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In this paper, the flow of Jeffrey fluid between two torsionally oscillating disks is studied.
This problem is solved in two cases. The first case is one disk oscillating and the other is at rest and
the second case is two disks are oscillating with same frequency and speed but with phase difference
of 180°. We found that the radial-axial flow has a mean steady component and a fluctuating com-

ponent of frequency twice that of the oscillating disk. When the Jeffrey parameter A tends to zero,
the results coincide with the corresponding Newtonian case obtained by Rosenblat.
© 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction

The study of torsional vibrations of break disks is very impor-
tant especially in applications where high power transmission
and high speed are present. The model of flow between tor-
sional oscillating disks may be observed in the turbine—cou-
pling—generator rotor system and frictionless bearings. The
torsional oscillation of a plate in Newtonian fluids has been
discussed by Rosenblat [1]. He obtained the solution by
expanding velocity components and the pressure in powers
of the amplitude of oscillation of the plate and showed that
the solution is highly convergent within the boundary layer.
He has also discussed the case when the fluid is confined
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between two torsionally oscillating plates [1]. Similar problems
in Reiner—Rivlin fluids were discussed by Srivastava [2,3]. In
1959, Rosenblat examined the flow between torsionally oscil-
lating disks in the two cases: (i) one disk oscillating and the
other at rest and (ii) both disks oscillating with the same fre-
quency and speed, but with a phase difference of 180°. He
developed and investigated the transverse and radial-axial
flows for both small and large Reynold numbers. The theoret-
ical analysis has been extended by Rajeswari [4] for Reiner—
Rivlin fluids. She found that the radial-axial flow has a mean
steady component and a fluctuating component of frequency
twice that of the oscillating disk, a result similar to that for
the Newtonian case obtained by Rosenblat. Bhatnagar and
Rajeswari [4] and Srivastava have studied the same problem
for a special case of the Rivlin—Ericksen second order fluid.
Frater [5] has discussed only the first case of oldroyd fluid.
Bhatnagar and Rajeswari have found that a reversal of the
direction of the steady secondary flow is a characteristic fea-
ture of the Rivlin—Ericksen fluid and pointed out that it is
always possible to find a value of the Reynolds number above
which the flow is in reversed direction. The flow of an

2090-4479 © 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
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Nomenclature
radial velocity component v kinematic viscosity
v transverse velocity component R Reynolds number
w axial velocity component n frequency
p pressure Q angular speed
P density 9 amplitude
I dynamic viscosity
A Jeffrey parameter

incompressible visco-elastic Maxwell fluid between two paral-
lel infinite disks executing small torsional oscillations in their
own plane is discussed by Verma [6]. He found that with the
increase of relaxation time parameter the elastic effects domi-
nate in the region away from the oscillating disk and for small
relaxation time, viscous effects permeate the entire flow.

Verma et al. [7] studied the flow induced in a viscous incom-
pressible fluid from small torsional oscillations of an imperme-
able infinite disk bounded coaxially by another stationary
naturally permeable infinite disk. He found that the steady
radial velocity increases in magnitude with an increase of Rey-
nolds number. Raghupathi Rao et al. [8] investigated the flow
of a viscous fluid confined between two torsionally oscillating
disks oscillating with the same frequency, but rotating with dif-
ferent, angular speeds about axes normal to the disks but not
coincident. Sharma et al., studied the flow of an incompressible
second-order fluid due to torsional oscillations of two infinite
disks. They found that the effect of second order forces
increases the amplitude of the oscillation of the axial velocity.
The unsteady MHD flow of an incompressible viscous
electrically conducting fluid contained between two torsionally
oscillating eccentric disks has been investigated by Ragupathi
Rao. Torsional oscillation of an infinite disk in a viscous liquid
bounded by a porous medium fully saturated with the liquid
was discussed by Srivastava. He found that the depth of pen-
etration of the flow in the porous medium is proportional to
the square root of the permeability of the medium.

