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Abstract

We obtain fixed point theorems for cyclic self-maps on complete metric spaces

involving Meir-Keeler and weaker Meir-Keeler functions, respectively. In this way, we

extend several well-known fixed point theorems and, in particular, improve some very

recent results on weaker Meir-Keeler functions. Fixed point results for well-posed

property and for limit shadowing property are also deduced. Finally, an application to

the study of existence and uniqueness of solutions for a class of nonlinear integral

equations is presented.
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1 Introduction

In their paper [], Kirk, Srinavasan and Veeramani started the fixed point theory for cyclic

self-maps on (complete) metric spaces. In particular, they obtained, among others, cyclic

versions of the Banach contraction principle [], of the Boyd and Wong fixed point theo-

rem [] and of the Caristi fixed point theorem []. From then, several authors have con-

tributed to the study of fixed point theorems and best proximity points for cyclic contrac-

tions (see, e.g., [–]). Very recently, Chen [] (see also []) introduced the notion of a

weaker Meir-Keeler function and obtained some fixed point theorems for cyclic contrac-

tions involving weaker Meir-Keeler functions.

In this paper we obtain a fixed point theorem for cyclic self-maps on complete metric

spaces involving Meir-Keeler functions and deduce a variant of it for weaker Meir-Keeler

functions. In this way, we extend in several directions and improve, among others, the

main fixed point theorem of Chen’s paper [, Theorem ]. Some consequences are given

after the main results. Fixed point results for well-posedness property and for limit shad-

owing property in complete metric spaces are also given. Finally, an application to the

study of existence and uniqueness of solution for a class of nonlinear integral equations is

presented.

We recall that a self-map f of a (non-empty) setX is called a cyclicmap if there existsm ∈
N such thatX =

⋃m
i=Ai, withAi non-empty and f (Ai)⊆ Ai+, i = , . . . ,m, whereAm+ = A.

In this case, we say that X =
⋃m

i=Ai is a cyclic representation of X with respect to f .
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2 Fixed point results

In the sequel, the letters R, R+ and N will denote the set of real numbers, the set of non-

negative real numbers and the set of positive integer numbers, respectively.

Meir and Keeler proved in [] that if f is a self-map of a complete metric space (X,d)

satisfying the condition that for each ε >  there is δ >  such that, for any x, y ∈ X, with

ε ≤ d(x, y) < ε + δ, we have d(fx, fy) < ε, then f has a unique fixed point z ∈ X and f nx → z

for all x ∈ X.

This important result suggests the notion of a Meir-Keeler function:

A function φ :R+ →R
+ is said to be aMeir-Keeler function if for each ε > , there exists

δ >  such that for t >  with ε ≤ t < ε + δ, we have φ(t) < ε.

Remark  It is obvious that if φ is a Meir-Keeler function, then φ(t) < t for all t > .

In [], Chen introduced the following interesting generalization of the notion of aMeir-

Keeler function.

Definition  [, Definition ] A function φ : R+ → R
+ is called a weaker Meir-Keeler

function if for each ε > , there exists δ >  such that for t >  with ε ≤ t < ε + δ, there

exists n ∈ N such that φn (t) < ε.

Now let φ,ϕ :R+ →R
+. According to Chen [, Section ], consider the following con-

ditions for φ and ϕ, respectively.

(φ) φ(t) =  ⇔ t = ;

(φ) for all t > , the sequence {φn(t)}n∈N is decreasing;

(φ) for tn > ,

(a) if limn→∞ tn = γ > , then limn→∞ φ(tn) < γ , and

(b) if limn→∞ tn = , then limn→∞ φ(tn) = ;

(ϕ) ϕ is non-decreasing and continuous with ϕ(t) =  ⇔ t = ;

(ϕ) ϕ is subadditive, that is, for every t, t ∈R
+, ϕ(t + t)≤ ϕ(t) + ϕ(t);

(ϕ) for tn > , limn→∞ tn =  if and only if limn→∞ ϕ(tn) = .

Definition  [, Definition ] Let (X,d) be a metric space. A self-map f of X is called a

cyclic weaker (φ◦ϕ)-contraction if there existm ∈N, for whichX =
⋃m

i=Ai (eachAi a non-

empty closed set), and two functions φ,ϕ : R+ → R
+ satisfying conditions (φi), i = , , ,

and (ϕi), i = , , , respectively, with φ a weaker Meir-Keeler function such that

() X =
⋃m

i=Ai is a cyclic representation of X with respect to f ;

() for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

ϕ
(

d(fx, fy)
)

≤ φ
(

ϕ
(

d(x, y)
))

,

where Am+ = A.

