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Fractional-order PID (FOPID) controllers have been used extensively in many control applications to achieve robust con-

trol performance. To implement these controllers, curve fitting approximation techniques are widely employed to obtain

integer-order approximation of FOPID. The most popular and widely used approximation techniques include the Oustaloup,

Matsuda and Cheraff approaches. However, these methods are unable to achieve the best approximation due to the limi-

tation in the desired frequency range. Thus, this paper proposes a simple curve fitting based integer-order approximation

method for a fractional-order integrator/differentiator using frequency response. The advantage of this technique is that it

is simple and can fit the entire desired frequency range. Simulation results in the frequency domain show that the proposed

approach produces better parameter approximation for the desired frequency range compared with the Oustaloup, refined

Oustaloup and Matsuda techniques. Furthermore, time domain and stability analyses also validate the frequency domain

results.

Keywords: curve fitting, fractional-order PID controller, frequency response, integer-order approximation, Oustaloup ap-

proximation, Matsuda approximation.

1. Introduction

In industrial process control applications, PID controllers

are most widely employed for low-level control (Bingi

et al., 2018a). This is because they are simple to design

and easy to tune, and their implementation is seamless

(Pachauri et al., 2018; Bingi et al., 2018b; Shah and

Agashe, 2016). The fractional-order PID (FOPID or

PIλDµ) controller is a variant of PID realized through

fractional-ordering of the integral and derivative actions

(Monje et al., 2010; Xue et al., 2007; Shah and Agashe,

2016; Xue, 2017). A key feature of PIλDµ is that it

is robust to system parameter variations and provides

∗Corresponding author

stable performance, especially for higher-order systems.

Moreover, the controller can easily attain the iso-damping

property (Monje et al., 2010; Shah and Agashe, 2016).

It should be noted that seven different configurations

can be achieved with the PIλDµ controller (i.e., P, PI,

PIλ, PD, PDµ, PID and PIλDµ) (Xue et al., 2007; Xue,

2017; Monje et al., 2010; Kishore et al., 2018; Shah and

Agashe, 2016). However, a key issue with the practical

realization or equivalent circuit implementation of such

controllers in a finite-dimensional integer-order system is

the approximation of the fractional-order parameters. This

has generated a lot of interest among researchers recently.

For effective approximation of a fractional-order

integrator and differentiator in the PIλDµ controller,
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researchers have proposed several frequency domain

approximation techniques (Krishna, 2011; Vinagre et al.,

2000; Li et al., 2017). Despite these proposals, it is

very difficult to determine the best method. This is

because, while considering certain conditions such as

the order of approximation or the accuracy of frequency

and time responses, some of these methods can be more

advantageous over others (de Oliveira Valério, 2005;

Djouambi et al., 2007; Deniz et al., 2016).

Among the frequency domain approximation

techniques available in the literature, the Oustaloup

approximation is most popular and widely used. It

is based on a recursive distribution of poles and

zeros in the desired frequency range using frequency

response fitting (Merrikh-Bayat, 2012). In certain

situations, the Oustaloup approximation allows fitting

the entire frequency range of interest (Oustaloup

et al., 2000; Monje et al., 2010). Thus, to overcome

this drawback, a modified or refined version has been

proposed (Merrikh-Bayat, 2012; Xue et al., 2006; Meng

and Xue, 2012; Wei et al., 2014a; Krajewski and

Viaro, 2014; Atherton et al., 2014). However, it produces

a higher-order approximated model.

Subsequently, to reduce the order of approximation,

Liang et al. (2014) proposed a fixed-pole approximation

technique. Similarly, Carlson derived a different

technique (Tepljakov et al., 2012) using the Newton

iterative method for continued fractional expansion (CFE)

of the fractional-order differentiator. However, this

technique is limited to fewer values of the fractional-order

parameter (Tepljakov et al., 2012; Sheng et al., 2011).

Later, Matsuda proposed an approximation technique

using the gain of the fractional-order transfer function

(Valério et al., 2013). However, in this method, if the

order of approximation is chosen as an odd number,

the approximated transfer function will be improper;

i.e., there will be one more zero than poles (Yüce

et al., 2017; Vinagre et al., 2000; Sheng et al., 2011).

Other researchers have also proposed various power

series expansion (PSE) techniques based on Taylor series,

Maclaurin series, etc. (Valério et al., 2013; Petráš, 2011a;

2011b; Caponetto, 2010). Nevertheless, it is proven that

CFE methods are converging more rapidly than PSE ones

(Vinagre et al., 2000).

In the related development, Charef proposed an

approximation technique (Das, 2011) where the accuracy

is determined by properly selecting the maximal

permissible error. However, the order of approximation

involves a significant amount of trials and errors

(Mitkowski and Oprzedkiewicz, 2016; Oprzedkiewicz,

2014). Thus, an extension of this method was proposed by

Meng and Xue (2012). This extended method is focused

on improving the accuracy of the original proposal.

Other approximation algorithms based on the stability

boundary locus (Deniz et al., 2016), the vector fitting

method (Du et al., 2017), the time moments approach

(Khanra et al., 2013), the state space approach (Poinot

and Trigeassou, 2003; Krajewski and Viaro, 2011) and the

frequency distribution mode (Wei et al., 2014b) have been

proposed, too. A key issue with these methods is that they

are quite complex and hence difficult to implement.