Srivastava et al. discussed the flow due to torsional oscil-
lations of infinite disks at a small distance from the
unbounded porous medium when the entire space between
the disks and the porous medium is filled with a second
grade fluid. The problem of the flow of an incompressible
non-Newtonian second order fluid between two enclosed tor-
sionally oscillating disks has been discussed by Singh et al..
The effects of transducer compliance on transient stress
measurements in torsional flow of a viscoelastic fluid are
investigated by Dutcher et al. [9]. Pawan kumar Sharma
et al. [10] investigated the unsteady laminar flow of an
incompressible viscous electrically conducting fluid in a por-
ous medium fully saturated with the liquid and bounded by
torsionally oscillating disk in the presence of a transverse
magnetic field.

Nadeem et al. [11] studied the effect of Jeffrey fluid with
variable viscosity in the form of a well known Reynolds model
of viscosity in an asymmetric channel. Akbar et al. [12] dis-
cussed a non-Newtonian fluid model for a blood flow through
a tapered artery with a stenosis by assuming blood as Jeffrey
fluid. Nadeem et al. [13] discussed the closed form analytical
and numerical solutions of the peristaltic flow of a Jeffrey fluid

in an inclined tube with different viscosities and with different
wave shapes. Non-Newtonian fluid model for blood flow
through a tapered artery with a stenosis and variable viscosity
by modeling blood as Jeffrey fluid has been studied by Akbar
et al. [14]. The effect of temperature-dependent viscosity on the
Peristaltic flow of Jeffrey fluid through the gap between two
co-axial horizontal tubes was analyzed by Akbar et al. [15].
Akbar et al. [16] studied a non-Newtonian fluid model for
blood flow through a tapered artery with a stenosis by assum-
ing blood as Jeffrey fluid. Hayat et al. [17] examined the flow of
an incompressible Jeffrey fluid over a stretching surface. Hayat
et al. [18] described the mixed convection stagnation point flow
and heat transfer of a Jeffrey fluid toward a stretching surface.
The boundary layer stretched flow of a Jeffrey fluid subject to
the convective boundary conditions was investigated by Hayat
et al. [19].

In this chapter, the flow of Jeffrey fluid between two tor-
sionally oscillating disks is studied. This problem is solved in
two cases. The first case is one disk oscillating and the other
is at rest and the second case is two disks are oscillating with
same frequency and speed but with phase difference of 180°.
We found that the radial-axial flow has a mean steady compo-
nent and a fluctuating component of frequency twice that of
the oscillating disk. When the Jeffrey parameter A tends to
zero, the results coincide with the corresponding Newtonian
case obtained by Rosenblat.

2. Mathematical formulation

We consider a body of a Jeffrey fluid bounded by two Infinite
parallel plane disks which are represented by the plane z = 0
and z = d in a cylindrical polar co-ordinate system. The disks
perform torsional oscillations about the axis » = 0. If u, v and
w be respectively the radial, transverse and axial velocity com-
ponents, p be the pressure, p be the density, u is the dynamic
viscosity, 4 is the ratio of relaxation to retardation time and
v is the kinematic viscosity.

The constitutive equations for Jeffrey fluid (Vajravelu et al.,
[20]) are

T=_PI+S
u a'
S=17 s [7 + A27]

where P is pressure, S is extra stress tensor, 7 is the stress, 7 is
identity tensor, u is dynamic viscosity, 4, is the ratio of relax-
ation time and retardation times, 4, is the retardation time, y is
rate of strain tensor and the dots over the quantities denote
differentiation. The quantities y and } are defined by
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7=Vaq+ (Vg

5=25=25+@ v

where g the fluid velocity is vector and 4 is the material derivative.

In the present investigation we assume that 4, = A and 4, = 0.
The equation of motion of a Jeffrey fluid in cylindrical

polar coordinate system is

Ou  Ou Ou v? 1 op

o e T e T T T o

v {8214 10u u 82u}

il v atam, W
@_._ @+ @_ﬁ.ﬂf_v @ l@_l @ (2)
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@_’_ @_’_ @7_1@ v OZW’+1@+& (3)
a "o T "ar T pOz 1+4+.|0rr r or 0972
while the equation of continuity is
10 ow

3. Solution of the problem

3.1. Case (1): One disk oscillating

We consider the disk at z = 0 to perform torsional oscillations
of frequency ‘n’ and angular speed Q, while the disk at z = d
remains at rest.