By using the above concept, Chen established the following fixed point theorem.

Theorem [, Theorem] Let (X,d) be a completemetric space.Then every cyclic weaker

(φ ◦ ϕ)-contraction f of X has a unique fixed point z. Moreover, z ∈
⋂m

i=Ai, where X =
⋃m

i=Ai is the cyclic representation of X with respect to f of Definition .

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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We shall establish fixed point theorems which improve in several directions the preced-

ing theorem. To this end, we start by obtaining a fixed point theorem for cyclic contrac-

tions involving Meir-Keeler functions.

Theorem  Let f be a self-map of a complete metric space (X,d), and let X =
⋃m

i=Ai be

a cyclic representation of X with respect to f , with Ai non-empty and closed, i = , . . . ,m. If

φ :R+ →R
+ is a Meir-Keeler function such that for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

d(fx, fy) ≤ φ
(

d(x, y)
)

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Proof Let x ∈ Am. For each n ∈ N ∪ {}, put xn = f nx. Note that xnm+i ∈ Ai whenever

n ∈N∪ {} and i = , , . . . ,m.

If xn = xn+ for some n, then xn is a fixed point of f . So, we assume that xn 
= xn+ for all

n ∈N∪ {}. By Remark  and the contraction condition, it follows that {d(xn,xn+)}n∈N is a

strictly decreasing sequence in R
+, so there exists r ∈R

+ such that limn→∞ d(xn,xn+) = r.

If r > , there is n ∈ N such that φ(d(xn,xn+)) < r for all n ≥ n by our assumption that φ

is aMeir-Keeler function. Hence, d(xn+,xn+) < r for all n≥ n, a contradiction. Therefore

limn→∞ d(xn,xn+) = .

Next we prove that {xn}n∈N is a Cauchy sequence in (X,d). Choose an arbitrary ε > .

Then, there is δ ∈ (, ε) such that for t >  with ε ≤ t < ε + δ, we have φ(t) < ε. Let k ∈ N

be such that d(xk ,xk+) < δ/, d(xk ,xk+m–) < ε/ and d(xk ,xk+m+) < δ/ for all k ≥ k.

Take any k > k. Then k = nm + i for some n ∈N and some i ∈ {, , . . . ,m}. By induction
we shall show that d(xnm+i,x(n+j)m+i+) < ε for all j ∈N.

Indeed, for j = , we have

d(xnm+i,xnm+i+m+) = d(xk ,xk+m+) <
δ


< ε.

Now, assume that d(xnm+i,x(n+j)m+i+) < ε for some j ∈N. Thus

d(xnm+i–,x(n+j+)m+i) ≤ d(xnm+i–,xnm+i) + d(xnm+i,x(n+j)m+i+)

+ d(x(n+j)m+i+,x(n+j+)m+i)

<
δ


+ ε +

δ


= δ + ε.

If ε ≤ d(xnm+i–,x(n+j+)m+i), then φ(d(xnm+i–,x(n+j+)m+i)) < ε, and, by the contraction

condition,

d(xnm+i,x(n+j+)m+i+) < ε.

If d(xnm+i–,x(n+j+)m+i) < ε, we deduce

d(xnm+i,x(n+j+)m+i+) ≤ φ
(

d(xnm+i–,x(n+j+)m+i)
)

< d(xnm+i–,x(n+j+)m+i) < ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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It immediately follows that {xn}n∈N is a Cauchy sequence in (X,d). Hence, there exists

z ∈ X such that xn → z. Since each Ai is closed, we deduce that z ∈
⋂m

i=Ai.

Moreover, z = fz. Indeed, let i ∈ {, . . . ,m} be such that fz ∈ Ai+. Then

d(z, fz) ≤ d(z,xnm+i ) + d(xnm+i , fz) ≤ d(z,xnm+i ) + φ
(

d(xnm+i–, z)
)

< d(z,xnm+i ) + d(xnm+i–, z),

for all n ∈N. Since limn→∞ d(z,xnm+i ) = limn→∞ d(z,xnm+i–) = , it follows that d(z, fz) =

, i.e., z = fz.

Finally, let u ∈ X with u = fu and u 
= z. Since z ∈
⋂m

i=Ai, we have d(fz, fu) ≤ φ(d(z,u)),

so d(z,u) < d(z,u), a contradiction. Hence u = z, and thus z is the unique fixed point of f .

�

Next we analyze some relations between Chen’s conditions (φi), i = , , .

Lemma  If φ : R+ → R
+ satisfies (φ)(a), then φ is a Meir-Keeler function that satisfies

conditions (φ) and (φ)(b).

