RESEARCH

Open Access

Fixed point theorems for cyclic self-maps involving weaker Meir-Keeler functions in complete metric spaces and applications

Hemant Kumar Nashine¹ and Salvador Romaguera^{2*}

*Correspondence: sromague@mat.upv.es ²Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain Full list of author information is available at the end of the article

cia, invo

Abstract

We obtain fixed point theorems for cyclic self-maps on complete metric spaces involving Meir-Keeler and weaker Meir-Keeler functions, respectively. In this way, we extend several well-known fixed point theorems and, in particular, improve some very recent results on weaker Meir-Keeler functions. Fixed point results for well-posed property and for limit shadowing property are also deduced. Finally, an application to the study of existence and uniqueness of solutions for a class of nonlinear integral equations is presented.

MSC: 47H10; 54H25; 54E50; 45G10

Keywords: fixed point; cyclic map; weaker Meir-Keeler function; complete metric space; integral equation

1 Introduction

In their paper [1], Kirk, Srinavasan and Veeramani started the fixed point theory for cyclic self-maps on (complete) metric spaces. In particular, they obtained, among others, cyclic versions of the Banach contraction principle [2], of the Boyd and Wong fixed point theorem [3] and of the Caristi fixed point theorem [4]. From then, several authors have contributed to the study of fixed point theorems and best proximity points for cyclic contractions (see, *e.g.*, [5–13]). Very recently, Chen [14] (see also [15]) introduced the notion of a weaker Meir-Keeler function and obtained some fixed point theorems for cyclic contractions involving weaker Meir-Keeler functions.

In this paper we obtain a fixed point theorem for cyclic self-maps on complete metric spaces involving Meir-Keeler functions and deduce a variant of it for weaker Meir-Keeler functions. In this way, we extend in several directions and improve, among others, the main fixed point theorem of Chen's paper [14, Theorem 3]. Some consequences are given after the main results. Fixed point results for well-posedness property and for limit shadowing property in complete metric spaces are also given. Finally, an application to the study of existence and uniqueness of solution for a class of nonlinear integral equations is presented.

We recall that a self-map f of a (non-empty) set X is called a cyclic map if there exists $m \in \mathbb{N}$ such that $X = \bigcup_{i=1}^{m} A_i$, with A_i non-empty and $f(A_i) \subseteq A_{i+1}$, $i = 1, \ldots, m$, where $A_{m+1} = A_1$. In this case, we say that $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to f.

© 2013 Nashine and Romaguera; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Fixed point results

In the sequel, the letters \mathbb{R} , \mathbb{R}^+ and \mathbb{N} will denote the set of real numbers, the set of nonnegative real numbers and the set of positive integer numbers, respectively.

Meir and Keeler proved in [16] that if *f* is a self-map of a complete metric space (X, d) satisfying the condition that for each $\varepsilon > 0$ there is $\delta > 0$ such that, for any $x, y \in X$, with $\varepsilon \le d(x, y) < \varepsilon + \delta$, we have $d(fx, fy) < \varepsilon$, then *f* has a unique fixed point $z \in X$ and $f^n x \to z$ for all $x \in X$.

This important result suggests the notion of a Meir-Keeler function:

A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a Meir-Keeler function if for each $\varepsilon > 0$, there exists $\delta > 0$ such that for t > 0 with $\varepsilon \le t < \varepsilon + \delta$, we have $\phi(t) < \varepsilon$.

Remark 1 It is obvious that if ϕ is a Meir-Keeler function, then $\phi(t) < t$ for all t > 0.

In [14], Chen introduced the following interesting generalization of the notion of a Meir-Keeler function.

Definition 1 [14, Definition 3] A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is called a weaker Meir-Keeler function if for each $\varepsilon > 0$, there exists $\delta > 0$ such that for t > 0 with $\varepsilon \le t < \varepsilon + \delta$, there exists $n_0 \in \mathbb{N}$ such that $\phi^{n_0}(t) < \varepsilon$.

Now let $\phi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$. According to Chen [14, Section 2], consider the following conditions for ϕ and φ , respectively.

- $(\phi_1) \phi(t) = 0 \Leftrightarrow t = 0;$
- (ϕ_2) for all t > 0, the sequence $\{\phi^n(t)\}_{n \in \mathbb{N}}$ is decreasing;
- (ϕ_3) for $t_n > 0$,

(a) if $\lim_{n\to\infty} t_n = \gamma > 0$, then $\lim_{n\to\infty} \phi(t_n) < \gamma$, and

- (b) if $\lim_{n\to\infty} t_n = 0$, then $\lim_{n\to\infty} \phi(t_n) = 0$;
- $(\varphi_1) \ \varphi$ is non-decreasing and continuous with $\varphi(t) = 0 \Leftrightarrow t = 0$;
- $(\varphi_2) \ \varphi$ is subadditive, that is, for every $t_1, t_2 \in \mathbb{R}^+$, $\varphi(t_1 + t_2) \le \varphi(t_1) + \varphi(t_2)$;
- (φ_3) for $t_n > 0$, $\lim_{n \to \infty} t_n = 0$ if and only if $\lim_{n \to \infty} \varphi(t_n) = 0$.

Definition 2 [14, Definition 4] Let (X, d) be a metric space. A self-map f of X is called a cyclic weaker $(\phi \circ \varphi)$ -contraction if there exist $m \in \mathbb{N}$, for which $X = \bigcup_{i=1}^{m} A_i$ (each A_i a nonempty closed set), and two functions $\phi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying conditions (ϕ_i) , i = 1, 2, 3, and (φ_i) , i = 1, 2, 3, respectively, with ϕ a weaker Meir-Keeler function such that

- (1) $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to f;
- (2) for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m,

$$\varphi(d(fx, fy)) \leq \phi(\varphi(d(x, y))),$$

where $A_{m+1} = A_1$.

By using the above concept, Chen established the following fixed point theorem.