Motivated by the discussion above, this paper

proposes a simple curve fitting approximation approach

using exact frequency response data of fractional-order

operators (differentiator/integrator). The proposed

approach is expected to achieve better approximation

compared with the commonly used Oustaloup, refined

Oustaloup and Matsuda techniques (Monje et al.,

2010). To demonstrate the performance of the proposed

approach, a simulation study will be conducted on a class

of fractional-order based controllers and systems.

The remaining sections of the paper are organized

as follows: the definitions of the fractional-order

differintegral operator and the fractional-order PID

controller as well as an overview of the Oustaloup,

refined Oustaloup and Matsuda approximation algorithms

are presented in Section 2. The proposed curve fitting

approximation using the frequency response and the

integer-order approximation table for a fractional-order

differentiator are given in Section 3. A simulation

study on fractional-order based controllers and systems

to demonstrate the performance of the proposed

approximation is given in Section 4. Finally, Section 5

concludes the paper.

2. Preliminaries

This section is divided into two parts. The first will briefly

discuss fractional calculus while the second will give an

overview of some standard approximations.

2.1. Fractional calculus. In this subsection, the

definitions of the fractional-order differintegral operator

and the fractional-order PID controller are presented.

2.1.1. Fractional-order differintegral. In fractional

calculus, the fractional-order differintegral operator, a

combined fractional-order differentiator and integrator,

which generalizes the notation for the differentiator

(Re(γ) > 0) and the integrator (Re(γ) < 0) for

the function x(t) (Kaczorek, 2018; Joice Nirmala and

Balachandran, 2017), is defined as

aD
γ
Tx(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ t

0
x(τ) dτγ , Re(γ) < 0,

x(t), Re(γ) = 0,
dγx(t)

dtγ
, Re(γ) > 0,

(1)

where
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• T and a are the lower and upper bounds of the

operator,

• γ is the order of the operator, and

• Re(γ) is the real part of γ.

The Laplace transform of (1) at zero initial

conditions is given as

L{0D
γ
Tx(t); s} = sγX(s). (2)

From (2), the approximation of the fractional-order

differentiator (sγ) for γ > 0 and the fractional-order

integrator (1/sγ) for γ < 0 will be made using proposed

curve fitting approach and other approximation techniques

in Section 3.

2.1.2. Fractional-order PID controller (FOPID

or PIλDµ). The generalized transfer function of the

PIλDµ controller as reported by Shah and Agashe (2016)

is

C(s) = Kp +
Ki

sλ
+Kds

µ, 0 < λ, µ < 2, (3)

where

• Kp, Ki and Kd are the proportional, integral and

derivative constant gains,

• λ is the order of integration, and

• µ is the order of differentiation.

From (3), the approximation of the fractional-order

integrator (1/sλ) and the fractional-order differentiator

(sµ) will be performed using the proposed curve

fitting approach and other approximation techniques in

Section 3.

2.2. Overview of some standard approximation

algorithms. In this subsection, three of the standard

frequency domain approximation algorithms for the

fractional-order differentiator (sγ) are presented. The

approximation algorithms considered are the Oustaloup,

refined Oustaloup and Matsuda ones. The performance

of the proposed curve fitting technique will be compared

these algorithms in Sections 3 and 4.

2.2.1. Oustaloup approximation. The Oustaloup

approximation of the fractional-order differentiator (sγ)

in the desired frequency range (ωl, ωh) as defined by

Oustaloup et al. (2000) is

sγ ≈ ωγ
h

N
∏

k=1

s+ ω′
k

s+ ωk

, 0 < γ < 1, (4)

with the zeros ω′
k and poles ωk of (4) computed as

ω′
k = ωl

(

ωh

ωl

)

2k−1−γ
2N

, (5)

ωk = ωl

(

ωh

ωl

)

2k−1+γ
2N

, (6)

where

• γ is the order of the fractional-order derivative,

• N is the order of approximation, and

• (ωl, ωh) is the frequency range of interest.

The Oustaloup approximation is the most widely

used technique for integer-order approximation of

fractional-order operators. However, for practical

applications, it is frequently found that it cannot fit the

whole expected range of frequency (Monje et al., 2010;

Xue et al., 2006; 2007).

2.2.2. Refined Oustaloup approximation. The

modified or refined Oustaloup approximation of sγ in the

desired frequency range (ωl, ωh) is defined as

sγ ≈

(

dωh

b

)γ(
ds2 + bωhs

d(1− γ)s2 + bωhs+ dγ

)

×
N
∏

k=−N

s+ ω′
k

s+ ωk

, 0 < γ < 1,

(7)

with ω′
k and ωk being the respective zeros and poles

computed as

ω′
k = ωl

(

ωh

ωl

)

2k−1−γ
2N

, (8)

ωk = ωl

(

ωh

ωl

)

2k−1+γ
2N

, (9)

where b and d are constants with values set as 10 and

9, respectively, to achieve good approximation (Xue

et al., 2007). This modified approximation has very high

accuracy in the entire frequency range (Xue et al., 2006).

However, the method results in a very high integer-order

transfer function.

2.2.3. Matsuda approximation. The Matsuda

approximation of sγ will be performed in two steps. First,

a rational model of sγ will be obtained using the continued

fraction expansions (CFE) method. Then, the fitting of

the original function at desired frequency points ω0, ω1,

. . . , ωn is performed. Thereby, the approximated transfer

function of sγ is

sγ ≈ d0(ω0) +
s− ω0

d1(ω1) +
s−ω1

d2(ω2)+
s−ω2

...

, (10)
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where

d0(ω) = |(jω)γ |, (11)

dk+1(ω) =
ω − ωk

dk(ω)− dk(ωk)
, (12)

k = 0, 1, . . . , N.