Q\’[ 9F _dg | dg
jg+2(— ——F2| ==

and i+ (ﬂ) {g y dy] R(1+2) dy? ®
nd* .

where R = — s the Reynolds number of the flow. 9)

The boundary conditions (5) become

F:g—f:O, g=1 ony=0

F=%=¢g=0 =1 (10)

=5 8= ony =

Eq. (3) reduces to
2 2
OF (9) F6F_8p 2 O°F (1

2 &y g_x, = 97
ot dy 9Jy R(1+ 1) 9)?

n

and serves merely to determine the axial pressure gradient.

3.1.1. Transverse component

On the assumption that the amplitude of the oscillations

namely £ is small, retaining only the first order terms in £,

we have for the transverse velocity component

Pe ) _

Fsz(lJrA)g(y)—O } (12)
with g(0) =1 and g(1) =0

The solution of (12) is

g(y):sinh [VIR(1+ A)(1 = y)] (13)

sinh \/iR(1 + 2)

Eq. (13) leads to, in real notation,

{cos,/%R(l—i—l)ycosh IR(14+ A)(2 — y) —cos /A R(1 + 2)(2 — y) cosh %R(l—ki)y] cos nt

, 7+{sin LR(1 + A)ysinh /L R(1 + 2)(2 = ») — sin \ /L R(1 + 4)(2 — y) sinh ;R(lﬂ)y} sin nt (14)

rQ cosh y/2R(1 + Z) — cos \/2R(1 + 2)

The boundary conditions for the problem are
v=rQe" onz=0
} )

onz=d

u=w=>0,

u=v=w=20

Eqgs. (1)-(5) can be satisfied by writing

V= 100g(), y ()
W= —Zd%zF(y, 1), y=: t=nt (6)

b= Q*dp(y,7) + Q%K (7)

On substitution from (6), Egs. (1) and (2) become

PFE - (Q\| (OF\ O’F 2
o () |(35) ~25e] - 6)
1 oF
=t raE o 7

Expanding this for small values of the Reynolds number,
we have

v R(1+ )
5= y){ [1 f%y@f — 1237 +8y+8)]

cosnt+§(l+/l)y(2—y)sinnt} + 0(R%) (15)

With amplitude approximate

R*(1+2)

V] 1_180);(2—)/)(2—2)/+y2):| (16)

@:(l_y)

and phase angle is

Expanding this for small values of the Reynolds number
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_sin IR(1 + A)ysinh /A R(1 + 2)(2 — y) —sin /L R(1 + A)(2 — y) sinh /& (1 + A)y
Tan™ 2 2 2 2 (17)
cos /Z(1 4 A)ycosh /214 7)(2 — y) —cos \/Z(1 + A)(2 — y) cosh /R (1 + Z)y
41 The solution of (25) for the mean steady component under the
1 —_ —
Tan _6R(1 A2 y)} (18) boundary conditions (27) is found to be

From the Eq. (15), the skin friction for small Reynolds number

R on the disk z = 0 is
L —wrQ R} (1+2)
(1 + 5 cosnt

Td(1+4)

(o
14+4\0z/ .,

and on the disk z = d is
wo(OvV\  _ wQ
1+4\0z)_, d(1+2)

where R — 0, the shearing forces are equal on the two
disks. As R increases, the shear stress on the rotating disk
increases in magnitude, while that on the stationary disk it
decreases.

R(1+7) ]
fsmm

(19)

1 77R2(1 +Z)2 cosnl+R(1 +4) sinnt
360 6

(20)

3.1.2. Steady radial-axial component

Neglecting the terms of order (%)2, we have from (7) for the

radial-axial component of velocity.