Theorem 1 [14, Theorem 3] Let (X, d) be a complete metric space. Then every cyclic weaker $(\phi \circ \varphi)$ -contraction f of X has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$, where $X = \bigcup_{i=1}^{m} A_i$ is the cyclic representation of X with respect to f of Definition 2.

We shall establish fixed point theorems which improve in several directions the preceding theorem. To this end, we start by obtaining a fixed point theorem for cyclic contractions involving Meir-Keeler functions.

Theorem 2 Let f be a self-map of a complete metric space (X, d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m. If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a Meir-Keeler function such that for any $x \in A_i, y \in A_{i+1}, i = 1, 2, ..., m$,

 $d(fx, fy) \le \phi(d(x, y)),$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Proof Let $x_0 \in A_m$. For each $n \in \mathbb{N} \cup \{0\}$, put $x_n = f^n x_0$. Note that $x_{nm+i} \in A_i$ whenever $n \in \mathbb{N} \cup \{0\}$ and i = 1, 2, ..., m.

If $x_{n_0} = x_{n_0+1}$ for some n_0 , then x_n is a fixed point of f. So, we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. By Remark 1 and the contraction condition, it follows that $\{d(x_n, x_{n+1})\}_{n \in \mathbb{N}}$ is a strictly decreasing sequence in \mathbb{R}^+ , so there exists $r \in \mathbb{R}^+$ such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = r$. If r > 0, there is $n_0 \in \mathbb{N}$ such that $\phi(d(x_n, x_{n+1})) < r$ for all $n \ge n_0$ by our assumption that ϕ is a Meir-Keeler function. Hence, $d(x_{n+1}, x_{n+2}) < r$ for all $n \ge n_0$, a contradiction. Therefore $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$.

Next we prove that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (X, d). Choose an arbitrary $\varepsilon > 0$. Then, there is $\delta \in (0, \varepsilon)$ such that for t > 0 with $\varepsilon \le t < \varepsilon + \delta$, we have $\phi(t) < \varepsilon$. Let $k_0 \in \mathbb{N}$ be such that $d(x_k, x_{k+1}) < \delta/2$, $d(x_k, x_{k+m-1}) < \varepsilon/2$ and $d(x_k, x_{k+m+1}) < \delta/2$ for all $k \ge k_0$.

Take any $k > k_0$. Then k = nm + i for some $n \in \mathbb{N}$ and some $i \in \{1, 2, ..., m\}$. By induction we shall show that $d(x_{nm+i}, x_{(n+j)m+i+1}) < \varepsilon$ for all $j \in \mathbb{N}$.

Indeed, for j = 1, we have

$$d(x_{nm+i},x_{nm+i+m+1})=d(x_k,x_{k+m+1})<\frac{\delta}{2}<\varepsilon.$$

Now, assume that $d(x_{nm+i}, x_{(n+i)m+i+1}) < \varepsilon$ for some $j \in \mathbb{N}$. Thus

$$d(x_{nm+i-1}, x_{(n+j+1)m+i}) \le d(x_{nm+i-1}, x_{nm+i}) + d(x_{nm+i}, x_{(n+j)m+i+1})$$

$$+ d(x_{(n+j)m+i+1}, x_{(n+j+1)m+i})$$

$$< \frac{\delta}{2} + \varepsilon + \frac{\delta}{2} = \delta + \varepsilon.$$

If $\varepsilon \leq d(x_{nm+i-1}, x_{(n+j+1)m+i})$, then $\phi(d(x_{nm+i-1}, x_{(n+j+1)m+i})) < \varepsilon$, and, by the contraction condition,

 $d(x_{nm+i}, x_{(n+j+1)m+i+1}) < \varepsilon.$

If $d(x_{nm+i-1}, x_{(n+j+1)m+i}) < \varepsilon$, we deduce

```
d(x_{nm+i}, x_{(n+j+1)m+i+1}) \le \phi(d(x_{nm+i-1}, x_{(n+j+1)m+i}))
```

$$< d(x_{nm+i-1}, x_{(n+j+1)m+i}) < \varepsilon.$$

It immediately follows that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (X, d). Hence, there exists $z \in X$ such that $x_n \to z$. Since each A_i is closed, we deduce that $z \in \bigcap_{i=1}^m A_i$.

Moreover, z = fz. Indeed, let $i_0 \in \{1, ..., m\}$ be such that $fz \in A_{i_0+1}$. Then

$$\begin{aligned} d(z,fz) &\leq d(z,x_{nm+i_0}) + d(x_{nm+i_0},fz) \leq d(z,x_{nm+i_0}) + \phi \big(d(x_{nm+i_0-1},z) \big) \\ &< d(z,x_{nm+i_0}) + d(x_{nm+i_0-1},z), \end{aligned}$$

for all $n \in \mathbb{N}$. Since $\lim_{n\to\infty} d(z, x_{nm+i_0}) = \lim_{n\to\infty} d(z, x_{nm+i_0-1}) = 0$, it follows that d(z, fz) = 0, *i.e.*, z = fz.

Finally, let $u \in X$ with u = fu and $u \neq z$. Since $z \in \bigcap_{i=1}^{m} A_i$, we have $d(fz, fu) \leq \phi(d(z, u))$, so d(z, u) < d(z, u), a contradiction. Hence u = z, and thus z is the unique fixed point of f.

Next we analyze some relations between Chen's conditions (ϕ_i), i = 1, 2, 3.

Lemma 1 If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies $(\phi_3)(a)$, then ϕ is a Meir-Keeler function that satisfies conditions (ϕ_2) and $(\phi_3)(b)$.