In this method, the sum of the total number of

zeros and poles is known as the order of approximation

N . Here, N should be an even number; otherwise, the

approximation technique results in an improper transfer

function (Vinagre et al., 2000; Yüce et al., 2017; Deniz

et al., 2016).

3. Proposed curve fitting approximation

The first stage of the proposed curve fitting approximation

is obtaining the frequency response data (frd) of sγ .

This is accomplished by substituting s = jω and then

evaluating the function for different values of ω ∈
(ωl, ωh) as follows:

sγ = (jω)γ |ω=(ωl,...,ωh). (13)

The next stage is to derive an integer-order transfer

function model G(s) from the data obtained in (13)

using the Sanathanan–Koerner (SK) least-squares iterative

method (Shi, 2016). Thus, the transfer function model of

G(s) is defined as follows:

G(s) =
P (s)

Q(s)
≈

N
∑

n=0

pns
n

1 +
N
∑

n=1

qns
n

≈
Pψ(s)

1 +Qφ(s)
, (14)

where the coefficients P , Q and the monomial functions

ψ(s), φ(s) are defined as follows:

P =

⎡

⎢

⎢

⎢

⎣

p0
p1
...

pN

⎤

⎥

⎥

⎥

⎦

, Q =

⎡

⎢

⎢

⎢

⎣

q1
q2
...

qN

⎤

⎥

⎥

⎥

⎦

, (15)

ψ(s) = [1, s, . . . , sN ], φ(s) = [s, s2, . . . , sN ]. (16)

The objective is to identify P and Q in the

integer-order transfer function G(s) in the desired

frequency range ω ∈ (ωl, ωh). This is achieved by

minimizing the difference between data samples (H(s))
obtained from (13) and G(s) using the following Levy

linearized cost function with the SK least-squares iteration

method:

argmin
P,Q

h
∑

k=l

∣

∣

∣

∣

P (jωk)

Qτ−1(jωk)
−

Qτ (jωk)

Qτ−1(jωk)
H(jωk)

∣

∣

∣

∣

2

,

(17)

where τ = 1, . . . , T is the iteration step. From (17), it

should be noted that the unbiased curve fitting is achieved

when Qτ−1(jωk) approaches Qτ (jωk). Furthermore, to

obtain a minimal realization of G(s), the matching poles

and zeros will be cancelled.

The final stage is to convert the obtained state-space

model given in (18) after pole-zero cancellation into a

transfer function model of the following form:

sX(s) = AX(s) +BU(s),

Y (s) = CX(s) +DU(s),
(18)

G(s) ≈
Y (s)

U(s)
= C

(

sIN −A
)−1

B +D, (19)

where

• X(s), Y (s) andU(s) are the state, output and control

vectors, respectively,

• A, B, C and D are the state, input, output,

feedforward matrices, respectively.

Therefore, the above procedure for the proposed

integer-order approximation of sγ based on the curve

fitting of frequency response data with the use of

MATLAB built-in commands will be implemented as

follows:

1. Obtain the frequency response data for integer-order

part of sγ within the desired frequency rangeω ∈ (ωl,

ωh) using the MATLAB inbuilt function frd().

2. Obtain the exact frequency response data of sγ by

raising the data obtained in the previous step to a

power of γ.

3. Choose the approximation order N for the

integer-order model.

4. Obtain the state space model of exact function

response data based on SK’s least-squares iteration

method by using inbuilt MATLAB function

fitfrd().

5. Convert the state space model to the transfer function

using the inbuilt MATLAB command ss2tf().

The MATLAB commands for implementing the

proposed algorithm are provided in Appendix A.

To demonstrate the proposed approach, consider the

fractional-order differentiator s0.1. Here, the desired

frequency range ω is chosen as (10−2, 102). Furthermore,

to study the effect of variation in N , the order of

approximation N is chosen as 4, 5 and 6. The choice

for the range of frequency and the order of approximation

is based on works reported by Yüce et al. (2017), Meng

and Xue (2012), Xue et al. (2007) and Deniz et al.
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(2016). Thus, the approximated transfer functions using

the proposed approach for chosen orders are

s0.1 ≈

1.714s4 + 75.22s3 + 248.1s2 + 83.38s

+ 1.935

s4 + 58.57s3 + 244.1s2 + 103.5s

+ 3.237

, (20)

s0.1 ≈

1.777s5 + 123.9s4 + 873.4s3 + 909.9s2

+ 137.7s+ 1.914

s5 + 90.81s4 + 785.4s3 + 985s2

+ 182.9s+ 3.335

, (21)

s0.1 ≈

1.831s6 + 183.7s5 + 2279s4 + 5199s3

+ 2427s2 + 203s+ 1.9

s6 + 128.7s5 + 1919s4 + 5142s3

+ 2818s2 + 283.7s+ 3.424

. (22)

Consequently, the Bode plots of (20)–(22) are

presented in Figs. 1–3, respectively. The plots are

compared with the Oustaloup, refined Oustaloup and

Matsuda approximations. From the figures, it can be

observed that, for the orders of approximations 5 and 6,

the proposed approach is more accurate within the desired

frequency range than the other methods.

To evaluate the effectiveness of the proposed

approach, a time domain comparison was also performed.