Proof Suppose that φ is not a Meir-Keeler function. Then there exists ε >  such that for

each n ∈N we can find a tn >  with ε ≤ tn < ε + /n and φ(tn) ≥ ε. Then limn→∞ tn = ε > ,

but φ(tn) ≥ ε for all n, so condition (φ)(a) is not satisfied. We conclude that condition

(φ)(a) implies that φ is a Meir-Keeler function. Hence, by Remark , φ(t) < t for all t > ,

so the sequence {φn(t)}n∈N is (strictly) decreasing for all t > , and thus condition (φ) is

satisfied. Finally, if limn→∞ tn = , with tn > , we deduce that limn→∞ φ(tn) =  because

φ(tn) < tn for all n, so condition (φ)(b) also holds. �

Proposition  Let ϕ : R+ → R
+ be a function satisfying conditions (ϕ) and (ϕ). If (X,d)

is a metric space, then the function p : X ×X →R
+, given by

p(x, y) = ϕ
(

d(x, y)
)

,

is a metric on X. If, in addition, (X,d) is complete and ϕ satisfies condition (ϕ), then the

metric space (X,p) is complete.

Proof We first show that p is a metric on X. Let x, y, z ∈ X:

• Suppose p(x, y) = . Then ϕ(d(x, y)) = , so d(x, y) =  by (ϕ). Hence x = y.

• Clearly, p(x, y) = p(y,x).

• Since d(x, y)≤ d(x, z) + d(z, y), and ϕ is non-decreasing and subadditive, we deduce

that ϕ(d(x, y))≤ ϕ(d(x, z)) + ϕ(d(z, y)), i.e., p(x, y) ≤ p(x, z) + p(z, y).

Finally, suppose that (X,d) is complete with ϕ satisfying (ϕi), i = , , . Let {xn}n∈N be a

Cauchy sequence in (X,p). If {xn}n∈N is not a Cauchy sequence in (X,d), there exist ε > 

and sequences {nk}k∈N and {mk}k∈N in N such that k < nk < mk < nk+ and d(xnk ,xmk
) ≥

ε for all k ∈ N. By (ϕ), the sequence {p(xnk ,xmk
)}k∈N does not converge to zero, which

contradicts the fact that {xn}n∈N is a Cauchy sequence in (X,p). Consequently, {xn}n∈N is

a Cauchy sequence in (X,d), so it converges in (X,d) to some x ∈ X. From (ϕ) we deduce

that {xn}n∈N converges to x in (X,p). Therefore (X,p) is a complete metric space. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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Remark  Note that the continuity of ϕ is not used in the preceding proposition.

Now we easily deduce the following improvement of Chen’s theorem.

Theorem  Let f be a self-map of a complete metric space (X,d), and let X =
⋃m

i=Ai be

a cyclic representation of X with respect to f , with Ai non-empty and closed, i = , . . . ,m. If

φ,ϕ :R+ →R
+ satisfy conditions (φ)(a) and (ϕi), i = , , , respectively, and for any x ∈ Ai,

y ∈ Ai+, i = , , . . . ,m, it follows

ϕ
(

d(fx, fy)
)

≤ φ
(

ϕ
(

d(x, y)
))

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Proof Define p : X ×X →R
+ by p(x, y) = ϕ(d(x, y)) for all x, y ∈ X. By Proposition , (X,p)

is a complete metric space. Moreover, from the condition

ϕ
(

d(fx, fy)
)

≤ φ
(

ϕ
(

d(x, y)
))

,

for all x ∈ Ai, y ∈ Ai+, i = , . . . ,m, it follows that

p(fx, fy) = ϕ
(

d(fx, fy)
)

≤ φ
(

ϕ
(

d(x, y)
))

= φ
(

p(x, y)
)

for all x ∈ Ai, y ∈ Ai+, i = , . . . ,m.

Finally, since by Lemma  φ is a Meir-Keeler function, we can apply Theorem , so there

exists z ∈
⋂m

i=Ai, which is the unique fixed point of f . �

Note that the continuity of ϕ can be omitted in Theorem . Moreover, the condition

that φ is a weaker Meir-Keeler function turns out to be irrelevant by virtue of Lemma .

This fact suggests the question of obtaining a fixed point theorem for cyclic contractions

involving explicitly weaker Meir-Keeler functions. In particular, it is natural to wonder if

Theorem  remains valid when we replace ‘Meir-Keeler function’ by ‘weaker Meir-Keeler

function’. In the sequel we answer this question. First we give an easy example which shows

that it has a negative answer in general, but the answer is positive whenever the weaker

Meir-Keeler function is non-decreasing as Theorem  below shows.

