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Abstract 

Multiplications in many of the DSP applications are implemented by fixed-width multipliers primarily due to its low 
hardware complexity, less operation delay time and reduced power consumption. This paper presents an error 
compensation method for a fixed-width multiplier that receives two n-bit inputs and produces n-bit product. For the 
generation of error compensation bias, Booth encoder outputs have been employed. In order to compensate for 
truncation error and to generate the error compensation bias efficiently, truncated bits are divided into two groups and 
the carry estimation is done through exhaustive simulations. The simulation results reveal that the proposed method 
reduces the truncation error significantly compared with the direct-truncated multiplier with modest hardware overhead. 
Results further validate that the overall truncation error is significantly reduced as compared with the other existing 
method. 
 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

    In many DSP applications, truncation of (n-1) least-significant bits of the resultant (2n-1)-bit product due to the 
internal word length is essential, to reduce the hardware complexity, operation delay time and power consumption.  
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This can be done by removing half of the adder cells required for computing the (n-1) least-significant columns 
which in effect reduces the area by approximately 50%. But it leads to huge truncation error.  In the post truncation 
method, after doing all the operations, (n-1) LSBs are truncated. This is the most accurate method, but it results in 
increased computation time and more hardware area. In order to address this problem, several fixed-width multiplier 
schemes have been proposed. In fixed-width multipliers, the adder cells required for the addition of (n-1) LSBs are 
removed and appropriate error compensation biases are obtained and added to the retained adder cells. In this 
manner, the truncation error can be significantly reduced. 

  Various approaches to reduce the hardware and to improve the accuracy of fixed-width multipliers have been 
proposed in literature. Sunder S Kidambi et al (1996) proposed a technique in which a constant bias is computed and 
added to the retained adder cells. This technique is advantageous in terms of bias generation. However it has huge 
truncation error since the bias obtained is constant and does not adapt to the input data. Adaptive schemes proposed 
by Jer Min Jou et al (1999), Lan-Da Van et al (2000) and Chih-Chyau Yang et al (2005)  achieve  higher accuracy 
while comparing to the constant scheme, since the  compensation bias adjusts adaptively, according to the input data 
though  at  the cost of a minimum hardware overhead. Jer Min Jou et al (1999) have proposed Low-error fixed-
width multipliers for sign-magnitude and two's- complement formats. Here the authors have presented a general 
methodology for designing a Low-error two's-complement fixed-width multiplier. Authors also have investigated on 
choosing the generalized index. Lan-Da Van and Chih-Chyau Yang (2005) have proposed a more generalized 
method to design Low-error fixed-width two's-complement multipliers for different cases. Several techniques for the 
reduction of the truncation error of fixed-width modified Booth multipliers have been proposed by Shyh-Jye Jou et 
al (2000), Meng_Hung Tsai et al (2003), Kyung-Ju Cho et al (2004) and Jiun-Ping Wang et al (2011). Shyh-Jye Jou 
et al (2000) have proposed a technique in which statistical and linear regression analysis is used to generate the 
compensation bias and the authors have extended the approach to modified Booth multiplier. Meng HungTsai et al 
(2003) have proposed a technique in which statistical and linear regression analysis is employed for generating the 
compensation bias. However the truncation errors are found to be still large. Kyung-Ju Cho et al (2004) have 
proposed an efficient method for fixed-width modified Booth multiplier.  Here, the authors have used Booth encoder 
outputs for the generation of compensation bias.  A technique which is highly accurate has been proposed by Jiun-
Ping Wang et al (2011). In this proposal, an error compensation circuit, which could make the error distribution 
symmetric to and also centralize in zero error, for reducing both the mean error and mean-square errors 
simultaneously has been realized. 

    The modified Booth encoding technique has been employed in several multipliers, for the main reason that it 
reduces the number of partial products by a factor of 2. This paper presents a method for the generation of error 
compensation bias for fixed-width modified Booth multiplier. For efficient generation of compensation bias, Booth 
encoder outputs have been employed. Truncated bits are divided into the major group and minor group. Estimation 
of the carry is done through exhaustive simulation. 

The paper is organized as follows. In Section II, a brief review of modified Booth encoding is presented. Section 
III presents the proposed error compensation technique. Section IV presents the results and performance comparison 
of  the  proposed  method with the existing techniques. Section V concludes the paper. 