For this purpose , the exact step response of the

fractional-order integrator 1/sγ is obtained from the

inverse Laplace transform of the integer-order integrator

1/sn as

L−1

[

1

sn

]

=
tn−1

(n− 1)!
, n ∈ N. (23)

As in the case of (23), the inverse Laplace transform

of the fractional integrator 1/sγ is derived as

L−1

[

1

sγ

]

=
tγ−1

Γ(γ)
, 0 < γ < 1, (24)

where Γ(γ) = (γ − 1)!. From (24), the step response is

L−1

[

1

sγ+1

]

=
tγ

Γ(γ + 1)
=

tγ

γΓ(γ)
. (25)

This equation will be used to calculate the exact step

response of the fractional order operator. Thus, the exact

step response of s0.1 is given by

L−1(s0.1) =
0.1× Γ(0.1)

t0.1
. (26)

The step responses of the proposed approach in

comparison with the Oustaloup, refined Oustaloup and

Matsuda approximations for the orders 4, 5 and 6, are
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Fig. 1. Bode plots of the fractional-order differentiator (s0.1) for

N = 4 approximated using various methods.
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Fig. 2. Bode plots of the fractional-order differentiator (s0.1) for

N = 5 approximated using various methods.
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Fig. 3. Bode plots of the fractional-order differentiator (s0.1) for

N = 6 approximated using various methods.
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presented in Figs. 4, 5 and 6, respectively. For numerical

assessment of the results shown in the figures, the mean

absolute error (MAE) is chosen

MAE =
1

n

n
∑

i=1

|yi − xi|, (27)

where

• yi is the approximated frequency response data,

• xi is the exact frequency response data, and

• n is the total size of the data.

This type of error function is most suitable for

non-time based problems (Deniz et al., 2016). Therefore,

the numerical assessment of the responses is given in

Table 1. Observing the figures and the table, it can be seen

that the proposed approach outperformed the compared

techniques. The numerical analysis also confirmed

that the proposed approach produced less error when

compared with other approaches.

Furthermore, the stability analysis of the

approximated transfer function (G(s)) will be made

using H2 and H∞-norms for the frequency band

ω ∈ (ωl, ωh) as defined in (28) and (29), respectively.

From the equations, it can be noted that, for a stable

system, the H2-norm is the average system gain over all

frequencies while the H∞-norm is the peak gain of the

frequency response. However, for an unstable system,

these norms will be infinite:

||G(s)||2 =

√

1

2π

∫ ∞

−∞

trace[G(jω)∗G(jω)] dω, (28)

||G(s)||∞ = sup
ω∈(ωl,ωh)

|G(jω)|. (29)

Thus, the stability analysis of the proposed approach and

other compared techniques from Table 1 shows that all

the approximated transfer functions are stable with a finite

value of the H∞-norm.

The approximation table for the fractional-order

differentiator sγ (γ = 0.1, 0.2, . . . , 0.9) using the

proposed approach is given in Table 2. The table can

be used directly to obtain the approximated transfer

function of fractional-order based systems and controllers.

On the other hand, the numerical assessment of the

approximation table for the step response of the proposed

approach in comparison with the Oustaloup, refined

Oustaloup and Matsuda techniques is given in Table 3.

From the table, it can be noted that for longer time periods,

the proposed approach yields a better approximation than

the other methods. Furthermore, observing the stability

analysis in the table, it can also be noted that all the

approximated transfer functions using various techniques

are stable with a finite value of the H∞-norm.
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Fig. 4. Step responses of the fractional-order differentiator

(s0.1) for N = 4 approximated using various methods.
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Fig. 5. Step responses of the fractional-order differentiator

(s0.1) for N = 5 approximated using various methods.
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Fig. 6. Step responses of the fractional-order differentiator

(s0.1) for N = 6 approximated using various methods.
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Table 1. Numerical and stability analysis of the fractional-order differentiator (s0.1).

Technique Order t1 ∈ (0, 125) t2 ∈ (0, 250) H∞-norm Stability

Oustaloup

4

0.0215 0.0441 1.5849 stable

refined Oustaloup 0.0547 0.0809 1.7425 stable

Matsuda 0.0144 0.0122 1.8280 stable

proposed 0.0061 0.0199 1.7145 stable

Oustaloup

5

0.0237 0.0455 1.5849 stable

refined Oustaloup 0.0540 0.0813 1.7425 stable

Matsuda 0.0110 0.0120 1.8905 stable

proposed 0.0053 0.0097 1.7773 stable

Oustaloup

6

0.0247 0.0463 1.5849 stable

refined Oustaloup 0.0538 0.0814 1.7425 stable

Matsuda 0.0103 0.0110 1.9462 stable

proposed 0.0071 0.0059 1.8315 stable

Table 2. Approximations of fractional-order differentiators using the proposed curve fitting approach.

sγ Approximated transfer function

s0.1 1.777s5+123.9s4+873.4s3+909.9s2+137.7s+1.914
s5+90.81s4+785.4s3+985s2+182.9s+3.335

s0.2 3.233s5+223s4+1624s3+1762s2+275.3s+3.725
s5+116.8s4+1279s3+2011s2+473s+11.14

s0.3 6.048s5+413.7s4+3111s3+3513s2+565.4s+7.36
s5+151s4+2089s3+4115s2+1224s+37.33

s0.4 11.7s5+794.7s4+6166s3+7236s2+1198s+14.71
s5+197.2s4+3438s3+8478s2+3181s+125.9

s0.5 23.59s5+1594s4+12740s3+15520s2+2632s+29.63
s5+262.6s4+5753s3+17720s2+8368s+429.6

s0.6 50.26s5+3381s4+27790s3+35050s2+6070s+59.93
s5+361.4s4+9918s3+38090s2+22550s+1498

s0.7 116s5+7769s4+65570s3+85390s2+15010s+121.2
s5+526.7s4+18060s3+86240s2+63740s+5453

s0.8 305.7s5+20410s4+176400s3+236400s2+41890s+244.3
s5+857.9s4+36660s3+217000s2+199500s+21830

s0.9 1092s5+72700s4+642000s3+881700s2+156000s+489.3
s5+1852s4+98540s3+720500s2+819500s+113800