Proof Suppose that ϕ is not a Meir-Keeler function. Then there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$ we can find a $t_n > 0$ with $\varepsilon \le t_n < \varepsilon + 1/n$ and $\phi(t_n) \ge \varepsilon$. Then $\lim_{n\to\infty} t_n = \varepsilon > 0$, but $\phi(t_n) \ge \varepsilon$ for all n, so condition $(\phi_3)(a)$ is not satisfied. We conclude that condition $(\phi_3)(a)$ implies that ϕ is a Meir-Keeler function. Hence, by Remark 1, $\phi(t) < t$ for all t > 0, so the sequence $\{\phi^n(t)\}_{n\in\mathbb{N}}$ is (strictly) decreasing for all t > 0, and thus condition (ϕ_2) is satisfied. Finally, if $\lim_{n\to\infty} t_n = 0$, with $t_n > 0$, we deduce that $\lim_{n\to\infty} \phi(t_n) = 0$ because $\phi(t_n) < t_n$ for all n, so condition $(\phi_3)(b)$ also holds.

Proposition 1 Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a function satisfying conditions (φ_1) and (φ_2) . If (X, d) is a metric space, then the function $p : X \times X \to \mathbb{R}^+$, given by

 $p(x,y) = \varphi(d(x,y)),$

is a metric on X. If, in addition, (X, d) is complete and φ satisfies condition (φ_3) , then the metric space (X, p) is complete.

Proof We first show that *p* is a metric on *X*. Let $x, y, z \in X$:

- Suppose p(x, y) = 0. Then $\varphi(d(x, y)) = 0$, so d(x, y) = 0 by (φ_1) . Hence x = y.
- Clearly, p(x, y) = p(y, x).
- Since $d(x, y) \le d(x, z) + d(z, y)$, and φ is non-decreasing and subadditive, we deduce that $\varphi(d(x, y)) \le \varphi(d(x, z)) + \varphi(d(z, y))$, *i.e.*, $p(x, y) \le p(x, z) + p(z, y)$.

Finally, suppose that (X, d) is complete with φ satisfying (φ_i) , i = 1, 2, 3. Let $\{x_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in (X, p). If $\{x_n\}_{n \in \mathbb{N}}$ is not a Cauchy sequence in (X, d), there exist $\varepsilon > 0$ and sequences $\{n_k\}_{k \in \mathbb{N}}$ and $\{m_k\}_{k \in \mathbb{N}}$ in \mathbb{N} such that $k < n_k < m_k < n_{k+1}$ and $d(x_{n_k}, x_{m_k}) \ge \varepsilon$ for all $k \in \mathbb{N}$. By (φ_3) , the sequence $\{p(x_{n_k}, x_{m_k})\}_{k \in \mathbb{N}}$ does not converge to zero, which contradicts the fact that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, p). Consequently, $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d) to some $x \in X$. From (φ_3) we deduce that $\{x_n\}_{n \in \mathbb{N}}$ converges to x in (X, p). Therefore (X, p) is a complete metric space.

Remark 2 Note that the continuity of φ is not used in the preceding proposition.

Now we easily deduce the following improvement of Chen's theorem.

Theorem 3 Let f be a self-map of a complete metric space (X, d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m. If $\phi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfy conditions $(\phi_3)(a)$ and (φ_i) , i = 1, 2, 3, respectively, and for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m, it follows

 $\varphi(d(fx, fy)) \leq \phi(\varphi(d(x, y))),$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Proof Define $p: X \times X \to \mathbb{R}^+$ by $p(x, y) = \varphi(d(x, y))$ for all $x, y \in X$. By Proposition 1, (X, p) is a complete metric space. Moreover, from the condition

 $\varphi(d(fx, fy)) \leq \phi(\varphi(d(x, y))),$

for all $x \in A_i$, $y \in A_{i+1}$, i = 1, ..., m, it follows that

$$p(fx,fy) = \varphi(d(fx,fy)) \le \phi(\varphi(d(x,y))) = \phi(p(x,y))$$

for all $x \in A_i$, $y \in A_{i+1}$, i = 1, ..., m.

Finally, since by Lemma 1 ϕ is a Meir-Keeler function, we can apply Theorem 2, so there exists $z \in \bigcap_{i=1}^{m} A_i$, which is the unique fixed point of f.

Note that the continuity of φ can be omitted in Theorem 3. Moreover, the condition that ϕ is a weaker Meir-Keeler function turns out to be irrelevant by virtue of Lemma 1. This fact suggests the question of obtaining a fixed point theorem for cyclic contractions involving explicitly weaker Meir-Keeler functions. In particular, it is natural to wonder if Theorem 2 remains valid when we replace 'Meir-Keeler function' by 'weaker Meir-Keeler function'. In the sequel we answer this question. First we give an easy example which shows that it has a negative answer in general, but the answer is positive whenever the weaker Meir-Keeler function is non-decreasing as Theorem 5 below shows.

Example 1 Let $X = \{0,1\}$ and let d be the discrete metric on X, *i.e.*, d(0,0) = d(1,1) = 0 and d(x, y) = 1 otherwise. Of course (X, d) is a complete metric space. Define $f : X \to X$ by f0 = 1 and f1 = 0, and consider the function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ defined by $\phi(t) = t/2$ for all $t \in [0,1)$, $\phi(1) = 2$ and $\phi(t) = 1/2$ for all t > 1. Clearly, ϕ is a weaker Meir-Keeler function (note, in particular, that $\phi^2(1) = 1/2 < 1$), but it is not a Meir-Keeler function because $\phi(1) > 1$. Finally, since d(f0, f1) = 1 and $\phi(d(0, 1)) = 2$, we deduce that $d(fx, fy) \le \phi(d(x, y))$ for all $x, y \in X$. However, f has no fixed point.

The function ϕ of the preceding example is not non-decreasing. This fact is not casual as Theorem 5 below shows.

Lemma 2 Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non-decreasing weaker Meir-Keeler function. Then the following hold:

(i) φ(t) < t for all t > 0;
(ii) lim_{n→∞} φⁿ(t) = 0 for all t > 0.

Proof (i) Suppose that there exists $t_0 > 0$ such that $t_0 \le \phi(t_0)$. Since ϕ is non-decreasing, we deduce that $\{\phi^n(t_0)\}_{n\in\mathbb{N}\cup\{0\}}$ is a non-decreasing sequence in \mathbb{R}^+ , so, in particular, $t_0 \le \phi^n(t_0)$ for all $n \in \mathbb{N}$. Finally, since ϕ is a weaker Meir-Keeler function, there exists $n_0 \in \mathbb{N}$ such that $\phi^{n_0}(t_0) < t_0$, which yields a contradiction.

