cycles, and hence it requires
720 clock cycles to process an LCU. The implemented
architecture can operate at a frequency of 200MHz, and
hence, it can support UHD applications.
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