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Abstract: The rolling bearings are considered as the heart of rotating machinery and early fault

diagnosis is one of the biggest challenges during operation. Due to complicated mechanical assemblies,

detection of the advancing fault and faults at the incipient stage is very difficult and tedious. This work

presents a fuzzy rule based classification of bearing faults using Fuzzy C-means clustering method

using vibration measurements. Experiments were conducted to collect the vibration signals of a

normal bearing and bearings with faults in the inner race, outer race and ball fault. Discrete Wavelet

Transform (DWT) technique is used to decompose the vibration signals into different frequency bands.

In order to detect the early faults in the bearings, various statistical features were extracted from

this decomposed signal of each frequency band. Based on the extracted features, Fuzzy C-means

clustering method (FCM) is developed to classify the faults using suitable membership functions and

fuzzy rule base is developed for each class of the bearing fault using labeled data. The experimental

results show that the proposed method is able to classify the condition of the bearing using the

extracted features. The proposed FCM based clustering and classification model provides easier

interpretation and implementation for monitoring the condition of the rolling bearings at an early

stage and it will be helpful to take the preventive action before a large-scale failure.

Keywords: bearing fault diagnosis; discrete wavelet transform; clustering; feature extraction; Fuzzy

C-means; fuzzy rule base

1. Introduction

Bearings are one of the most critical elements in rotating machinery systems. Early bearing fault

detection and diagnosis are very important to prevent critical system failures as any fault on the

rolling element bearing leads to sudden, unwarned machine breakdowns and unpredicted failures.

It leads to huge loss and affects the production rate. Vibration measurements using accelerometer is

commonly used for fault detection in bearings. In order to determine the presence of a bearing fault,

existing fault diagnostic methods use fault characteristic frequencies and its sensitiveness towards

geometrical parameters of bearing such as inner race diameter, outer race diameter, pitch circle diameter,

the diameter of rolling element, radial clearance, etc. However, the defects in bearings cause variation

in the frequency at which it operates and this signal is modulated by the natural frequency of the

bearings. Also, it is difficult to accurately identify the occurrence of a bearing fault at its incipient stage

due to the small signal-to-noise ratio of the vibration signals. Hence, there is a need for developing

improved fault diagnosis methods to identify and classify the bearing faults at the early stage.
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Vibration measurements and analysis is one of the most effective fault diagnosis techniques

especially suitable for rolling element bearings as there is a periodic shock impulse appears every time

as one component contacts another if there is a local fault [1,2]. In order to detect and recognize the

fault signal, different signal analysis methods were developed in time domain analysis [3,4], frequency

domain analysis [5], and time-frequency domain analysis by various researchers. Statistical parameters

play also a significant role in the detection of a fault of rotary machines. Time-domain analysis has

simple calculations and direct signal processing contributes to the shortening of the processing time,

however, the time domain analysis provides limited insight into the fault the disadvantages of low

sensitivity and low accuracy. Hence frequency domain analysis methods using Fourier transform

has been applied by various researchers. As the fault results in periodic impulses, it attributes to the

bearing characteristic frequency and the harmonics appear in the frequency domain [6]. However, the

signal needs to be periodic and stationary for using Fourier transforms. Since the vibration signals

may not always be stationary [7], the Fourier transform method is not reliable for non-stationary

signals. Hence, time-frequency methods were introduced to simultaneously generate both time and

frequency information.

Among the time-frequency analysis methods, wavelets are the most widespread tools in signal

analysis. The major drawbacks associated with FFT techniques are overcome by many new approaches

such as Short term Fourier Transform (STFT), Empirical Mode Decomposition (EMD) [8], Ensemble

Empirical Mode Decomposition (EEMD) [9], Support Vector Machine (SVM) [10], Wavelet Transform

(WT) [11], Continuous Wavelet Transform (CWT) [12]. Though the proposed methods are used to

extract the features from the signal, the WT technique is widely used to discretize the signal into

wavelets. This technique can easily acquire the data from both the time domain and frequency domain

from which statistical features like mean, median, kurtosis, standard deviation, minimum, maximum,

root mean square, peak value, etc. [13]. Similarly, the Discrete WT (DWT) technique can also be

an equivalent choice to obtain information about the frequency and time components for feature

extraction. The extracted statistical features from DWT contain significant details about the failure of

the components precisely [14].