Example  Let X = {, } and let d be the discrete metric on X, i.e., d(, ) = d(, ) = 

and d(x, y) =  otherwise. Of course (X,d) is a complete metric space. Define f : X → X by

f  =  and f  = , and consider the function φ : R+ → R
+ defined by φ(t) = t/ for all t ∈

[, ), φ() =  and φ(t) = / for all t > . Clearly, φ is a weakerMeir-Keeler function (note,

in particular, that φ() = / < ), but it is not a Meir-Keeler function because φ() > .

Finally, since d(f , f ) =  and φ(d(, )) = , we deduce that d(fx, fy) ≤ φ(d(x, y)) for all

x, y ∈ X. However, f has no fixed point.

The function φ of the preceding example is not non-decreasing. This fact is not casual

as Theorem  below shows.

Lemma  Let φ : R+ → R
+ be a non-decreasing weaker Meir-Keeler function. Then the

following hold:

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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(i) φ(t) < t for all t > ;

(ii) limn→∞ φn(t) =  for all t > .

Proof (i) Suppose that there exists t >  such that t ≤ φ(t). Since φ is non-decreasing,

we deduce that {φn(t)}n∈N∪{} is a non-decreasing sequence in R
+, so, in particular, t ≤

φn(t) for all n ∈ N. Finally, since φ is a weaker Meir-Keeler function, there exists n ∈ N

such that φn (t) < t, which yields a contradiction.

(ii) Fix t > . By (i) the sequence {φn(t)}n∈N is (strictly) decreasing, so there exists r ≥ 

such that r = limn→∞ φn(t). If r > , there is δ >  such that for s >  with r ≤ s < r + δ, there

exists ns ∈ N with φns (s) < r. Let nr ∈N be such that r < φn(t) < r + δ for all n≥ nr . Putting

s = φnr (t), we deduce that φns (s) < r, i.e., φns+nr (t) < r, a contradiction. We conclude that

limn→∞ φn(t) = . �

Remark  Observe that, as a partial converse of the above lemma, if φ :R+ →R
+ satisfies

limn→∞ φn(t) =  for all t > , then φ is a weaker Meir-Keeler function. Indeed, otherwise,

there exist ε >  and a sequence {tn}n∈N with tn ≥ ε for all n ∈N, limn→∞ tn = ε but φk(tn) ≥
ε for all k,n ∈N, a contradiction.

We also will use the following cyclic extension of the celebrated Matkowski fixed point

theorem [, Theorem .], where for a self-map f of a metric space (X,d), we define

Md(x, y) = max

{

d(x, y),d(x, fx),d(y, fy),




[

d(x, fy) + d(fx, y)
]

}

for all x, y ∈ X.

Theorem  (cf. [, Corollary .]) Let f be a self-map of a complete metric space (X,d),

and let X =
⋃m

i=Ai be a cyclic representation of X with respect to f ,with Ai non-empty and

closed, i = , . . . ,m. If φ :R+ → R
+ is a non-decreasing function such that limn→∞ φn(t) = 

for all t > , and for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

d(fx, fy) ≤ φ
(

Md(x, y)
)

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Then from Lemma  and Theorem  we immediately deduce the following theorem.

Theorem  Let f be a self-map of a complete metric space (X,d), and let X =
⋃m

i=Ai be

a cyclic representation of X with respect to f , with Ai non-empty and closed, i = , . . . ,m.

If φ : R+ → R
+ is a non-decreasing weaker Meir-Keeler function such that for any x ∈ Ai,

y ∈ Ai+, i = , , . . . ,m,

d(fx, fy) ≤ φ
(

Md(x, y)
)

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Corollary Let f be a self-map of a complete metric space (X,d), and let X =
⋃m

i=Ai be

a cyclic representation of X with respect to f , with Ai non-empty and closed, i = , . . . ,m.

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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If φ : R+ → R
+ is a non-decreasing weaker Meir-Keeler function such that for any x ∈ Ai,

y ∈ Ai+, i = , , . . . ,m,

d(fx, fy) ≤ φ
(

d(x, y)
)

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Proof Since φ is non-decreasing, we deduce that for each x, y ∈ X, φ(d(x, y))≤ φ(Md(x, y)),

so d(fx, fy) ≤ φ(Md(x, y)). Hence, by Theorem , f has a unique fixed point z and z ∈
⋂m

i=Ai. �

Theorem  can be generalized according to the style of Chen’s theorem as follows.