4. Simulation study

In this section, a simulation study will be conducted

on five examples of fractional-order based controllers

and systems. The selected systems are a differentiator,

integrator, a PID controller, a low-pass filter and a

higher-order transfer function. The obtained results

from the proposed approach will be compared with

those of the Oustaloup, refined Oustaloup and Matsuda

approximations. Furthermore, the stability analysis of

approximated transfer functions will be conducted using

H-norms. In all the cases, the selected desired frequency

range ω and the order of approximation N are chosen as

(10−3, 103) and 5, respectively. As mentioned earlier,

the choice for the range of frequency and order of

approximation is based on the works reported by Yüce

et al. (2017), Meng and Xue (2012), Xue et al. (2007) and

Deniz et al. (2016). In addition, the order of sγ is limited

to the [−1, 1] range for effective approximation (Valério

et al., 2013). Thus, sγ is factorized as follows:

sγ = s⌊γ⌋sγ−⌊γ⌋. (30)

4.1. Fractional-order differentiator. This example

demonstrates the approximation of a fractional-order

differentiator

G(s) = s0.26 (31)

using the proposed approach. A comparison with the

exact solution and other approximation methods will also

be given. Thus, the approximated transfer function using

the proposed approach is

G(s) ≈

7.147s5 + 1836s4 + 2.493× 104s3

+ 3.393× 104s2 + 4811s+ 29.74

s5 + 597.2s4 + 1.608× 104s3

+ 3.85× 104s2 + 1.022× 104s+ 163.4

. (32)

Similarly, the approximated transfer functions using other

methods are given in Appendix B.
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Table 3. Numerical and stability analysis of approximation Table 2.

sγ Technique t1 ∈ (0, 125) t2 ∈ (0, 250) H∞-norm Stability

s0.2

Oustaloup 0.0265 0.0510 2.5119 stable

refined Oustaloup 0.0832 0.1065 3.0744 stable

Matsuda 0.0286 0.0268 3.5911 stable

proposed 0.0208 0.0175 2.6816 stable

s0.3

Oustaloup 0.0262 0.0450 3.9811 stable

refined Oustaloup 0.0943 0.1045 5.5103 stable

Matsuda 0.0427 0.0363 6.8910 stable

proposed 0.0345 0.0233 4.4710 stable

s0.4

Oustaloup 0.0272 0.0378 6.3096 stable

refined Oustaloup 0.0942 0.0916 10.0820 stable

Matsuda 0.0511 0.0400 13.4464 stable

proposed 0.0433 0.0263 7.4974 stable

s0.5

Oustaloup 0.0293 0.0319 10.0000 stable

refined Oustaloup 0.0881 0.0761 18.9737 stable

Matsuda 0.0546 0.0398 26.9262 stable

proposed 0.0476 0.0270 12.7730 stable

s0.6

Oustaloup 0.0314 0.0276 15.8489 stable

refined Oustaloup 0.0794 0.0617 37.1951 stable

Matsuda 0.0548 0.0374 56.1234 stable

proposed 0.0488 0.0265 22.0811 stable

s0.7

Oustaloup 0.0330 0.0256 25.1189 stable

refined Oustaloup 0.0703 0.0496 77.7765 stable

Matsuda 0.0529 0.0340 124.8754 stable

proposed 0.0483 0.0245 38.8116 stable

s0.8

Oustaloup 0.0338 0.0251 39.8107 stable

refined Oustaloup 0.0618 0.0402 182.9633 stable

Matsuda 0.0499 0.0305 313.3221 stable

proposed 0.0468 0.0222 74.6020 stable

s0.9

Oustaloup 0.0340 0.0205 63.0957 stable

refined Oustaloup 0.0543 0.0330 573.8763 stable

Matsuda 0.0466 0.0273 1052.5 stable

proposed 0.0451 0.0249 150.9561 stable

The Bode plots of the proposed approach in

comparison with the Oustaloup, refined Oustaloup and

Matsuda techniques are presented in Fig. 7. From the

figure, it can be observed that the proposed approach is

more accurate within the desired frequency range than for

the other methods.

To evaluate the performance of the proposed

approach, the step responses of all the compared

techniques is shown in Fig. 8, while the numerical

assessment of the figure is given in Table 4. In the figure,

the exact time response of the system G(s) obtained using

(25) is

g(t) =
0.26× Γ(0.26)

t0.26
. (33)

From both the figure and the table, it can be observed

that, for the time period between 0 and 125 seconds,

the Oustaloup technique has the least error of 0.0315

while, for the time period from 0 to 250 seconds, the
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Fig. 7. Bode plots of the fractional-order differentiator (G(s))
for different methods.
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Table 4. Numerical and stability analysis of G(s).

Technique t1 ∈ (0, 125) t2 ∈ (0, 250) H∞-norm Stability

Oustaloup 0.0315 0.0213 6.0256 stable

refined Oustaloup 0.0493 0.0439 7.9227 stable

Matsuda 0.0363 0.0266 8.2832 stable

proposed 0.0368 0.0212 7.1467 stable
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Fig. 8. Step responses of the fractional-order differentiator

(G(s)) for different methods.

proposed approach has the least error of 0.0212. This is

an indication that, for longer time periods, the proposed

approach yields a better approximation than the other

approaches. Furthermore, the stability analysis of G(s)
for different methods given in Table 4 shows that all the

approximation techniques are stable with a finite value of

the H∞-norm.