A fault diagnosis approach requires a simpler method to understand the hidden patterns in the

signal for detecting a bearing fault and classify it. Cluster analysis is an exploratory data analysis

tool for solving classification problems. Its object is to sort cases, data, or objects (events, people,

things, etc.) into groups or clusters. Many researchers developed various machine learning algorithms,

i.e., GA and Fuzzy inference [15], artificial neural networks (ANN) [16], self-adaptive [17], support

vector machines (SVM) [18], Learning Vector Quantization (LVQ) [19], extreme learning machine [20],

adaptive stochastic resonance [21], model-based class discrimination (VPMCD) [22], random forest [23],

Artificial Bee Colony (ABC) [24], deep belief network [25] and so on. All the aforementioned techniques

are pretty complicated to disseminate the fault diagnosis data from a machine operator’s point of

view. Fuzzy clustering is one amongst the widely adopted methods for fault diagnosis owing to its

superiority in dealing with its independence from supervisors and uncertainty. Hard C-means (HCM)

and fuzzy C-means (FCM) clustering algorithms could be adopted to effectively classify the patterns

during fault diagnosis.

It is found that lot of researches have been carried out in the field of fault diagnosis of rolling

element bearing, in which, very few works have been focused on detection and recognition of the

advancing faults and faults of micro size in rolling element bearing. Hence this study presents a new

approach using statistical analysis of wavelet transform and Fuzzy C-Means Clustering (FCM) suitable

for fault detection and grading the bearing faults at an early stage. Experiments were carried out to

acquire vibration signals from the four bearings with different faults such as inner race fault, outer race

fault, ball fault along with no-fault and the fault classification results are presented.

This paper is organized as follows: Section 2 presents the experimental details on vibration

measurement of roller element bearings. Section 3 and its subsections explains the steps involved in
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the proposed methodology for fault diagnosis of roller element bearings. Section 4 describes the results

and inferences of the proposed methodology. Major conclusions are presented in Section 5.

2. Experimental Arrangement

In the present work, a test rig is developed for conducting the vibration measurements for the

standard roller element ball bearing as shown in Figure 1. The test rig comprises a three-phase 0.5 HP

AC motor-driven shaft bearing mechanical system, shaft coupling, roller element ball bearing and

bearing housing.

 

 

3Φ Motor 

GUI Environment 
With Lab view 

Accelerometer 
PXI Card 

Bearing 

Figure 1. A photographic view of the experimental test rig.

The specifications of the ball bearing are provided in Table 1. In order to understand the defects

at the early stage, a cut of 0.5 mm was created using electro-discharge machining on the inner race,

the outer race of bearing.

Table 1. Specifications of roller element ball bearing.

Model Name ZKL6006

Inside Dia. (d) mm 30
Outside Dia. (D) mm 55
Width Dia. (B) mm 13
Limiting speed /min 18,000
Weight (mass) Kg 0.110

In this work, an accelerometer (model: Kistler-Type 8730A500, Kistler Instrument Corp., NY, USA)

with a sensitivity of 10 mV/g and an acceleration range of ±500 was mounted on the bearing housing to

acquire the acceleration signals from the bearing. PC based Data Acquisition (DAQ) system consisting

of LABVIEW software is used to obtain vibration signals for No-Fault (NF) and different types of faulty

bearings such as Inner Race Fault (IRF), Outer Race Fault (ORF) and Ball Fault (BF). In the present

work, the length of the signal consisting of 120,000 data are collected for each bearing conditions such

as no fault, Inner race fault, outer race fault and ball fault at a sampling rate of 12 kHz for the duration

of 29 s and stored it in PC for further processing. The acquired vibration signals from the test rig are

shown in Figure 2. The collected signals are divided into bins containing 10,000 samples for feature

extraction and analysis of bearing faults.
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Figure 2. Acquired vibration signals and its corresponding FFT.