Theorem  Let f be a self-map of a complete metric space (X,d), and let X =
⋃m

i=Ai be

a cyclic representation of X with respect to f , with Ai non-empty and closed, i = , . . . ,m. If

φ : R+ → R
+ is a non-decreasing weaker Meir-Keeler function, ϕ : R+ → R

+ is a function

satisfying conditions (ϕi), i = , , , and for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, it follows

ϕ
(

d(fx, fy)
)

≤ φ
(

ϕ
(

Md(x, y)
))

,

where Am+ = A, then f has a unique fixed point z.Moreover, z ∈
⋂m

i=Ai.

Proof Construct the complete metric space (X,p) of Proposition , and observe that from

the well-known fact that for ai ∈ R
+, i = , . . . ,k, one has φ(maxi ai) = maxi φ(ai), one has

Mp(x, y) = ϕ
(

Md(x, y)
)

for all x, y ∈ X. Therefore, for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, we deduce that

p(fx, fy) ≤ φ
(

Mp(x, y)
)

.

Theorem  concludes the proof. �

We finish this section with two examples illustrating Theorem  and its corollary.

Example  Let A = {n ∈ N : n is even} ∪ {}, B = {n ∈ N : n is odd} ∪ {}, X = A ∪ B = N,

and let d be the complete metric on X defined by d(x,x) =  for all x ∈ X and d(x, y) = x+ y

otherwise. Since d induces the discrete topology on X, we deduce that A and B are closed

subsets of (X,d).

Let f be the self-map of X defined by f  =  and fx = x –  otherwise. It is clear that

X = A∪ B is a cyclic representation of X with respect to f .

Now we define the function φ : R+ → R
+ by φ() = , and φ(t) = n –  if t ∈ (n – ,n],

n ∈ N. It is immediate to check that φ is a non-decreasing weaker Meir-Keeler function

which is not a Meir-Keeler function.

Furthermore, we have:

• For x =  and y = , d(fx, fy) = d(, ) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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• For x =  and y = n ∈N\{},

d(fx, fy) = d(,n – ) = n –  = φ(n) = φ
(

d(x, y)
)

.

• For x = n ∈ A\{} and y =m ∈ B\{},

d(fx, fy) = d(n – ,m – ) = n +m –  < n +m – 

= φ(n +m) = φ
(

d(x, y)
)

.

Consequently, the conditions of the corollary of Theorem  are verified; in fact, z =  ∈
A∩ B is the unique fixed point of f .

Example  Let A = [, /] ∪ {}, B = [, ], X = A ∪ B and let d be the restriction to X

of the Euclidean metric on R. Obviously, (X,d) is a complete metric space (in fact, it is

compact), with A and B closed subsets of (X,d).

Let f be the self-map of X defined by fx = – x if x ∈ A, and fx =  if x ∈ B. It is clear that

X = A∪ B is a cyclic representation of X with respect to f .

Now we define the function φ : R+ → R
+ by φ(t) = t/ if t ∈ [, ], and φ(t) =  if t > .

(Notice that φ is a non-decreasingweakerMeir-Keeler functionwhich is not aMeir-Keeler

function.)

Furthermore, we have:

• For x =  ∈ A and y ∈ B, d(fx, fy) = d(, ) = .

• For x = / ∈ A and y ∈ B,

d(fx, fy) = d(/, ) = / = φ() = φ
(

d(x, fx)
)

.

• For x ∈ A\{, /} and y ∈ B,

d(fx, fy) = d( – x, ) =  – x≤  = φ( – x) = φ
(

d(x, fx)
)

.

Consequently, the conditions of Theorem  are verified; in fact, z =  ∈ A ∩ B is the

unique fixed point of f .

Finally, observe that the corollary of Theorem  cannot be applied in this case because

for x = / ∈ A and y =  ∈ B, we have

d(fx, fy) = / > φ(/) = φ
(

d(x, y)
)

.

3 Applications to well-posedness and limit shadowing property of a fixed

point problem

The notion of well-posedness of a fixed point problem has evokedmuch interest to several

mathematicians, for example, De Blasi and Myjak [], Lahiri and Das [], Popa [, ]

and others.

Definition  [] Let f be a self-map of a metric space (X,d). The fixed point problem of

f is said to be well posed if:

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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(i) f has a unique fixed point z ∈ X ;

(ii) for any sequence {xn}n∈N in X such that limn→∞ d(fxn,xn) = , we have

limn→∞ d(xn, z) = .

Definition  [] Let f be a self-map of a metric space (X,d). The fixed point problem of

f is said to have limit shadowing property in X if for any sequence {xn}n∈N in X satisfying

limn→∞ d(fxn,xn) = , it follows that there exists z ∈ X such that limn→∞ d(f nz,xn) = .

Concerning the well-posedness and limit shadowing of the fixed point problem for a

self-map of a complete metric space satisfying the conditions of Theorem , we have the

following results.