(ii) Fix t > 0. By (i) the sequence $\{\phi^n(t)\}_{n \in \mathbb{N}}$ is (strictly) decreasing, so there exists $r \ge 0$ such that $r = \lim_{n \to \infty} \phi^n(t)$. If r > 0, there is $\delta > 0$ such that for s > 0 with $r \le s < r + \delta$, there exists $n_s \in \mathbb{N}$ with $\phi^{n_s}(s) < r$. Let $n_r \in \mathbb{N}$ be such that $r < \phi^n(t) < r + \delta$ for all $n \ge n_r$. Putting $s = \phi^{n_r}(t)$, we deduce that $\phi^{n_s}(s) < r$, *i.e.*, $\phi^{n_s+n_r}(t) < r$, a contradiction. We conclude that $\lim_{n\to\infty} \phi^n(t) = 0$.

Remark 3 Observe that, as a partial converse of the above lemma, if $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies $\lim_{n\to\infty} \phi^n(t) = 0$ for all t > 0, then ϕ is a weaker Meir-Keeler function. Indeed, otherwise, there exist $\varepsilon > 0$ and a sequence $\{t_n\}_{n\in\mathbb{N}}$ with $t_n \ge \varepsilon$ for all $n \in \mathbb{N}$, $\lim_{n\to\infty} t_n = \varepsilon$ but $\phi^k(t_n) \ge \varepsilon$ for all $k, n \in \mathbb{N}$, a contradiction.

We also will use the following cyclic extension of the celebrated Matkowski fixed point theorem [17, Theorem 1.2], where for a self-map f of a metric space (X, d), we define

$$M_d(x, y) = \max\left\{ d(x, y), d(x, fx), d(y, fy), \frac{1}{2} \left[d(x, fy) + d(fx, y) \right] \right\}$$

for all $x, y \in X$.

Theorem 4 (cf. [18, Corollary 2.14]) Let f be a self-map of a complete metric space (X, d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m. If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing function such that $\lim_{n\to\infty} \phi^n(t) = 0$ for all t > 0, and for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m,

$$d(fx, fy) \le \phi(M_d(x, y)),$$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Then from Lemma 2 and Theorem 4 we immediately deduce the following theorem.

Theorem 5 Let f be a self-map of a complete metric space (X,d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m. If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing weaker Meir-Keeler function such that for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m,

$$d(fx, fy) \le \phi(M_d(x, y)),$$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Corollary Let f be a self-map of a complete metric space (X, d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m.

If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing weaker Meir-Keeler function such that for any $x \in A_i$, $y \in A_{i+1}, i = 1, 2, ..., m$,

$$d(fx, fy) \leq \phi(d(x, y)),$$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Proof Since ϕ is non-decreasing, we deduce that for each $x, y \in X$, $\phi(d(x, y)) \leq \phi(M_d(x, y))$, so $d(fx, fy) \leq \phi(M_d(x, y))$. Hence, by Theorem 5, f has a unique fixed point z and $z \in \bigcap_{i=1}^{m} A_i$.

Theorem 5 can be generalized according to the style of Chen's theorem as follows.

Theorem 6 Let f be a self-map of a complete metric space (X, d), and let $X = \bigcup_{i=1}^{m} A_i$ be a cyclic representation of X with respect to f, with A_i non-empty and closed, i = 1, ..., m. If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing weaker Meir-Keeler function, $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a function satisfying conditions (φ_i) , i = 1, 2, 3, and for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m, it follows

 $\varphi(d(fx, fy)) \leq \phi(\varphi(M_d(x, y))),$

where $A_{m+1} = A_1$, then f has a unique fixed point z. Moreover, $z \in \bigcap_{i=1}^{m} A_i$.

Proof Construct the complete metric space (X, p) of Proposition 1, and observe that from the well-known fact that for $a_i \in \mathbb{R}^+$, i = 1, ..., k, one has $\phi(\max_i a_i) = \max_i \phi(a_i)$, one has

 $M_p(x, y) = \varphi \big(M_d(x, y) \big)$

for all $x, y \in X$. Therefore, for any $x \in A_i$, $y \in A_{i+1}$, i = 1, 2, ..., m, we deduce that

$$p(fx, fy) \leq \phi(M_p(x, y)).$$

Theorem 5 concludes the proof.

We finish this section with two examples illustrating Theorem 5 and its corollary.

Example 2 Let $A = \{n \in \mathbb{N} : n \text{ is even}\} \cup \{0\}$, $B = \{n \in \mathbb{N} : n \text{ is odd}\} \cup \{0\}$, $X = A \cup B = \mathbb{N}$, and let *d* be the complete metric on *X* defined by d(x, x) = 0 for all $x \in X$ and d(x, y) = x + y otherwise. Since *d* induces the discrete topology on *X*, we deduce that *A* and *B* are closed subsets of (X, d).

Let *f* be the self-map of *X* defined by f 0 = 0 and fx = x - 1 otherwise. It is clear that $X = A \cup B$ is a cyclic representation of *X* with respect to *f*.

Now we define the function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ by $\phi(0) = 0$, and $\phi(t) = n - 1$ if $t \in (n - 1, n]$, $n \in \mathbb{N}$. It is immediate to check that ϕ is a non-decreasing weaker Meir-Keeler function which is not a Meir-Keeler function.

Furthermore, we have:

• For x = 0 and y = 1, d(fx, fy) = d(0, 0) = 0.

• For x = 0 and $y = n \in \mathbb{N} \setminus \{1\}$,

$$d(fx, fy) = d(0, n-1) = n-1 = \phi(n) = \phi(d(x, y)).$$

• For $x = n \in A \setminus \{0\}$ and $y = m \in B \setminus \{0\}$,

$$d(fx, fy) = d(n-1, m-1) = n + m - 2 < n + m - 1$$
$$= \phi(n+m) = \phi(d(x, y)).$$

Consequently, the conditions of the corollary of Theorem 5 are verified; in fact, $z = 0 \in A \cap B$ is the unique fixed point of f.