A closer view of the acquired vibration signal for different bearing conditions is shown in Figure 3.

It can be noticed that vibration signal for the healthy bearing is periodic with low magnitude peaks and

relatively large amplitude of dispersed and non-periodic peaks are seen for inner race defect. Vibration

signal for the ball defect and outer race defect shows relatively high amplitude vibration with chaos

and intermittent behavior.
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Figure 3. A closer view of acquired vibration signal for different bearing conditions. (a) No-Fault;

(b) Inner Race Fault; (c) Outer Race Fault; (d) Ball Fault.

As the faults in bearing components such inner race, outer race and ball provides an unknown

impulse response in the acquired vibration signal, there are changes in the magnitude of energy at
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different frequency bands related to these faults [26], and it requires further analysis of vibration data

for bearing fault detection and classification.

3. Proposed Methodology for Bearing Fault Classification

In the present work, time-frequency domain technique, i.e. wavelet transform is used for analyzing

and detecting the bearing faults due to the non-stationary and nonlinear characteristics of the vibration

signals. Figure 4 depicts the schematic diagram of the proposed method for fault classification of

rolling bearing.
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Figure 4. Schematic diagram of the proposed method for bearing fault classification.

The steps involved in the proposed method are given below and they are explained in the

subsequent sections:

(i) Decomposing the vibration signal into N levels using filtering and decimation to obtain the

approximation and detailed coefficients;

(ii) Extracting the statistical features from the DWT coefficients;

(iii) Fuzzy C-Means clustering approach for grading the bearing faults using suitable fuzzy

membership functions.

3.1. Decomposition of Vibration Signal Using Discrete Wavelet Transform

Wavelet is defined as a vanishing wave in an oscillatory motion which has energy concentrated

with time. The continuous wavelet transform (CWT) of a time varying signal f (t) is identified as the

sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function Ψ(t) as

given by Equation (1).

WΨ(a, b) =

−∞
∫

∞

x(t) . Ψa,b(t)dt (1)

Here the parameters ‘a’ and ‘b’ are the translation and dilation of the wavelets. By generating

daughter wavelets ψa,b(t) from the mother wavelet ψ(t) more time-frequency information can be

extracted, which is limited to finite space.

ψa,b(t) =
1
√

a
ψ

(

t− b

a

)

(2)

The Discrete wavelet transform (DWT) is derived from the discretization of CWT (a,b) and the

most common discretization is dyadic, given also by McFadden and Smith [27] as, DWT uses the

power of 2 as scale and position values where a = 2 j and b = k ∗ 2 j.
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ψa,b(t) =
1
√

2 j
ψ(

t− k ∗ 2 j

2 j
) (3)

The DWT of a signal is calculated by passing it through a series of filters. The signal

samples are decomposed by passing through a low pass filter and also a high pass filter in parallel.

This decomposition process is iterative with successive approximations such that signal is broken down

into many lower resolution component. Here the approximation coefficients and detail coefficients are

obtained from the low pass filter and high pass filter respectively and it is shown as a decomposition

tree as shown in Figure 5.
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Figure 5. Schematic diagram for decomposition of vibration signal.

In the present work, statistical features are extracted from DWT coefficients (cD1, cD2, cD3, cD4)

and (cA1, cA2, cA3, cA4) to detect the bearing faults and it is explained in the next section.

3.2. Extraction of Statistical Features for Different Bearing Faults Using DWT Coefficients

As the statistical features such as Mean, Variance, kurtosis value (KV), Root Mean Square value

(RMS), peak-peak value (PPV), shape factor (SF) crest factor (CF), impulse factor (IF) are sensitive to

the bearing faults of impulsive in nature, they are extracted from detail and approximation coefficients

of wavelet transform [28]. Table 2 highlights the standard formula used for calculating the statistical

features [12].