Theorem Let (X,d) be a completemetric space. If f is a self-map of X and φ :R+ →R
+ is

a non-decreasing weaker Meir-Keeler function satisfying the conditions of Theorem , then

the fixed point problem of f is well posed.

Proof Owing to Theorem , we know that f has a unique fixed point z ∈ X. Let {xn} be a
sequence in X such that limn→∞ d(xn, fxn) = . Then

d(xn, z) ≤ d(xn, fxn) + d(fxn, fz)

≤ d(xn, fxn)

+ φ

(

max

{

d(xn, z),d(xn,xn+),d(z, fz),
d(xn, fz) + d(z,xn+)



})

.

Passing to the limit as n → ∞ in the above inequality, it follows that limn→∞ d(xn, z) = .

�

Theorem Let (X,d) be a completemetric space. If f is a self-map of X and φ :R+ →R
+ is

a non-decreasing weaker Meir-Keeler function satisfying the conditions of Theorem , then

f has the limit shadowing property.

Proof From Theorem , we know that f has a unique fixed point z ∈ X. Let {xn}n∈N be

a sequence in X such that limn→∞ d(xn, fxn) = . Then, as in the proof of the previous

theorem,

d(xn, z) ≤ d(xn, fxn)

+ φ

(

max

{

d(xn, z),d(xn,xn+),d(z, fz),
d(xn, fz) + d(z,xn+)



})

.

Passing to the limit as n → ∞ in the above inequality, it follows that limn→∞ d(xn, f
nz) =

d(xn, z) = . �

4 An application to integral equations

In this section we apply Theorem  to study the existence and uniqueness of solutions for

a class of nonlinear integral equations.

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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We consider the nonlinear integral equation

u(t) =

∫ T



G(t, s)K
(

s,u(s)
)

ds for all t ∈ [,T], ()

where T > , K : [,T]×R
+ →R

+ and G : [,T]× [,T] →R
+ are continuous functions,

andM := max(s,x)∈[,T] K(s,x).

We shall suppose that the following four conditions are satisfied:

(I)
∫ T


G(t, s)ds≤  for all t ∈ [,T].

(II) K(s, ·) is a non-increasing function for any fixed s ∈ [, ], that is,

x, y ∈R
+, x≥ y ⇒ K(s,x)≤ K(s, y).

(III) There exists a Meir-Keeler function ψ :R+ →R
+ that is non-decreasing on

[, M] and such that

∣

∣K(s,x) –K(s, y)
∣

∣ ≤ ψ
(

|x – y|
)

for all s,x ∈ [,T] and y ∈R
+ with |x – y| ≤ M.

(IV) There exists a continuous function α : [,T] → [,T] such that:

For all t ∈ [,T], we have

α(t)≤
∫ T



G(t, s)K(s,T)ds

and

T ≥
∫ T



G(t, s)K
(

s,α(s)
)

ds.

Now denote by C([,T],R+) the set of non-negative real continuous functions on [,T].

We endow C([,T],R+) with the supremummetric

d∞(u, v) = max
t∈[,T]

∣

∣u(t) – v(t)
∣

∣, for all u, v ∈ C
(

[,T],R+
)

.

It is well known that (C([,T],R+),d∞) is a complete metric space.

Consider the self-map f : C([,T],R+) → C([,T],R+) defined by

fu(t) =

∫ T



G(t, s)K
(

s,u(s)
)

ds for all t ∈ [,T].

Clearly, u is a solution of () if and only if u is a fixed point of f .

In order to prove the existence of a (unique) fixed point of f , we construct the closed

subsets A and A of C([,T],R
+) as follows:

A =
{

u ∈ C
(

[,T],R+
)

: u(s) ≤ T for all s ∈ [,T]
}

,

and

A =
{

u ∈ C
(

[,T],R+
)

: u ≥ α
}

.

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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We shall prove that

f (A)⊆ A and f (A) ⊆ A. ()

Let u ∈ A, that is,

u(s) ≤ T for all s ∈ [,T].

Since G(t, s)≥  for all t, s ∈ [,T], we deduce from (II) and (IV) that

∫ T



G(t, s)K
(

s,u(s)
)

ds≥
∫ T



G(t, s)K(s,T)ds≥ α(t)

for all t ∈ [,T]. Then we have fu ∈ A.

Similarly, let u ∈ A, that is,

u(s) ≥ α(s) for all s ∈ [,T].

Again, from (II) and (IV), we deduce that

∫ T



G(t, s)K
(

s,u(s)
)

ds≤
∫ T



G(t, s)K
(

s,α(s)
)

ds≤ T

for all t ∈ [,T]. Then we have fu ∈ A. Thus, we have shown that () holds.