4.2. Fractional-order integrator. In this example, the

proposed approach is demonstrated for a fractional-order

integrator given by

P (s) =
1

s0.6
. (34)

Here, a similar comparison is made as to the

differentiator example of Section 4.1. Hence, the

approximated transfer function model using the proposed

approach is

P (s) ≈

s5 + 2134s4 + 2.094× 105s3

+ 1.582× 106s2 + 1.3× 106s+ 8.884× 104

148.8s5 + 4.646× 104s4 + 9.294× 105s3

+ 1.828× 106s2 + 3.731× 105s+ 2353

.

(35)

while those using other methods are given in Appendix

B. The frequency response plots of the proposed approach
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Fig. 9. Bode plots of the fractional-order integrator (P (s)) for

different methods.

in comparison with the Oustaloup, refined Oustaloup and

Matsuda approaches are presented in Fig. 9. From the

figure, it can be observed that, compared with the other

three techniques, the proposed method is more accurate.

Furthermore, in the time domain, the step response of

all the compared approaches is shown in Fig. 10 while

the numerical assessment is given in Table 5. It can

be observed from both the response and the table that,

for the longest time range t ∈ (0, 250), the proposed

approach has the least error of 0.1146 while, for the

shorter time range t ∈ (0, 125), the Matsuda technique

has the least error of 0.1280. This indicates that the

proposed approach produces a better approximation for

longer time periods than the other approaches. This

is in agreement with the case of the fractional-order

differentiator given in Section 4.1. Furthermore, the

stability analysis of various methods also given in Table

5 shows that the approximation transfer functions of the

Oustaloup, Matsuda and proposed approach are stable,

with the proposed technique having the least H∞-norm

of 37.7568. From the table, it can also be seen that

the approximated transfer function using the refined

Oustaloup is unstable.

4.3. Fractional-order PID controller (PIλDµ). In

this example, the proposed approach is demonstrated

for the PIλDµ controller, which consists of both the
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Table 5. Numerical and stability analysis of P (s).

Technique t1 ∈ (0, 125) t2 ∈ (0, 250) H∞-norm Stability

Oustaloup 0.2531 1.0345 63.0957 stable

refined Oustaloup 1.2426 2.1651 inf unstable

Matsuda 0.1280 0.3347 156.4489 stable

proposed 0.8510 0.1146 37.7568 stable
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Fig. 10. Step responses of the fractional-order integrator (P (s))
for different methods.

fractional-order differentiator and the integrator given in

Sections 4.1 and 4.2, respectively. The transfer function

of the PIλDµ controller used for demonstration is

C(s) = 5 +
1

s0.8
+ 2s0.5, (36)

C(s) ≈

1.64× 105s10 + 1.122× 108s9

+ 2.207× 1010s8 + 9.906× 1011s7

+ 1.546× 1013s6 + 7.506× 1013s5

+ 1.384× 1014s4 + 9.075× 1013s3

+ 2.321× 1013s2 + 1.953× 1012s

+ 5.153× 1010

1379s10 + 2.47× 106s9

+ 8.25× 108s8 + 6.329× 1010s7

+ 1.405× 1012s6 + 8.811× 1012s5

+ 1.842× 1013s4 + 1.202× 1013s3

+ 2.418× 1012s2 + 1.009× 1011s

+ 3.871× 108

. (37)

For this example, approximation will be performed

in two stages. First, the fractional-order differentiator

term (s0.5) and the fractional-order integrator term

(1/s0.8) will be approximated using the approximation

table given in Table 2. Then, using the approximated

10-3 10-2 10-1 100 101 102 103
10

20

30

40

50

M
a

g
n

it
u

d
e

 (
d

B
)

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-50

0

50

P
h

a
s

e
 (

d
e

g
)

Exact

Oustaloup

Refined Oustaloup

Matsuda

Proposed Method

Fig. 11. Bode plots of the fractional-order PID controller

(C(s)) for different methods.

transfer functions, the overall approximation of C(s) is

done by combining this integral with differential terms,

which will lead to the transfer function of C(s) given

in (37).

Therefore, the frequency plot of the approximated

C(s) using the proposed approach in comparison with

the Oustaloup, refined Oustaloup and Matsuda techniques

is presented in Fig. 11, while the stability analysis of

the figure is given in Table 6. From both the figure

and the table, it can be observed that, compared with

the other three techniques, the proposed method is more

accurate. Furthermore, the stability analysis shows that

the approximation transfer functions of the Oustaloup,

Matsuda and proposed approach are stable and that of the

refined Oustaloup technique is unstable. From the table, it

can also be seen that the proposed technique has the least

H∞-norm of 133.1226.

The result obtained here shows an improvement

regarding the separate integrator and differentiator cases.

This indicates that combining the two using the proposed

approach yields an overall better result. This will, in turn,

lead to an overall improvement in system performance.

4.4. Fractional-order low-pass filter. Apart from

fractional-order controllers, the proposed approach can

also be used to approximate the other fractional-order
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Table 6. Stability analysis of C(s) for various methods.

Technique H∞-norm Stability

Oustaloup 256.2519 stable

refined Oustaloup inf unstable

Matsuda 1.2269×103 stable

proposed 133.1226 stable

Table 7. Stability analysis of F (s) for various methods.