2. Fundamentals of Modified Booth encoding 

Modified Booth multiplier is one of the most popular and widely used multiplier because it realizes the reduction in 
the number of partial products by a factor of 2. Consider the multiplication of two n-bit signed numbers X and Y, 
where X is the n-bit multiplicand and Y is the n-bit multiplier. X and Y in two's complement form can be 
represented as 

 

 
                                                                                                                                (1) 
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In Modified Booth encoding, a 0 must be added to the right of Y, i,e . The encoding is done by scanning the 
bits from right to left and grouping the bits into triplets Three bits of the multiplier y2i+1y2iy2i-1 are mapped   to y i

1 

and the corresponding operation is shown in table 1. Y can be expressed as, 
 

                Y=  
 

(2) 
     
      Table 1. BOOTH ENCODING TABLE 
 
 

y2i+1 y2i y2i-1 operation y i
1  

 
 

 
 

 
 

 
 

 
000   0 0 0 0 0 1 0 

001 +X 1 1 0 0 0 0 

010 +X 1 1 0 0 0 0 

011 +2X 2 0 1 0 0 0 

100 -2X -2 0 1 1 0 1 

101   -X -1 1 0 1 0 1 

110   -X -1 1 0 1 0 1 

111    0  0 0 0 1 1 0 

 
According to the encoded result shown in table 1, one of the multiple multiplicands -2X, -X, 0, X, 2X is chosen 

for the generation of each partial product PPi. Operation 2X can be implemented by shifting X left by one bit. For 
the negation operation, each bit of X is inverted and a binary value of 1 is added as the correction bit to the LSB of 
the next partial product row. The correction bit indicates whether the partial product row is positive (cori=0) or 
negative (cori=1). Fig. 1 shows the partial product matrix of an 8-bit modified Booth  multiplier   

   

 
 

Fig.1 Partial product matrix of 8-bit modified Booth multiplier 
 
   The Partial product matrix of the modified Booth multiplier can be divided into most significant part, MP and 
least significant part, LP as shown in Fig. 2. For the efficient generation of the compensation bias, LP is further 
divided into LPmajor and LPminor. While LPmajor indicates the most significant column of the LP, and LPminor indicates 
the remaining columns in LP. In the direct-truncated multiplier, truncation is done by directly removing adder cells 
required for LP resulting in a very large truncation error. In fixed-width multipliers, after removing the adder cells 
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required for LP, a compensation circuit is added that estimates the carry value from LP to MP in order to reduce the 
truncation error.  In this technique, the adder cells for computing LPminor are removed and the carry generated from 
LPminor to LPmajor is estimated using a simple circuit. This estimated carry value is added to LPmajor  and  the carry 
obtained from this addition is the desired compensation bias. Fig. 2 shows the partial product matrix indicating LP 
and MP. 
 

 
 

Fig 2 Partial product matrix showing MP and LP 
 
(2n-1)-bit product can be expressed as  
 
 P= SUM_MP + SUM_LP                                                                                                                                         (3) 
 
 Where SUM_LP  can be defined as  
               
SUM_LP  =  SUM_LPmajor + SUM_LPminor                                                                                                               (4) 

 
SUM_LP1     can  be defined  as 

 
SUM_LP1  =    SUM_LP x                                                                                                                                                                                                             (5) 
 
SUM_ LP1

major  and  SUM_ LP1
minor  can be expressed as 

 
SUM_ LP1

major                                                                                               (6)    
 
SUM_LP1

minor=        
                                    
                                      +         
                                   
                                                                                                                          (7) 
 
3. Proposed error compensation method 
 

In this method, the Booth encoder outputs are used for the generation of the compensation bias since the 
generated partial products depend on the Booth encoder outputs. In this method, the relation between the carry value 
generated from LPminor to LPmajor and Booth encoder outputs has been explored through exhaustive simulation. Then, 
a simple compensation bias circuit has been derived that accepts the Booth encoder outputs as the inputs and 
generates the approximate carry value. The carry value so obtained is added to LPmajor and the carry obtained from 
this addition stage is the desired compensation bias.  

The carry may be generated from LP to the MP for any of the following operations X, 2X, -X, -2X. To identify 
whether  the encoded bit yi

1  has resulted in any operation, we can define 
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yi
11   =  1   if  yi

1  ≠ 0 
 0   if  yi

1 =  0                                                                                                                                                 (8) 
      

For example, if the coded number y2
1 y1

1y0
1 is one of the four values 100, 200,   and , then y2

11 y1
11y0

11 

will be 100. Table 2 shows the actual carry values generated for 8-bit modified Booth multiplier from LPminor to 
LPmajor for all the possible values of y2

11 y1
11y0

11 which are obtained using exhaustive simulation. y3
11   is not 

considered since the partial product corresponding to this bit is not included in LPminor. From table 2, it can be seen 
that considering y2

11y1
11y0

11 = 000, the number of cases for which actual carry is 0 is 1024, and therefore 
approximate carry value for this case can be approximated as 0. Similarly the carry value can be approximated as 0 
for all the cases except for y2

11y1
11y0

11 = 111 where carry value is 1. To simplify the bias circuit, for the case   y2
11 

y1
11y0

11 = 011 & 110, carry value is approximated as 0. A single carry signal can be used to represent the 
approximate carry value from LPminor to LPmajor   and this carry can be represented as  