OF 2 1 OF
— (ge™) = —k - 21
oo~ &) O+ R 57 o 1)
From (13) we obtain
w2 1 [coshs(l—y)—coss(l—y)
(ge)" = 2 { coshs — cos s
1 [cosh(l +i)s(1 —y) — 1]
_ 1T 22
2{ cosh(l +1i)s—1 ¢ (22)
where s = \/2R(1 + 1).
This suggests that there are solutions of the form
F(y,7) = f(y) + h(y)e*" (23)
k(‘L’) = k() + k](:‘ZiI (24)
and substitution of (22)—(24) into (21) yield
2 d&f 1 [coshs(l —y) —coss(1 —y)
CALEARY . (25)
5% dy’ 2 coshs — cos s
2dh  dh . 1[cosh(l+i)s(1—y)—1 (26)
s dy? ) cosh(1 +i)s — 1
The boundary conditions are
j:ﬁ:O ony=0andy= (27)
h=h =0 ony=0andy=1

1 1 .
f) = m{4 (sinhs(1 — y) + sins(1 — y))
f%(sinhsqt sins)(1 — 3y* +23°)
s
1 1
+Z(coshs+coss)y(1 —2y+)?) — Eyz(l *y)} (28)
ﬁ( )7; _l(coss(l— )+COSS(1— ))
T " coshs —coss 4 Y Y

+2%(sinhs+ sins)(1 —y)y

+%(coshs+coss)(l —4y 4 3)%) —%y(Z - 3y)} (29)

with ky = % {23‘ + s(cosh s 4 coss) — 2(sinh s + sin s)}

coshs — coss

Here s = /2R(1 + 2)

The results with 2 = 0 corresponding to the Newtonian case
are in agreement with those of Rosenblat.

3.1.3. Fluctuating radial-axial flow

The solution of (26) for the fluctuating radial-axial flow under
the boundary conditions (27) is found to be

4i [cosh os — 1]asf[2 — 2 cosh s + Pssinh fs]h(y)
= cosh fsy[o sinh fs(cosh as — 1) + affs(1 — cosh as cosh fis)

+psinh as(cosh fis — 1)]
+ sinh fy[a(l — cosh sff)(cosh so. — 1)
+p sinh sf(sa cosh so — sinh sa)] (30)
~+asinh sf(1 — cosh sa) + saff(cosh s coshsf — 1)
—psinh sa(l — cosh sf + sf sinh 5f3)
+ysp[Bsinh sasinh sf + o(1 — cosh sB)(1 + cosh sa)]
+psinhsa(l — y)[2 — 2cosh sf + sf sinh sf]

1 ,
75(1—}—0

whereoo =1+iand =

3.2. Case (II): Two disks are oscillating

We now consider the case when both the disks are oscillating
with the same frequency and angular speed but in opposite
directions.

The boundary conditions in the present case of the problem
are
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v=rQe™ onz=0

—rQe™

u=w=>0,
u=w=0, v= onz=d
3.2.1. Transverse component

The Eqgs. (1)-(4) can again be transformed by the choice of the
velocity field (6) in a similar way and for the transverse flow,
we have

d2

CE_iR(1+4)g=0 (31)
dy

The boundary conditions are
g(0) =1, g(1) = -1

The solution now is

Expanding this for small values of Reynolds number, we get

Tan™ éR(l + v =) (37)
The skin friction is given by

7 ()0 = 15 (5

= ;ﬁ‘iﬁ [(1 + RZS‘;;")Z) cosnt — XA sin (38)

For any value of R, the shearing forces are equal on the two
disks. When R increases, the shear stress on the two disks in
magnitude also increases.

3.2.2. Steady radial-axial component

Neglecting the terms of order (%)2, we have from (7) for the

radial-axial component of velocity

() = sinh \/iR(1 + 2)y, — sinh y/ir(1 + 1)y (32)
g = sinh /iR(1 + 1) PF o | OF
oo (ge")" = —k(z) Y RO a7 (39)
The real part of (32) is )
{cos\/g(wx)ycosh\/g(l+A)(z_y)—cos B(1+7)(2 - y)cosh /2 (1 + 2)y
—cos/2(1+2)(y — 1)cosh y /2 (1 + 2)(1 + ) +cosy /2 (1 + 2)(y + 1) cosh /2 (1 + A)(y — 1)] cos nt
+[—sin,/§(l+ﬂ)ysinh BA+2)Q2—y)+siny /21 +A)(y+1)sin/E(1+2)y (33)

Vv

—sin /2 (1 + 2)(y — 1) sinh \/2(1 + 2)(y + 1) +sin y /2 (1 + 2)(y + 1) sinh §(1+A")(y—1)]sinnt