Technique
H-norms

Stability
H2-norm H∞-norm

Oustaloup 0.9773 1.0273 stable

refined Oustaloup 0.9841 1.0276 stable

Matsuda 0.9772 1.0275 stable

proposed 0.9784 1.0267 stable

systems such as the fractional-order low-pass filter

F (s) =
1

0.5s1.15 + 1
. (38)

The details of the filter transfer function are available

in the work of Kishore et al. (2017). Consequently,

the approximated transfer function using the proposed

approach is

F (s) ≈

s5 + 387.7s4 + 6767s3 + 1.119× 104s2

+ 2004s+ 19.27

1.504s6 + 355.3s5 + 4579s4 + 1.178× 104s3

+ 1.181× 104s2 + 2008s+ 19.27

.

(39)

Here, the approximation of F (s) will be performed

in three stages. First, based on (30), the fractional-order

derivative s1.15 is divided into s × s0.15. Then, s0.15 is

approximated using the proposed approach. Finally, by

substituting this in (38), the overall approximated transfer

function of F (s) is determined.

The frequency plots of the approximated filter using

the proposed approach in comparison with the Oustaloup,

refined Oustaloup and Matsuda approaches are presented

in Fig. 12, while the stability analysis related to the figure

is given in Table 7. From the results, it can be seen that,

just as in the case of a PIλDµ controller, the proposed

method is more accurate compared with the other three

techniques. Furthermore, the stability analysis also shows

that all the compared techniques performed better and

stable with H2-and H∞-norms of around 0.98 and 1.02

respectively.

4.5. Fractional-order transfer function (FOTF). To

further demonstrate the effectiveness of the proposed

approach, a fractional-order transfer function (FOTF)

reported by Khanra et al. (2011; 2013) is considered. The

FOTF in polynomial form with fractional powers is

R(s) =
s+ 1

10s3.2 + 185s2.5 + 288s0.7 + 1
. (40)

Like in the previous case ofF (s), approximation will

be performed in three stages. First, based on (30), the

fractional-order derivatives s3.2 and s2.5 will be factorized

as s3 × s0.2 and s2 × s0.5, respectively. Then s0.2, s0.5

and s0.7 will be approximated using Table 2. Finally, by

substituting all these in (40), the overall approximated

transfer function of R(s) is determined. Thus, the

approximated transfer function of R(s) is

R(s) ≈

s16 + 5206s15 + 7.573× 106s14

+ 3.565× 109s13 + 5.807× 1011s12

+ 3.69× 1013s11 + 9.463× 1014s10

+ 1.085× 1016s9 + 5.936× 1016s8

+ 1.626× 1017s7 + 2.361× 1017s6

+ 1.854× 1017s5 + 7.647× 1016s4

+ 1.53× 1016s3 + 1.359× 1015s2

+ 4.618× 1013s+ 4.001× 1011

44.31s18 + 2.31× 105s17 + 3.299× 108s16

+ 1.355× 1011s15 + 2.312× 1013s14

+ 1.738× 1015s13 + 5.26× 1016s12

+ 7.555× 1017s11 + 5.299× 1018s10

+ 1.788× 1019s9 + 3.458× 1019s8

+ 4.593× 1019s7 + 4.372× 1019s6

+ 2.484× 1019s5 + 6.997× 1018s4

+ 8.796× 1017s3 + 3.93× 1016s2

+ 5.396× 1014s+ 2.125× 1012

.

(41)

The frequency plots of R(s) using the proposed approach

in comparison with the Oustaloup, refined the Oustaloup

and Matsuda techniques are presented in Fig. 13, while

the stability analysis related to the figure is given

in Table 8. From the results, it can be seen that

all the compared techniques have produced the best

approximation. Furthermore, the stability analysis from

the table also shows that all the approximated transfer

functions are stable with the proposed approach having

the least H2 and H∞-norms of 0.0138 and 0.1883,

respectively.

To further evaluate the performance of the proposed

approach, comparison with the power series expansion

technique is made. An example is a finite impulse

response (FIR) filter for a discretized fractional-order

differentiator based on PSE, given in Appendix C.

Thus, the Bode plot of the proposed approach in
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Fig. 12. Bode plots of the fractional-order low-pass filter (F (s))
for different methods.
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Fig. 13. Bode plots of FOTF (R(s)) for different methods.

Fig. 14. Bode plots of the proposed approach compared with

PSE-FIR for T = 0.001 and various values of n.

Table 8. Stability analysis of R(s) for various methods.

Technique
H-norms

Stability
H2-norm H∞-norm

Oustaloup 0.0141 0.3042 stable

Refined Oustaloup 0.0225 1.2395 stable

Matsuda 0.0164 0.5885 stable

Proposed 0.0138 0.1883 stable

Table 9. Stability analysis of R(s) with PSE-FIR for various

values of n.

Technique Order
H-norms

Stability
H2-norm H∞-norm

PSE-FIR

10 inf inf unstable

20 0.0024 7.0452 stable

50 0.0002 0.0508 stable

100 0.0002 0.0301 stable

500 0.0002 0.0176 stable

Proposed 5 0.0138 0.1883 stable

comparison with the FIR filter for orders of truncation

or approximation of 10, 20, 50, 100 and 500 is shown

in Fig. 14. The stability analysis of the figure is given in

Table 9. From the figure and the table, it can be seen that

the proposed approach performs better compared with the

PSE based FIR filter. Observing the responses, it can also

be seen that, for orders less than 10, the transfer function

using PSE-FIR is unstable and, for an order greater

then 50, PSE-FIR approaches the exact response, thereby

generating a very high integer-order transfer function.