Example 3 Let $A = [0, 1/2] \cup \{1\}$, B = [1, 2], $X = A \cup B$ and let *d* be the restriction to *X* of the Euclidean metric on \mathbb{R} . Obviously, (X, d) is a complete metric space (in fact, it is compact), with *A* and *B* closed subsets of (X, d).

Let *f* be the self-map of *X* defined by fx = 2 - x if $x \in A$, and fx = 1 if $x \in B$. It is clear that $X = A \cup B$ is a cyclic representation of *X* with respect to *f*.

Now we define the function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ by $\phi(t) = t/2$ if $t \in [0,1]$, and $\phi(t) = 1$ if t > 1. (Notice that ϕ is a non-decreasing weaker Meir-Keeler function which is not a Meir-Keeler function.)

Furthermore, we have:

- For $x = 1 \in A$ and $y \in B$, d(fx, fy) = d(1, 1) = 0.
- For $x = 1/2 \in A$ and $y \in B$,

$$d(fx, fy) = d(3/2, 1) = 1/2 = \phi(1) = \phi(d(x, fx)).$$

• For $x \in A \setminus \{1, 1/2\}$ and $y \in B$,

$$d(fx, fy) = d(2 - x, 1) = 1 - x \le 1 = \phi(2 - 2x) = \phi(d(x, fx)).$$

Consequently, the conditions of Theorem 5 are verified; in fact, $z = 1 \in A \cap B$ is the unique fixed point of f.

Finally, observe that the corollary of Theorem 5 cannot be applied in this case because for $x = 1/2 \in A$ and $y = 1 \in B$, we have

$$d(fx, fy) = 1/2 > \phi(1/2) = \phi(d(x, y)).$$

3 Applications to well-posedness and limit shadowing property of a fixed point problem

The notion of well-posedness of a fixed point problem has evoked much interest to several mathematicians, for example, De Blasi and Myjak [19], Lahiri and Das [20], Popa [21, 22] and others.

Definition 3 [19] Let f be a self-map of a metric space (X, d). The fixed point problem of f is said to be well posed if:

- (i) *f* has a unique fixed point $z \in X$;
- (ii) for any sequence $\{x_n\}_{n\in\mathbb{N}}$ in X such that $\lim_{n\to\infty} d(fx_n, x_n) = 0$, we have $\lim_{n\to\infty} d(x_n, z) = 0$.

Definition 4 [22] Let *f* be a self-map of a metric space (X, d). The fixed point problem of *f* is said to have limit shadowing property in *X* if for any sequence $\{x_n\}_{n \in \mathbb{N}}$ in *X* satisfying $\lim_{n\to\infty} d(fx_n, x_n) = 0$, it follows that there exists $z \in X$ such that $\lim_{n\to\infty} d(f^n z, x_n) = 0$.

Concerning the well-posedness and limit shadowing of the fixed point problem for a self-map of a complete metric space satisfying the conditions of Theorem 5, we have the following results.

Theorem 7 Let (X, d) be a complete metric space. If f is a self-map of X and $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing weaker Meir-Keeler function satisfying the conditions of Theorem 5, then the fixed point problem of f is well posed.

Proof Owing to Theorem 5, we know that *f* has a unique fixed point $z \in X$. Let $\{x_n\}$ be a sequence in *X* such that $\lim_{n\to\infty} d(x_n, fx_n) = 0$. Then

$$d(x_n, z) \le d(x_n, fx_n) + d(fx_n, fz)$$

$$\le d(x_n, fx_n)$$

$$+ \phi \left(\max \left\{ d(x_n, z), d(x_n, x_{n+1}), d(z, fz), \frac{d(x_n, fz) + d(z, x_{n+1})}{2} \right\} \right).$$

Passing to the limit as $n \to \infty$ in the above inequality, it follows that $\lim_{n\to\infty} d(x_n, z) = 0$.

Theorem 8 Let (X, d) be a complete metric space. If f is a self-map of X and $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing weaker Meir-Keeler function satisfying the conditions of Theorem 5, then f has the limit shadowing property.

Proof From Theorem 5, we know that f has a unique fixed point $z \in X$. Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in X such that $\lim_{n\to\infty} d(x_n, fx_n) = 0$. Then, as in the proof of the previous theorem,

$$d(x_n, z) \le d(x_n, fx_n) + \phi \left(\max \left\{ d(x_n, z), d(x_n, x_{n+1}), d(z, fz), \frac{d(x_n, fz) + d(z, x_{n+1})}{2} \right\} \right).$$

Passing to the limit as $n \to \infty$ in the above inequality, it follows that $\lim_{n\to\infty} d(x_n, f^n z) = d(x_n, z) = 0.$

4 An application to integral equations

In this section we apply Theorem 5 to study the existence and uniqueness of solutions for a class of nonlinear integral equations.

We consider the nonlinear integral equation

$$u(t) = \int_0^T G(t,s)K(s,u(s)) \, ds \quad \text{for all } t \in [0,T], \tag{1}$$

where $T > 0, K : [0, T] \times \mathbb{R}^+ \to \mathbb{R}^+$ and $G : [0, T] \times [0, T] \to \mathbb{R}^+$ are continuous functions, and $M := \max_{(s,x) \in [0,T]^2} K(s,x)$.

We shall suppose that the following four conditions are satisfied:

- (I) $\int_0^T G(t,s) ds \le 1$ for all $t \in [0, T]$.
- (II) $K(s, \cdot)$ is a non-increasing function for any fixed $s \in [0, 1]$, that is,

$$x, y \in \mathbb{R}^+, \quad x \ge y \implies K(s, x) \le K(s, y).$$

(III) There exists a Meir-Keeler function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ that is non-decreasing on [0, 2M] and such that

$$\left|K(s,x)-K(s,y)\right| \leq \psi(|x-y|)$$

for all $s, x \in [0, T]$ and $y \in \mathbb{R}^+$ with $|x - y| \le 2M$.