O cosh \/2R(1 + ) — cos \/2R(1 + A)

Expanding this for small values of the Reynolds number, we
have

From (32) we have

2 5 cosh$+coss s s
= = h-(1 —2y) —cos=z(1-2
N R(1+ ) , ls()le coshs —coss [COS 2( y) COSZ( y)]
—=0=2)q [1 ————y(1 =»)(1 + 3y —3)y7)|cosnt coshs(1+i)—1 s _
rQ 360 —2 = |cosh= (1 +i)(1 —2y) — 1]e™
R coshs(l+1i)—1 [COS 2( +i) ) ]e
+gr(1-p) sinnt} +0(R?) (34) (40)
Hence the amplitude is given by where s = \/2R(1 + 1)
v RY(1+ )2 Substitution of (23), (24) and (40) into (39) yields
e | e R T I o
rQ 360 2df cosh$ + cos3 w31 _n Si1_»
. s>y " coshs— coss [COS =) —cos5(1-2)
and phase angle is (1)
[fsin R4+ A)ysinh /21 +2)(2—y) +siny /2 (1 +2)(y + 1) sin \/2(1 + 1)y
- —sin/R(1+ 2)(y — 1)sinh /R (1 + 2)(y+ 1) +sin /R (1 + 2)(y + 1) sinh /(1 + 2)(y - 1)} )
[cos B(1+ A)ycosh /2 (1 +2)(2 —y) —cos/Z(1+24)(2 —y)cosh /2 (1 + A)y

RA+A)(y—1)cosh /(1 +7)(y+1) +cos/2(1+2)(y+ 1)coshy/&(1+ 1) (y — 1)}
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Z=d (Rest/ Oscillating Disk)

=0 (Oscillating Disk)

Figure 1

Physical model.
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Figure 2 Variation of amplitude of transverse velocity % with
Reynolds number R for fixed value of 4 = 1.

-0.2 L s s s
0 0.2 0.4 0.6 0.8 1

y

Figure 3  Variation of amplitude of transverse velocity % with
Jeffrey parameter A for fixed value of R = 20.

2dh  _.dh

coshs(14-i)
s dy’? ldy

-1 s .
_kl *W COShi(l +l)(1 72)/) — 1:|

(42)
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0.2}
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Figure 4 Variation of steady radial velocity /' with Reynolds
number R for fixed value of 4 = 1.
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fl
Figure 5 Variation of steady radial velocity /' with Jeffrey
parameter A for fixed value of R = 20.

The solution of (41) for the mean steady component under the
boundary condition (27) is found to be

) 1 cosh$+cos$ 5 ) s 2. .8 1. . s
j(})_im{@y —3y%) coshifgsmhi +;smh§(172y)

K s 2
+ycosh% +(25° -3 <cos% -5 sini)

2
1. s s 1. s
+;sm§(l—2}f)+ycos§—;sm§} (43)
1 [cosh$ + cos? s 2 .8
= [—2—2|26(* — h- —=sinh-
f 2{coshs—cos}{ & y)<cos 2 5o 2)
s s N s 2 .8
+cosh2 cosh2(1 2y) + 6(y y)(cos2 Ssm2>
s K
+cos§—cos§(1 —Zy)} (44)
Here s = \/2R(1 + 4).

The results with 4 = 0 corresponding to the Newtonian
case are in agreement with those of Rosenblat [1].
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Figure 6 Variation of steady radial velocity f' with Reynolds
number R for fixed value of 4 = 1.
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Figure 7 Variation of steady radial velocity f' with Jeffrey

parameter A for fixed value of R = 30.

3.2.3. Fluctuating radial-axial flow

The solution of (42) for the fluctuating radial-axial flow under
the boundary conditions (27) is found to be

os [coshsor— 1
w1 2 — 2cosh fs inh B
i[cosh%—l]h(y)[ cosh fis+ Bssinh fis]

= (ocs cosh% —2sinh %) [cosh fs(1 — y) — cosh fis]
. . Lso sot S0
+ (ﬁs sinh fis smh? + ocscosh? —as cosh? cosh ﬁs)
x (1—-2y)— sinh%(l —2y)[2—2cosh fs+ fssinh fs]  (45)

Here s = /2R(1+ ) and 0. =1+ i.