5. Conclusion

In this paper, a simple curve fitting approximation

technique for the fractional-order differintegral operator

using the frequency response was proposed. With the

approach, an approximation table for the fractional-order

differentiator was obtained. The table can be used

directly to generate approximated transfer functions

of fractional-order based controllers and systems.

Results from the simulation study show that the

proposed approach produced better approximation of the

fractional-order parameters within the desired frequency

range when compared with the Oustaloup, refined

Oustaloup and Matsuda approximations. Furthermore,

time domain analysis of the results shows that the

proposed approach gives better approximation for longer

time periods than the Oustaloup, refined Oustaloup and

Matsuda approximations. The stability analysis in terms

of the H2 and H∞-norms also confirms that the proposed

approach is better and stable.

As part of future studies, an attempt will be made to

implement a fractional-order controller designed using the

proposed approach on a real-time plant.
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Appendix A

MATLAB code for the proposed curve fitting
based approximation

% Curve Fitting Approach for sγ %

function Gp=curveFitting(gam,N,wl,wh)

s=tf(’s’);

FRD=frd(s,(logspace(log10(wl),...

log10(wh))));

FRD.ResponseData=FRD.ResponseData.^gam;

Gp=fitfrd(FRD,N);

[num,den]=ss2tf(Gp.A,Gp.B,Gp.C,Gp.D);

Gp=tf(num,den); end

To compute approximation with the help of

above-proposed curve fitting approximation, the MATLAB

Robust Control Toolbox is required. The user

guide of the toolbox is available in the work of Balas et al.

(2007).

Appendix B

Results from other approximation methods

The approximated transfer function of the fractional-order

differentiator given in Section 4.1 using the Oustaloup

GO(s), refined Oustaloup GR(s) and Matsuda GM (s)
approximation techniques is presented in (B1), (B2) and

(B3), respectively. Similarly, for the fractional-order

integrator given in Section 4.2, the approximated transfer

functions using the Oustaloup PO(s), refined Oustaloup

PR(s) and Matsuda PM (s) approximation techniques are

GO(s) ≈

6.026s5 + 1128s4 + 1.253× 104s3

+ 8750s2 + 384s+ 1

s5 + 384s4 + 8750s3

+ 1.253× 104s2 + 1128s+ 6.026

, (B1)

GR(s) ≈

7.923s13 + 1.029× 104s12

+ 1.664× 106s11 + 1.832× 107s10

+ 1.279× 107s9 + 5.634× 105s8

+ 1566s7 + 0.2747s6

+ 3.039× 10−6s5 + 2.122× 10−12s4

+ 9.347× 10−20s3 + 2.588× 10−28s2

+ 4.252× 10−38s

s13 + 1885s12 + 5.853× 105s11

+ 1.315× 107s10 + 1.883× 107s9

+ 1.705× 106s8 + 1.01× 104s7

+ 5.758s6 + 0.0008956s5

+ 1.864× 10−8s4 + 2.655× 10−14s3

+ 2.398× 10−21s2 + 1.362× 10−29s

+ 4.589× 10−39

,

(B2)

GM (s) ≈

8.283s5 + 2347s4 + 2.872× 104s3

+ 1.982× 104s2 + 749.1s+ 1

s5 + 749.1s4 + 1.982× 104s3

+ 2.872× 104s2 + 2347s+ 8.283

, (B3)

PO(s) ≈

s5 + 614.2s4 + 2.239× 104s3

+ 5.129e04s2 + 7384s+ 63.1

63.1s5 + 7384s4 + 5.129× 104s3

+ 2.239e04s2 + 614.2s+ 1

, (B4)

PR(s) ≈

s13 + 3392s12 + 1.728× 106s11

+ 6.224× 107s10 + 1.426× 108s9

+ 2.068× 107s8 + 1.99× 105s7

+ 209.6s6 + 0.0623s5

+ 2.129× 10−6s4 + 4.857× 10−12s3

+ 7.017× 10−19s2 + 6.374× 10−27s

+ 3.436× 10−36

148.1s13 + 1.819× 105s12

+ 1.938× 107s11 + 1.338× 108s10

+ 5.84× 107s9 + 1.608× 106s8

+ 2795s7 + 0.3065s6

+ 2.12× 10−6s5 + 9.255× 10−13s4

+ 2.548× 10−20s3 + 4.411× 10−29s2

+ 4.532× 10−39s

,

(B5)
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PM (s) ≈

s5 + 1807s4 + 8.141× 104s3

+ 1.922× 105s2 + 2.565× 104s

+ 156.4

156.4s5 + 2.565× 104s4

+ 1.922× 105s3 + 8.141× 104s2

+ 1807s+ 1

. (B6)

Appendix C

Approximation of fractional-order differ-
entiator using finite impulse response (FIR)
based on PSE

According to Petráš (2011b; 2011a) and Caponetto

(2010), the approximation of the discretized

fractional-order differentiator in the form of the FIR

filter based on PSE is as follows:

0D
γ
TX(z) =

(

1

T

)γ

PSE
{(

1− z−1
)γ}

n

≈ T−γRn(z
−1),

(C1)

where

• n is the order of approximation or truncation,

• T is the sampling period,

• R is the polynomial in the variable z−1 of order, n
and

• PSE{
(

1 − z−1
)γ
} denotes the power series

expansion of the function
(

1− z−1
)γ

.

From (C1), it can be noted that the approximated

power series expansion of
(

1 − z−1
)γ

in the form of the

FIR filter has only zeros.
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