Table 2. List of statistical features and formulas.

S. No Notation Feature Formula

1 x1 Mean
__
X = 1

N

N
∑

t=1
x(n)

2 x2 Variance XV = 1
N

N
∑

t=1
(x(n) − _

x)2

3 x3 Kurtosis Xkurt = 1
N

N
∑

t=1
(x(n) − x)4

4 x4 Root Mean Square Xrms = ( 1
N

N
∑

t=1
x2)

1
2

5 x5 Peak to Peak x̂ = E
{

max(x(n))
}

6 x6 S Factor S = xrms/x
7 x7 C Factor C = x̂/xrms
8 x8 I Factor I = x̂/x
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In the present work, the statistical features X = {x1, x2, . . . , xn} are extracted from detailed

coefficients (cD1, cD2, cD3, cD4) and approximate coefficients (cA1, cA2, cA3, cA4) of wavelet

transform respectively and the sample values are shown in Table 3.

Table 3. List of statistical features and the output classes for different bearing conditions.

Extracted Features from DWT Coefficients
Output Classes

x1 x2 x3 x4 x5 x6 x7 x8

D
W

T
C

o
e
ffi

ci
e
n

ts

cA1 0.0529 0.0014 0.0007 0.0650 0.2202 1.2284 1.3656 4.1636 0 0 0 1

cA2 0.0372 0.0007 0.0003 0.0457 0.1519 1.2292 1.3608 4.0824 0 0 0 1

cA3 0.0265 0.0004 0.0002 0.0324 0.0984 1.2250 1.3581 3.7191 0 0 0 1

cA4 0.0185 0.0002 0.0001 0.0227 0.0692 1.2262 1.3540 3.7410 0 0 0 1

cA1 0.0665 0.0026 0.0097 0.0837 0.3653 1.2578 4.3647 5.4902 0 0 1 0

cA2 0.0458 0.0013 0.0092 0.0586 0.2732 1.2805 4.6612 5.9688 0 0 1 0

cA3 0.0314 0.0006 0.0091 0.0404 0.1690 1.2851 4.1846 5.3775 0 0 1 0

cA4 0.0221 0.0003 0.0090 0.0284 0.1203 1.2839 4.2384 5.4416 0 0 1 0

cA1 0.1266 0.0121 0.0198 0.1676 0.6974 1.3236 4.1617 5.5084 0 1 0 0

cA2 0.0897 0.0062 0.0051 0.1192 0.5991 1.3287 5.0278 6.6807 0 1 0 0

cA3 0.0621 0.0031 0.0011 0.0832 0.4201 1.3395 5.0482 6.7622 0 1 0 0

cA4 0.0437 0.0016 0.0003 0.0590 0.2377 1.3492 4.0302 5.4374 0 1 0 0

cA1 0.2624 0.0595 0.0288 0.3583 1.4778 1.3656 4.1248 5.6327 1 0 0 0

cA2 0.1863 0.0296 0.0141 0.2535 1.1643 1.3608 4.5930 6.2499 1 0 0 0

cA3 0.1273 0.0137 0.0101 0.1729 0.8036 1.3581 4.6473 6.3115 1 0 0 0

cA4 0.0895 0.0067 0.0093 0.1212 0.5030 1.3540 4.1521 5.6218 1 0 0 0

cD1 0.0289 0.0005 0.0049 0.0362 0.1339 1.2541 1.5279 4.6421 0 0 0 1

cD2 0.0198 0.0002 0.0011 0.0253 0.1058 1.2787 1.5114 5.3420 0 0 0 1

cD3 0.0137 0.0001 0.0003 0.0179 0.0840 1.3041 1.5687 6.1189 0 0 0 1

cD4 0.0100 0.0001 0.0001 0.0128 0.0589 1.2886 1.5875 5.9125 0 0 0 1

cD1 0.0896 0.0046 0.0139 0.1124 0.4257 1.2537 3.7884 4.7496 0 0 1 0

cD2 0.0616 0.0023 0.0101 0.0778 0.3056 1.2630 3.9293 4.9629 0 0 1 0

cD3 0.0416 0.0012 0.0093 0.0542 0.2415 1.3020 4.4535 5.7985 0 0 1 0

cD4 0.0293 0.0006 0.0091 0.0382 0.1688 1.3063 4.4118 5.7632 0 0 1 0

cD1 0.1683 0.0250 0.2070 0.2308 1.1637 1.3716 5.0411 6.9143 0 1 0 0

cD2 0.1151 0.0113 0.0615 0.1566 0.8642 1.3606 5.5180 7.5076 0 1 0 0