(IV) There exists a continuous function $\alpha : [0, T] \rightarrow [0, T]$ such that: For all $t \in [0, T]$, we have

$$\alpha(t) \leq \int_0^T G(t,s) K(s,T) \, ds$$

and

$$T \geq \int_0^T G(t,s)K(s,\alpha(s))\,ds.$$

Now denote by $C([0, T], \mathbb{R}^+)$ the set of non-negative real continuous functions on [0, T]. We endow $C([0, T], \mathbb{R}^+)$ with the supremum metric

$$d_{\infty}(u,v) = \max_{t\in[0,T]} |u(t)-v(t)|, \quad \text{for all } u,v \in C\big([0,T],\mathbb{R}^+\big).$$

It is well known that $(C([0, T], \mathbb{R}^+), d_{\infty})$ is a complete metric space.

Consider the self-map $f : C([0, T], \mathbb{R}^+) \to C([0, T], \mathbb{R}^+)$ defined by

$$fu(t) = \int_0^T G(t,s)K(s,u(s)) ds$$
 for all $t \in [0,T]$.

Clearly, u is a solution of (1) if and only if u is a fixed point of f.

In order to prove the existence of a (unique) fixed point of f, we construct the closed subsets A_1 and A_2 of $C([0, T], \mathbb{R}^+)$ as follows:

$$A_1 = \left\{ u \in C([0,T], \mathbb{R}^+) : u(s) \le T \text{ for all } s \in [0,T] \right\},\$$

and

$$A_2 = \left\{ u \in C([0,T],\mathbb{R}^+) : u \ge \alpha \right\}.$$

We shall prove that

$$f(A_1) \subseteq A_2 \quad \text{and} \quad f(A_2) \subseteq A_1.$$
 (2)

Let $u \in A_1$, that is,

$$u(s) \leq T$$
 for all $s \in [0, T]$.

Since $G(t,s) \ge 0$ for all $t, s \in [0, T]$, we deduce from (II) and (IV) that

$$\int_0^T G(t,s)K(s,u(s))\,ds \ge \int_0^T G(t,s)K(s,T)\,ds \ge \alpha(t)$$

for all $t \in [0, T]$. Then we have $fu \in A_2$.

Similarly, let $u \in A_2$, that is,

$$u(s) \ge \alpha(s)$$
 for all $s \in [0, T]$.

Again, from (II) and (IV), we deduce that

$$\int_0^T G(t,s)K(s,u(s))\,ds \leq \int_0^T G(t,s)K(s,\alpha(s))\,ds \leq T$$

for all $t \in [0, T]$. Then we have $fu \in A_1$. Thus, we have shown that (2) holds.

Hence, if $X := A_1 \cup A_2$, we have that X is closed in $C([0, T], \mathbb{R}^+)$, so the metric space (X, d_{∞}) is complete.

Moreover, $X := A_1 \cup A_2$ is a cyclic representation of the restriction of f with respect to X, which will be also denoted by f.

Now construct the function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ given by

$$\phi(t) = \psi(t) \quad \text{if } t \in [0, 2M],$$

and

$$\phi(t) = 2M \quad \text{if } t > 2M.$$

Since ψ is a Meir-Keeler function that is non-decreasing on [0, 2M], it immediately follows that ϕ is a non-decreasing weaker Meir-Keeler function. Note also that ϕ is not continuous at t = 2M (in fact, it is not a Meir-Keeler function).

Finally we shall show that for each $u \in A_1$ and $v \in A_2$, one has $d_{\infty}(fu, fv) \le \phi(d_{\infty}(u, v))$. To this end, let $u \in A_1$ and $v \in A_2$. Since $u(s) \in [0, T]$ for each $s \in [0, T]$, we have that

$$fu(t) = \int_0^T G(t,s)K(s,u(s)) ds$$
$$\leq M \int_0^T G(t,s) ds \leq M$$

for all $t \in [0, T]$.

Similarly, since $v \ge \alpha$ and $\alpha(s) \in [0, T]$ for each $s \in [0, T]$, we deduce that

$$f\nu(t) \leq \int_0^T G(t,s)K(s,\alpha(s)) \, ds \leq M$$

for all $t \in [0, T]$. Therefore

$$\left|fu(t) - f(v(t)\right| \le fu(t) + fv(t) \le 2M$$

for all $t \in [0, T]$. So,

$$d_{\infty}(fu, fv) \leq 2M.$$

If $d_{\infty}(u, v) > 2M$, we have $\phi(d_{\infty}(u, v)) = 2M$, so

$$d_{\infty}(fu, fv) \leq \phi(d_{\infty}(u, v)).$$

If $d_{\infty}(u, v) \leq 2M$, then $|u(s) - v(s)| \leq 2M$ for all $s \in [0, T]$, so by (III), we deduce that for each $t \in [0, T]$,

$$\begin{aligned} \left|fu(t) - f(v(t)\right| &\leq \int_0^T G(t,s) \left|K\left(s,u(s)\right) - K\left(s,v(s)\right)\right| ds \\ &\leq \int_0^T G(t,s) \psi\left(\left|u(s) - v(s)\right|\right) ds \\ &\leq \psi\left(d_{\infty}(u,v)\right) \int_0^T G(t,s) ds \\ &\leq \psi\left(d_{\infty}(u,v)\right) \\ &= \phi\left(d_{\infty}(u,v)\right). \end{aligned}$$

Consequently, by the corollary of Theorem 5, f has a unique fixed point $u^* \in A_1 \cap A_2$, that is, $u^* \in C$ is the unique solution to (1) in $A_1 \cup A_2$.

Remark 4 The first author studied in [9, Section 3] a variant of the problem discussed above for the case that ψ is the non-decreasing Meir-Keeler function given by $\psi(t) = (\ln(t^2 + 1))^{1/2}$ for all $t \in \mathbb{R}^+$.