 
                  

Table 2.  ACTUAL CARRIES FROM  LPminor to LPmajor FOR  8-BIT 

 
 
 
 

 

 

 

 

 

 

 

 

    

 This can be implemented by a simple three input AND gate. This approximate carry signal is added to LPmajor and 
the resulting carry signals from this step are added as a compensation bias to MP. Table 3 shows the actual carry 
values generated from LPminor to LPmajor for all the possible values of y3

11y2
11 y1

11y0
11 which are obtained using 

exhaustive simulation for a 10-bit modified Booth multiplier. y4
11 is not considered due to the fact that the partial 

product corresponding to this bit is not included in LPminor.  
              
            Table 3. ACTUAL CARRIES FROM  LPminor to LPmajor FOR 10-BIT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y2
11y1

11y0
11 # of cases # of cases 

with carry 0 
# of cases 
with carry 1 

# of cases 
with carry 2 

# of cases 
with carry 3 

000 1024 1024 0 0 0 
001 3072 3024 48 0 0 
010 3072 2880 192 0 0 
011 9216 4576 4592 48 0 
100 3072 2304 768 0 0 
101 9216 4768 4400 48 0 
110 9216 4480 4544 192 0 
111 27648 4416 18368 4816 48 

y3
11y2

11y1
11y0

11 # of cases # of cases 
With carry 0 

# of cases 
With carry 1 

# of cases 
With carry 2 

# of cases 
With carry 3 

# of cases 
With carry 4 

0000 4096 4096 0 0 0 0 
0001 12288 12240 48 0 0 0 
0010 12288 12096 192 0 0 0 
0011 36864 18400 18416 48 0 0 
0100 12288 11520 768 0 0 0 
0101 36864 18592 18224 48 0 0 
0110 36864 18304 18368 192 0 0 
0111 110592 17344 75456 17744 48 0 
1000 12288 9216 3072 0 0 0 
1001 36864 19360 17456 48 0 0 
1010 36864 19072 17600 192 0 0 
1011 110592 17664 74048 18832 48 0 
1100 36864 17920 18176 768 0 0 
1101 110592 18592 72768 19184 48 0 
1110 110592 17664 73472 19264 192 0 
1111 331776 12960 153344 151680 13744 48 
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From Table 3, it can be observed that if y3

11y2
11y1

11y0
11 = 0000, the number of cases for which actual carry is 0 is 

4096 and therefore the carry value for this case can be approximated as 0. Similarly the carry value can be 
approximated as 0 for all the cases except for y3

11y2
11y1

11y0
11 = 0111, 1011, 1101, 1110 and 1111 where carry value 

is 1. To simplify the bias circuit, for the combinations y3
11y2

11y1
11y0

11 =0011, 0101, 0110, and 1100 carry value is 
approximated as 0 even though the number of cases for which the carry value is 1 or 0 are equal.. A single carry 
signal can be used to represent the approximate carry value from LPminor to LPmajor  From table 3, using Karnaugh 
map simplification, approximate carry signal can be obtained. 
 
Table  4.  ACTUAL  CARRIES  FROM  LPminor to LPmajor FOR 12-BIT 
 
 

y4
11 y3

11y2
11y1

11y0
11 # of cases # of cases 

with carry 
0 

# of cases with 
carry 1 

# of cases 
with carry 2 

# of cases 
with carry 3 

# of cases 
with carry 4 

# of cases 
with carry 5 

00000 16384 16384 0 0 0 0 0 
00001 49152 49104 48 0 0 0 0 
00010 49152 48960 192 0 0 0 0 
00011 147456 73696 73712 48 0 0 0 
00100 49152 48384 768 0 0 0 0 
00101 147456 73888 73520 48 0 0 0 
00110 147456 73600 73664 192 0 0 0 
00111 442368 69440 303040 69840 48 0 0 
01000 49152 46080 3072 0 0 0 0 
01001 147456 74656 72752 48 0 0 0 
01010 147456 74368 72896 192 0 0 0 
01011 442368 70656 299840 71824 48 0 0 
01100 147456 73216 73472 768 0 0 0 
01101 442368 71136 299456 71728 48 0 0 
01110 442368 69376 301824 70976 192 0 0 
01111 1327104 46994 617024 615360 47678 48 0 
10000 49152 36864 12288 0 0 0 0 
10001 147456 77728 69680 48 0 0 0 
10010 147456 77440 69824 192 0 0 0 
10011 442368 71936 294208 76176 48 0 0 
10100 147456 76288 70400 768 0 0 0 
10101 442368 75552 287552 79216 48 0 0 
10110 442368 70656 296192 75328 192 0 0 
10111 1327104 55040 612128 603936 55952 48 0 
11000 147456 71680 72704 3072 0 0 0 
11001 442368 74656 291648 76016 48 0 0 
11010 442368 74368 291072 76736 192 0 0 
11011 1327104 52960 612544 607040 54512 48 0 
11100 442368 70656 293888 77056 768 0 0 
11101 1327104 54944 611456 604992 55664 48 0 
11110 1327104 51840 613376 606720 54976 192 0 
11111 3981312 30656 835968 2243488 839680 31472 48 