cD3 0.0790 0.0060 0.0205 0.1108 0.6212 1.4015 5.6071 7.8585 0 1 0 0

cD4 0.0560 0.0032 0.0053 0.0795 0.4345 1.4194 5.4672 7.7599 0 1 0 0

cD1 0.3697 0.1825 0.2160 0.5649 2.4667 1.5279 4.3662 6.6713 1 0 0 0

cD2 0.2691 0.0930 0.0705 0.4066 1.8856 1.5114 4.6369 7.0083 1 0 0 0

cD3 0.1793 0.0470 0.0295 0.2812 1.7403 1.5687 6.1879 9.7072 1 0 0 0

cD4 0.1230 0.0230 0.0143 0.1952 1.1436 1.5875 5.8590 9.3010 1 0 0 0

3.3. Fuzzy C-Means Clustering (FCM) of Extracted Statistical Features

As the incipient bearing faults are difficult to detect due to the complexity of the small

signal-to-noise ratio of the vibration signals, the crisp clustering fails as the boundaries among the

clusters are vague and ambiguous for different bearing faults. Hence FCM is applied for classification

of bearing faults in the present work. It is one of the most common clustering algorithms which

minimize the Euclidean distance between each sample and all clustering centers using an objective

function [29]. Let X = {x1, x2, . . . , xn} be statistical feature vector of the given dataset with ‘n’ samples

to be analyzed, which can be divided into c classes. Here V = {v1, v2, . . . , vc} be the set of centers of

clusters in X dataset in p dimensional space. Where n is the number of objects, p is the number of
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features, and c is the number of partitions or clusters. Each U∈Mfc is called a Fuzzy C-partition of X;

Mfc is the Fuzzy C-partition space associated with X.

M f c =















U ∈ Vcn

∣

∣

∣

∣

∣

∣

∣

ui j ∈ [0, 1]∀i, j;

c
∑

i=1

ui j = 1∀ j;

c
∑

i=1

ui j > 0∀i















(4)

Here uij = uj (xj) is called the grade of membership of xj in the fuzzy set uj. Consider the following

subset of Vcn. For each integer c, 2≤ c, < n, let Vcn be the vector space of c × n matrices with entries in

[0,1], and let uij denote the ijth elements of any U∈Vcn.

In order to obtain the optimum fuzzy partition, least squares objective function J is formulated

and must be minimized as given by Equation (5)

J(U, V) =
n

∑

k=1

c
∑

i=1

(uik)
m‖xk − vi‖2 (5)

Here m is a fuzzifier parameter (or weighting exponent) whose value is chosen as a real number

greater than 1 (1 ≤ m <∞). While m approaches to 1 clustering tends to become crisp but when it goes

to the infinity clustering becomes fuzzified and usually m is fixed as 2U = {uik} is the membership

function, with uik ∈ [0,1], which denotes the degree of membership of the k-th pattern and i-th cluster

centers; V = {V1, V2, . . . Vc} is a vector of c cluster. These vi are interpreted as clusters defined by their

companion U matrix and the optimal solution is found to be:

uik =
1

∑c
j=1

(

‖Xk−Vi‖
‖Xk−V j‖

)2/(m−1)
,∀i, k (6)