The next example illustrates the preceding development.

Example 4 Consider the integral equation

$$u(t) = \int_0^T G(t,s)K(s,u(s)) \, ds \quad \text{for all } t \in [0,T],$$

where T = 1, G(t, s) = t for all $t, s \in [0, 1]$, and

$$K(s,x) = \frac{\cos s}{1+x}$$

for all $s \in [0, 1]$ and $x \ge 0$.

Hence, $M = \max_{(s,x) \in [0,1]^2} K(s,x) = K(0,0) = 1$. Furthermore, it is obvious that *G* satisfies condition (I), whereas *K* satisfies condition (II). Now construct a Meir-Keeler function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ as

$$\psi(t) = t/(1+t)$$
 if $t \in [0,2]$,

and

 $\psi(t) = 0 \quad \text{if } t > 2.$

Note that ψ is non-decreasing on [0, 2] and not continuous at t = 2. Moreover, for each $s, x \in [0, 1]$ and each $y \in \mathbb{R}^+$ with $|x - y| \le 2$, we have

$$|K(s,x) - K(s,y)| = \cos s \left| \frac{1}{1+x} - \frac{1}{1+y} \right| \le \frac{|x-y|}{1+|x-y|} = \psi(|x-y|),$$

so condition (III) is also satisfied.

Finally, define $\alpha : [0,1] \rightarrow [0,1]$ as $\alpha(t) = t/3$ for all $t \in [0,1]$. It is not hard to check that α verifies condition (IV), and consequently the integral equation has a unique solution u^* in $A_1 \cup A_2$, where $A_1 = \{u \in C([0,1], \mathbb{R}^+) : u(s) \le 1 \text{ for all } s \in [0,1]\}$ and $A_2 = \{u \in C([0,1], \mathbb{R}^+) : u(s) \ge s/3 \text{ for all } s \in [0,1]\}$. In fact $u^* \in A_1 \cap A_2$, *i.e.*, $t/3 \le u^*(t) \le 1$ for all $t \in [0,1]$.

Note that, according to our constructions, for each pair $u, v \in C([0,1], \mathbb{R}^+)$ with $u \leq 1$ and $v \geq \alpha$, we have $d_{\infty}(fu, fv) \leq \phi(d_{\infty}(u, v))$, where ϕ is the non-decreasing weaker Meir-Keeler function defined as $\phi(t) = t/(t+1)$ if $t \in [0,2]$ and $\phi(t) = 2$ if t > 2.

In particular, we can deduce the following approximation to the value of $u^*(t)$ for each $t \in [0, 1]$:

$$\begin{aligned} \left| u^*(t) - \frac{\sin 1}{2} t \right| &= \left| u^*(t) - \int_0^1 t \frac{\cos s}{2} \, ds \right| = \left| f u^*(t) - \int_0^1 G(t,s) K(s,1) \, ds \right| \\ &\leq \phi \left(d_\infty \left(u^*, 1 \right) \right) = \frac{\max_{t \in [0,1]} (1 - u^*(t))}{1 + \max_{t \in [0,1]} (1 - u^*(t))} \\ &= \frac{1 - \min_{t \in [0,1]} u^*(t)}{2 - \min_{t \in [0,1]} u^*(t)} \\ &\leq \frac{1}{2}. \end{aligned}$$

Note also that the contraction inequality $d_{\infty}(fu, fv) \leq \phi(d_{\infty}(u, v))$ does not follow when the weaker Meir-Keeler function ϕ is replaced by our initial Meir-Keeler function ψ : Take, for instance, the constant functions u = 0 and v = 3; then $u \leq 1$, $v \geq \alpha$, and

$$\psi(d_{\infty}(u,v)) = \psi(3) = 0 < d_{\infty}(fu,fv).$$

Remark 5 In Example 4 above, the inequality $|K(s,x) - K(s,y)| \le \psi(|x-y|)$ is not globally satisfied, *i.e.*, there exist $s, x \in [0,1]$ and $y \in \mathbb{R}^+$ such that $|K(s,x) - K(s,y)| > \psi(|x-y|)$. In fact, this happens for all $x, y \in \mathbb{R}^+$ with y > x + 2. However, it is clear that for each $s \in [0,1]$, and $x, y \in \mathbb{R}^+$, one has $|K(s,x) - K(s,y)| \le \psi_1(|x-y|)$ for all $s \in [0,1]$, and $x, y \in \mathbb{R}^+$, where $\psi_1(t) = t/(t+1)$ for all $t \in \mathbb{R}^+$.

We conclude the paper with an example where conditions (I)-(IV) also hold (in particular, (III) for the function ψ_1 defined above) but the inequality $|K(s,x) - K(s,y)| \le \psi_1(|x-y|)$ is not globally satisfied.

Example 5 We modify Example 4 as follows. Consider the integral equation

$$u(t) = \int_0^T G(t,s)K(s,u(s)) \, ds \quad \text{for all } t \in [0,T],$$

where T = 2, G(t, s) = t/2 for all $t, s \in [0, 2]$, and

$$K(s,x) = e^{-s}/(1+x) \quad \text{if } s \in [0,2], x \in [0,1];$$

$$K(s,x) = e^{-s}/(1+x^{1/2}) \quad \text{if } s \in [0,2], x \in (1,4];$$

$$K(s,x) = e^{-s}/(4x-13) \quad \text{if } s \in [0,2], x > 4.$$

Clearly *K* is continuous on $[0, 2] \times \mathbb{R}^+$. Moreover, M = 1, and *G* and *K* satisfy conditions (I) and (II), respectively.

Now, construct a Meir-Keeler function $\psi_1 : \mathbb{R}^+ \to \mathbb{R}^+$ as $\psi_1(t) = t/(1+t)$ for all $t \in \mathbb{R}^+$. By discussing the different cases, it is routine to show that for each $s, x \in [0, 2]$ and each $y \in \mathbb{R}^+$ with $|x - y| \le 2$, we have

$$\left|K(s,x)-K(s,y)\right| \leq \psi_1(|x-y|),$$

so condition (III) is also satisfied.