 
 
   Table 4 shows the actual carry values generated from LPminor to LPmajor for each combination of y4

11 y3
11y2

11y1
11y0

11 

obtained by exhaustive simulation for a 12-bit modified Booth multiplier. Yet again in this case, y5
11 is not 

considered since LPminor does not depend on this bit. For of y4
11 y3

11y2
11y1

11y0
11 =00000 combination, since the actual 

carry is 0 for all the cases, carry value for this combination can be approximated as 0. Carry value can be 
approximated as 0 for y4

11y3
11y2

11y1
11y0

11 =00001, 00010, 00100, 01000 and 10000. For the combinations, 00011, 
00101, 00110, 01001, 01010, 01100, 10001, 10010, 10100, 11000 carry value can be approximated as 0. For the 
remaining combinations, carry value can be approximated as 1 except for the combination 11111, where the number 
of cases for which carry value is 2 is 2243488. Hence two number of carry signals are required to represent the 
approximate carry value from LPminor to LPmajor. Again using table 4, with k-map simplification, approximate carry 
signals can be obtained. 
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4.  Simulation Results and Discussions 
 

The accuracy of different fixed-width multipliers can be measured in terms of the various performance 
parameters like maximum absolute error, average error and mean-square error. 
 

 
 

 
 

                                                           (10)       
 
Where  and represent the output of standard and fixed- width multiplier respectively. The maximum absolute 
error indicates the maximum value of for all input combinations. is the average error and  
represents  mean-square error. Table 5 and 6 show the simulation results. 
                
 
   Table 5. COMPARISION OF ERRORS (8-Bit) 
 
 

Fixed Width 
Multiplier(n=8) 

 
  

 
 

 

DTM        512       192.25          20775.75 
FWM [Meng 
HungTsai et al 
(2003)] 

       298       73.51          8566.25 

FWM [Kyung-Ju 
Cho et al (2004)] 

       128      38.24         2220.5 

Proposed        192      78.12         8012.12 
 
 

    Table 6. COMPARISION OF  ERRORS  (10-Bit) 
 
 

Fixed Width 
Multiplier(n=10) 

 

 

 
 

 
 

 

DTM      2560         960.25 
FWM [Meng 
HungTsai et al 
(2003)] 

     1398        313.628 

FWM [Kyung-Ju 
Cho et al (2004)] 

     768        164.733  

Proposed      1024       328.12  
 
 

DTM represents direct-truncated multiplier and FWM denotes Fixed-Width multiplier. Table 5 and 6 show the 
simulation results of direct truncated multiplier, Fixed-width multipliers and the proposed technique in terms of 
maximum absolute error, mean error and mean-square error for the justified comparison. The results depict that the 
proposed technique has reduced errors compared to direct truncated and the existing technique with considerably 
smaller hardware overhead. In many DSP and multimedia applications, the final output is obtained by adding a 
series of products instead of a single multiplication operation. Under such situations, truncation errors will be 
accumulated which results in a large error.  Hence for a multiplier to be accurate, it should have small mean and 
mean-square error. 

 
   Fig.3a, 3b and 3c show the plot comparison of maximum absolute error, mean error and mean-square error 
respectively incurred by the proposed technique against existing multiplier for 8-bit multipliers. Fig. 4a, 4b and 4c 
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represent the corresponding results for 10-bit.multipliers From the plot, it can be concluded that the proposed 
method has less error compared to direct- truncated and the existing technique. 
 

 
                    Fig. 3a                                                           Fig. 3b                                                           Fig. 3c 

Fig.3 Comparison f maximum absolute error, mean error and mean-square error for 8 bit. 
 

 
 
                   Fig. 4a                                             Fig .4b                                                       Fig. 4c 

Fig.4 Comparison of maximum absolute error, mean error and mean-square error for 10 bit. 
 
5.  Conclusion 
 

In this paper, a simple error compensation method for the modified Booth multiplier is proposed. For efficient 
generation of the compensation bias, the Booth encoder outputs have been used. The truncated bits have been 
divided into major group and the minor group. The estimation of the carry is done by exhaustive simulation .The 
results validate significant error reduction capabilities, in terms of the maximum absolute error, the mean error and 
the mean-square error compared with direct truncated and the other existing technique. 
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