Figure 8 Variation of amplitude of transverse velocity % with
Reynolds number R for fixed value of 4 = 1.

— A=0.1

- A=05

A=1

0.2}

Figure 9 Variation of amplitude of transverse velocity % with
Jeffrey parameter / for fixed value of R = 20.

4. Results and discussion

In this chapter, the steady laminar flow of incompressible Jeffrey
fluid between two torsionally oscillating disks is studied and the
transverse velocity, amplitude of transverse velocity and steady
radial velocity are numerically computed for certain combina-
tion of the parameters and the results are presented graphically
in Figs. 2-9. The Figs. 2-5 are drawn for one disk oscillating and
the Figs. 6-9 are drawn for two disks oscillating (see Fig. 1).

Fig. 2 is plotted to see the influence of Reynolds number R
on the amplitude of transverse velocity % for fixed value of
A = 1. It is observed that, the amplitude of transverse velocity
is decreasing with the increase of Reynolds number. When R
tends to zero, the velocity profile is linear in y with zero-phase
angle.
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Fig. 3 is sketched to see the effect of Jeffrey parameter 1 on
amplitude of transverse velocity % for fixed value of R = 20. It
is observed that, the amplitude of transverse velocity is
decreasing with the increase of Jeffrey parameter. When A
tends to zero, the velocity profile is linear in y with zero-phase
angle.

Fig. 4 is plotted to find the influence of Reynolds number R
on steady radial velocity f! for fixed value of 4 = 1. It is
observed that the magnitude of steady radial velocity is
increasing with the increase of Reynolds number. The radial
velocity is positive in the region 0 < y < 0.38 and is negative
in the region 0.38 <y < 1.

Fig. 5 is sketched to find the influence of Jeffrey parameter
J on steady radial velocity /! for fixed value of R = 20. It is
observed that the magnitude of steady radial velocity is
increasing with the increase of Reynolds number. The radial
velocity is positive in the region 0 < y < 0.38 and is negative
in the region 0.38 <y < 1.

Fig. 6 is plotted to find the influence of Reynolds number R
on steady radial velocity f! for fixed value of 4 = 1. It is
observed that the magnitude of steady radial velocity is mini-
mum in the middle region and maximum in the regions near
the disks and the magnitude of steady radial velocity is increas-
ing with the increase of Reynolds number.

Fig. 7 is sketched to find the effect of Jeffrey parameter 4 on
steady radial velocity /' for fixed value of R = 20. It is
observed that the magnitude of steady radial velocity is mini-
mum in the middle region and maximum in the regions near
the disks and the magnitude of steady radial velocity is increas-
ing with the increase of Reynolds number.

Fig. 8 is plotted to see the influence of Reynolds number R
on amplitude of transverse velocity % for fixed value of 4 = 1.
It is observed that, the amplitude of transverse velocity is
increasing with the increase of Reynolds number. The ampli-
tude is zero at the center of the region.

Fig. 9 is sketched to see the effect of Jeffrey parameter 4 on
amplitude of transverse velocity % for fixed value of R = 30. It
is observed that, the amplitude of transverse velocity is increas-
ing with the increase of Reynolds number. The amplitude is
zero at the centre of the region.

5. Conclusions

1. Due to the oscillations of the lower disk, the radial velocity
of the fluid is becoming positive in the lower half of the
region (0 < y < 0.5) and its maximum value increases with
the increase in the Reynolds number. The same behavior is
observed with variation in Jeffrey parameter 1 also.

2. In the case of two disks oscillating, the radial velocity is
becoming negative at the central line between the disks
and maximum radial velocities occur nearer to the disks.
These velocities increase with increasing Jeffrey parameter
A

3. The amplitude of transverse velocity decreases with increas-
ing Reynolds number or Jeffrey parameter 4 in the case of
one disk oscillating.

4. When two disks are oscillating, the amplitude of transverse
velocity becomes zero in the middle of the region sur-
rounded by oscillating disks.
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