Hence, if X := A ∪ A, we have that X is closed in C([,T],R+), so the metric space

(X,d∞) is complete.

Moreover, X := A ∪ A is a cyclic representation of the restriction of f with respect to

X, which will be also denoted by f .

Now construct the function φ :R+ → R
+ given by

φ(t) = ψ(t) if t ∈ [, M],

and

φ(t) = M if t > M.

Since ψ is a Meir-Keeler function that is non-decreasing on [, M], it immediately fol-

lows that φ is a non-decreasing weaker Meir-Keeler function. Note also that φ is not con-

tinuous at t = M (in fact, it is not a Meir-Keeler function).

Finally we shall show that for each u ∈ A and v ∈ A, one has d∞(fu, fv) ≤ φ(d∞(u, v)).

To this end, let u ∈ A and v ∈ A. Since u(s) ∈ [,T] for each s ∈ [,T], we have that

fu(t) =

∫ T



G(t, s)K
(

s,u(s)
)

ds

≤ M

∫ T



G(t, s)ds≤ M

for all t ∈ [,T].

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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Similarly, since v≥ α and α(s) ∈ [,T] for each s ∈ [,T], we deduce that

fv(t)≤
∫ T



G(t, s)K
(

s,α(s)
)

ds≤ M

for all t ∈ [,T]. Therefore

∣

∣fu(t) – f (v(t)
∣

∣ ≤ fu(t) + fv(t)≤ M

for all t ∈ [,T]. So,

d∞(fu, fv) ≤ M.

If d∞(u, v) > M, we have φ(d∞(u, v)) = M, so

d∞(fu, fv) ≤ φ
(

d∞(u, v)
)

.

If d∞(u, v) ≤ M, then |u(s) – v(s)| ≤ M for all s ∈ [,T], so by (III), we deduce that for

each t ∈ [,T],

∣

∣fu(t) – f (v(t)
∣

∣ ≤
∫ T



G(t, s)
∣

∣K
(

s,u(s)
)

–K
(

s, v(s)
)
∣

∣ds

≤
∫ T



G(t, s)ψ
(
∣

∣u(s) – v(s)
∣

∣

)

ds

≤ ψ
(

d∞(u, v)
)

∫ T



G(t, s)ds

≤ ψ
(

d∞(u, v)
)

= φ
(

d∞(u, v)
)

.

Consequently, by the corollary of Theorem , f has a unique fixed point u∗ ∈ A ∩ A,

that is, u∗ ∈ C is the unique solution to () in A ∪A.

Remark  The first author studied in [, Section ] a variant of the problem discussed

above for the case that ψ is the non-decreasing Meir-Keeler function given by ψ(t) =

(ln(t + ))/ for all t ∈R
+.

The next example illustrates the preceding development.

Example  Consider the integral equation

u(t) =

∫ T



G(t, s)K
(

s,u(s)
)

ds for all t ∈ [,T],

where T = , G(t, s) = t for all t, s ∈ [, ], and

K(s,x) =
cos s

 + x

for all s ∈ [, ] and x ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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Hence,M = max(s,x)∈[,] K(s,x) = K(, ) = .

Furthermore, it is obvious thatG satisfies condition (I), whereasK satisfies condition (II).

Now construct a Meir-Keeler function ψ :R+ →R
+ as

ψ(t) = t/( + t) if t ∈ [, ],

and

ψ(t) =  if t > .

Note that ψ is non-decreasing on [, ] and not continuous at t = .

Moreover, for each s,x ∈ [, ] and each y ∈R
+ with |x – y| ≤ , we have

∣

∣K(s,x) –K(s, y)
∣

∣ = cos s

∣

∣

∣

∣



 + x
–



 + y

∣

∣

∣

∣

≤
|x – y|

 + |x – y|
= ψ

(

|x – y|
)

,

so condition (III) is also satisfied.

Finally, define α : [, ]→ [, ] as α(t) = t/ for all t ∈ [, ]. It is not hard to check that α

verifies condition (IV), and consequently the integral equation has a unique solution u∗ in

A∪A, whereA = {u ∈ C([, ],R+) : u(s)≤  for all s ∈ [, ]} andA = {u ∈ C([, ],R+) :

u(s) ≥ s/ for all s ∈ [, ]}. In fact u∗ ∈ A ∩A, i.e., t/≤ u∗(t) ≤  for all t ∈ [, ].

Note that, according to our constructions, for each pair u, v ∈ C([, ],R+) with u ≤ 

and v ≥ α, we have d∞(fu, fv) ≤ φ(d∞(u, v)), where φ is the non-decreasing weaker Meir-

Keeler function defined as φ(t) = t/(t + ) if t ∈ [, ] and φ(t) =  if t > .