Finally, define $\alpha : [0,2] \rightarrow [0,2]$ as $\alpha(t) = 6t/35$ for all $t \in [0,2]$. Then, for each $t \in [0,2]$, we have

$$\int_0^2 G(t,s)K(s,2)\,ds = \frac{t}{2}\int_0^2 \frac{e^{-s}}{1+\sqrt{2}}\,ds = t\frac{(1-e^{-2})}{2(1+\sqrt{2})} > \frac{6t/7}{5} = \alpha(t).$$

Now observe that $\alpha(s) < 1$ for all $s \in [0, 2]$, so $K(s, \alpha(s)) = e^{-s}/(1 + \alpha(s))$. Hence, for each $t \in [0, 2]$,

$$\int_0^2 G(t,s)K(s,\alpha(s)) \, ds = \frac{t}{2} \int_0^2 \frac{e^{-s}}{1 + (6s/35)} \, ds = \frac{t}{2} \int_0^2 \frac{35e^{-s}}{35 + 6s} \, ds$$
$$\leq \frac{t}{2} \int_0^2 \, ds = t \leq 2.$$

Therefore α verifies condition (IV), and consequently the integral equation has a unique solution u^* in $A_1 \cup A_2$, where $A_1 = \{u \in C([0,1], \mathbb{R}^+) : u(s) \le 2 \text{ for all } s \in [0,2]\}$ and $A_2 = \{u \in C([0,1], \mathbb{R}^+) : u(s) \ge 6s/35 \text{ for all } s \in [0,2]\}$. In fact $u^* \in A_1 \cap A_2$, *i.e.*, $6t/35 \le u^*(t) \le 2$ for all $t \in [0,2]$.

It is interesting to observe that the Meir-Keeler function ψ_1 is continuous on \mathbb{R}^+ but condition (III) is not globally satisfied: Indeed, take x = 0 and y > 14/3. Then, for each

 $s \in [0,1]$, we obtain

$$K(s,x) - K(s,y) = e^{-s} \left(1 - \frac{1}{4y - 13}\right) > e^{-s} \frac{y}{1 + y}$$

Hence, $K(0, 0) - K(0, y) > \psi_1(y)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The two authors contributed equally in writing this article. They read and approved the final manuscript.

Author details

¹ Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud, Raipur, Chhattisgarh 492101, India. ²Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.

Acknowledgements

The second author thanks for the support of the Ministry of Economy and Competitiveness of Spain under grant MTM2012-37894-C02-01, and the Universitat Politècnica de València, grant PAID-06-12-SP20120471.

Received: 7 May 2013 Accepted: 5 August 2013 Published: 22 August 2013

References

- 1. Kirk, WA, Srinavasan, PS, Veeramani, P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 4, 79-89 (2003)
- 2. Banach, S: Sur les operations dans les ensembles abstraits et leur application aux equations integerales. Fundam. Math. **3**, 133-181 (1922)
- 3. Boyd, DW, Wong, SW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)
- 4. Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. **215**, 241-251 (1976)
- Di Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008)
- 6. Karapinar, E: Fixed point theory for cyclic weaker ϕ -contraction. Appl. Math. Lett. 24, 822-825 (2011)
- Karapinar, E, Sadarangani, K: Corrigendum to "Fixed point theory for cyclic weaker *φ*-contraction" [Appl. Math. Lett. Vol. 24(6), 822-825.]. Appl. Math. Lett. 25, 1582-1584 (2012)
- Karapinar, E, Sadarangani, K: Fixed point theory for cyclic (φ φ)-contractions. Fixed Point Theory Appl. 2011, 69 (2011)
- 9. Nahsine, HK: Cyclic generalized ψ -weakly contractive mappings and fixed point results with applications to integral equations. Nonlinear Anal. **75**, 6160-6169 (2012)
- 10. Păcurar, M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory 12, 419-428 (2011)
- 11. Păcurar, M, Rus, IA: Fixed point theory for cyclic φ-contractions. Nonlinear Anal. 72, 2683-2693 (2010)
- 12. Piatek, B: On cyclic Meir-Keeler contractions in metric spaces. Nonlinear Anal. 74, 35-40 (2011)
- Rus, IA: Cyclic representations and fixed points. Ann. "Tiberiu Popoviciu" Sem. Funct. Equ. Approx. Convexity 3, 171-178 (2005)
- 14. Chen, CM: Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces. Fixed Point Theory Appl. 2012, 17 (2012)
- 15. Chen, CM: Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 41 (2012)
- 16. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
- 17. Matkowski, J: Integrable solutions of functional equations. Diss. Math. 127, 1-68 (1975)
- Karapinar, E, Romaguera, S, Tas, K: Fixed points for cyclic orbital generalized contractions on complete metric spaces. Cent. Eur. J. Math. 11, 552-560 (2013)
- 19. De Blasi, FS, Myjak, J: Sur la porosité des contractions sans point fixed. C. R. Math. Acad. Sci. Paris 308, 51-54 (1989)
- 20. Lahiri, BK, Das, P: Well-posedness and porosity of certain classes of operators. Demonstr. Math. 38, 170-176 (2005)
- Popa, V: Well-posedness of fixed point problems in orbitally complete metric spaces. Stud. Cercet. ştiinţ. Univ. Bacău, Ser. Mat. Supplement. Proceedings of ICMI 45, Bacau, Sept. 18-20 (2006) 16, 209-214 (2006)
- 22. Popa, VV: Well-posedness of fixed point problems in compact metric spaces. Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz. **60**, 1-4 (2008)

doi:10.1186/1687-1812-2013-224

Cite this article as: Nashine and Romaguera: Fixed point theorems for cyclic self-maps involving weaker Meir-Keeler functions in complete metric spaces and applications. *Fixed Point Theory and Applications* 2013 2013:224.