Vi =

∑n
k=1 (uik)

mXk
∑n

k=1 (uik)
m ,∀i (7)

Suppose that under a given conditions, a clustering center was determined by the feature of

training data sets. Then all subsequent observations can be using the following equation

uk0 =
1

∑c
j=1

(

‖Xo−Vi‖
‖Xo−V j‖

)2/(m−1)
,∀i, k (8)

where uk0 is the fuzzy grade of the current observation being assigned to kth pattern and X0 is the

current observation. The iteration process will terminate when, the maxxi j =
{∣

∣

∣U(k+1) −U(k)
∣

∣

∣

}

< ε,

where ε, the criteria between 0 and 1 for termination and k are the iteration steps. For the above feature

sets, the cluster centers are calculated using the Equations (6) and (7). Using the calculated cluster

centers and the formulated membership functions for the statistical feature vectors, fuzzy inference

rules are formulated for the classification of bearing faults.

3.4. Generation of Fuzzy Rules Using Cluster Centers

In the present work, a supervised fuzzy rule formation approach is followed for the classification

bearing faults based on the estimated cluster centers [30,31]. For the given input statistical feature

vectors, output classes are labeled as shown in Table 3. Mamdani type fuzzy rules are extracted based

on the calculated vector of centroids of ‘c’ clusters V = {V1, V2, . . . , Vc} using FCM for given feature

vector X of different bearing faults.

If cluster center xi is found to be in the group of data for class ‘c’, then fuzzy sets on Xi, For an

input vector in input space Xp, there exist p variables x1, x2, . . . , xp, which are defined in the interval

Xi = [ai, bi], ai < bi, Aij are developed for each cluster. In this work, Gaussian function is used as the
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membership function for the input feature vectors and the output classes. Based on the estimated

cluster center, the following fuzzy rule was extracted and assigned to class ‘c’: Rule i: if X1 is Aij and

X2 is Aij . . . and Xp is Aij, then the bearing fault class is ‘c’.

Where Xj is the j-th input feature and Aij is the membership function in the i-th rule associated

with the j-th input feature. Aij is the membership function of the i-th rule. Actually, input data vector is

ascribed to class ‘c’ if fuzzy rules determine vector’s higher membership in class ‘c’.

4. Results and Discussion

In order to validate the proposed detection and clustering methodology, experimental data

acquired from the experimental setup for different bearing fault conditions and the results are

presented in this section. The vibration signal of bearings is decomposed using 4th order Daubechies

wavelet (‘db4’) and statistical features are extracted from the wavelet coefficients. Further, the cluster

centers are identified from the extracted statistical features; fuzzy rules are extracted for the labeled data

of statistical features of different bearing faults. A fuzzy rule base and inference system is developed in

MATLAB software environment and results are validated for test data.

4.1. Wavelet Decomposition of Vibration Signal with Different Bearing Faults

The vibration data for each classes of bearing faults were decomposed using wavelet transform

and wavelet coefficients are calculated as it provides a compact representation of energy distribution

of the vibration signal in time and frequency domain. Approximate (cA) and detailed (cD) coefficients

of wavelet transform at each level of decomposition are graphically represented in Figure 6.                   
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Figure 6. The four-level wavelet decomposition of four classes of bearing conditions.
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It is noticed from Figure 6 that the decomposed signal obtained from the no-fault bearing has

less magnitude which ranges from –0.1 to 0.1 for the approximation coefficient in 4th level. At the

same time, it is found that ball fault has a maximum magnitude range from −2 to 2; whereas the other

faults such as inner race fault and outer race fault have the magnitude range −0.2 to 0.2 and −0.5 to 0.5

respectively. From these results, it is evident that the magnitudes of wavelet coefficients are sensitive

to different bearing faults.