In particular, we can deduce the following approximation to the value of u∗(t) for each

t ∈ [, ]:

∣

∣

∣

∣

u∗(t) –
sin 


t

∣

∣

∣

∣

=

∣

∣

∣

∣

u∗(t) –

∫ 



t
cos s


ds

∣

∣

∣

∣

=

∣

∣

∣

∣

fu∗(t) –

∫ 



G(t, s)K(s, )ds

∣

∣

∣

∣

≤ φ
(

d∞
(

u∗, 
))

=
maxt∈[,]( – u∗(t))

 + maxt∈[,]( – u∗(t))

=
 – mint∈[,] u

∗(t)

 – mint∈[,] u∗(t)

≤



.

Note also that the contraction inequality d∞(fu, fv) ≤ φ(d∞(u, v)) does not follow when

the weakerMeir-Keeler function φ is replaced by our initialMeir-Keeler functionψ : Take,

for instance, the constant functions u =  and v = ; then u≤ , v≥ α, and

ψ
(

d∞(u, v)
)

= ψ() =  < d∞(fu, fv).

Remark  In Example  above, the inequality |K(s,x) –K(s, y)| ≤ ψ(|x– y|) is not globally
satisfied, i.e., there exist s,x ∈ [, ] and y ∈ R

+ such that |K(s,x) – K(s, y)| > ψ(|x – y|). In
fact, this happens for all x, y ∈R

+ with y > x+ . However, it is clear that for each s ∈ [, ],

and x, y ∈ R
+, one has |K(s,x) – K(s, y)| ≤ ψ(|x – y|) for all s ∈ [, ], and x, y ∈ R

+, where

ψ(t) = t/(t + ) for all t ∈R
+.

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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We conclude the paper with an example where conditions (I)-(IV) also hold (in particu-

lar, (III) for the functionψ defined above) but the inequality |K(s,x)–K(s, y)| ≤ ψ(|x–y|)
is not globally satisfied.

Example  We modify Example  as follows. Consider the integral equation

u(t) =

∫ T



G(t, s)K
(

s,u(s)
)

ds for all t ∈ [,T],

where T = , G(t, s) = t/ for all t, s ∈ [, ], and

K(s,x) = e–s/( + x) if s ∈ [, ],x ∈ [, ];

K(s,x) = e–s/
(

 + x/
)

if s ∈ [, ],x ∈ (, ];

K(s,x) = e–s/(x – ) if s ∈ [, ],x > .

Clearly K is continuous on [, ]×R
+. Moreover,M = , andG and K satisfy conditions

(I) and (II), respectively.

Now, construct a Meir-Keeler function ψ :R
+ →R

+ as ψ(t) = t/( + t) for all t ∈R
+.

By discussing the different cases, it is routine to show that for each s,x ∈ [, ] and each

y ∈ R
+ with |x – y| ≤ , we have

∣

∣K(s,x) –K(s, y)
∣

∣ ≤ ψ

(

|x – y|
)

,

so condition (III) is also satisfied.

Finally, define α : [, ]→ [, ] as α(t) = t/ for all t ∈ [, ]. Then, for each t ∈ [, ],

we have

∫ 



G(t, s)K(s, )ds =
t



∫ 



e–s

 +
√

ds = t

( – e–)

( +
√
)

>
t/


= α(t).

Now observe that α(s) <  for all s ∈ [, ], so K(s,α(s)) = e–s/( + α(s)). Hence, for each

t ∈ [, ],

∫ 



G(t, s)K
(

s,α(s)
)

ds =
t



∫ 



e–s

 + (s/)
ds =

t



∫ 



e–s

 + s
ds

≤
t



∫ 



ds = t ≤ .

Therefore α verifies condition (IV), and consequently the integral equation has a unique

solution u∗ in A ∪ A, where A = {u ∈ C([, ],R+) : u(s) ≤  for all s ∈ [, ]} and A =

{u ∈ C([, ],R+) : u(s) ≥ s/ for all s ∈ [, ]}. In fact u∗ ∈ A ∩A, i.e., t/ ≤ u∗(t) ≤ 

for all t ∈ [, ].

It is interesting to observe that the Meir-Keeler function ψ is continuous on R
+ but

condition (III) is not globally satisfied: Indeed, take x =  and y > /. Then, for each

http://www.fixedpointtheoryandapplications.com/content/2013/1/224
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s ∈ [, ], we obtain

K(s,x) –K(s, y) = e–s
(

 –


y – 

)

> e–s
y

 + y
.

Hence, K(, ) –K(, y) > ψ(y).
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