4.2. Statistical Feature Extraction Using Wavelet Coefficients

As the feature extraction typically calculates quantitative information about the faults from

the decomposed signal, the statistical features are directly calculated from the approximation and

detail wavelet coefficients and it is listed for different conditions of the bearings in Table 3. It can be

noticed that the magnitude of extracted statistical features such as Mean, variance, kurtosis, RMS

show an increasing trend for different faults from wavelet coefficients for the no-fault condition and its

magnitude is less as compared to the faulty conditions of the bearings as shown in Figure 7a.
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Figure 7. Extracted Statistical features from DWT Coefficients for different bearing faults.

From Figure 7b, it can be identified that the magnitude of statistical feature for iFactor of wavelet

coefficients is found to be higher in magnitude as compared to the other statistical features. Magnitude

of statistical features is found to be lesser for No fault bearing condition than the ball fault bearing

condition. These results show the sensitivity of detailed and approximated coefficients of DWT for

identifying the different bearing fault conditions.

4.3. Determination Cluster Centers Using Proposed FCM Method

The clustering centers for the extracted statistical features are calculated using Equation (6) and

Equation (7) for four types of bearing conditions and it is shown as a data matrix (8 × 4) in Table 4.

Table 4. Estimated Cluster centers of statistical features for different bearing faults.

Features
A

(No Fault)
B

(Inner Race Fault)
C

(Outer Race Fault)
D

(Ball Fault)

Mean (x1) 0.0696 0.0296 0.1421 0.1468
Variance (x2) 0.0067 0.0008 0.0294 0.0339
Kurtosis (x3) 0.0118 0.0014 0.0644 0.0236

RMS (x4) 0.0921 0.0368 0.2003 0.2300
PPV (x5) 0.3874 0.1296 0.9699 1.3732

Sfactor (x6) 1.3047 1.2475 1.3829 1.5629
cFactor (x7) 4.2012 1.4492 4.9805 5.9423
iFactor (x8) 5.5190 4.5046 6.9024 9.3055

Based on the cluster centers, the membership values are assigned using Gaussian membership

function using the Equation (8) for individual statistical features and it is shown in Figure 8.
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Figure 8. Membership functions for the statistical features using FCM.

The variation in membership values using Gaussian membership function for all the experimental

data of statistical features are shown in Figure 9a. The surface and contour plot of the gaussian

membership function is given in Figure 9b and it clearly shows 4 peaks and zones which describes

four bearing faults determined by the fuzzy clustering method. It is also seen that the magnitude

of membership values varies depending upon the position of cluster center. The sample numerical

values of the membership function of the given statistical feature data for the four different states of

the bearing such as no-fault (A), Inner race fault (B), Outer race fault (C) and Ball fault (D) are given in

Table 5.

Table 5. Sample membership values of feature data for different fault classes.

S. No
Membership Values for Different Fault Classes

µ (A) µ (B)) µ (C) µ (D)

1 0.9974 0.9995 0.0021 0.9964
2 0.9998 0.9995 0.0022 0.9996
3 0.9995 0.9956 0.0024 0.9996
4 0.9966 0.9879 0.0025 0.9965
5 0.9911 0.9765 0.0027 0.9903
6 0.9831 0.9615 0.0029 0.9811
7 0.9725 0.9431 0.0031 0.9689
8 0.9595 0.9215 0.0033 0.9539
9 0.9441 0.8969 0.0035 0.9361
10 0.9266 0.8696 0.0038 0.9159
11 0.9070 0.8399 0.0040 0.8932
12 0.8854 0.8081 0.0043 0.8684
13 0.8621 0.7745 0.0046 0.8416
14 0.8372 0.7395 0.0049 0.8131
15 0.8109 0.7033 0.0052 0.7831
16 0.7833 0.6663 0.0056 0.7518
17 0.7547 0.6288 0.0059 0.7196
18 0.7251 0.5912 0.0063 0.6865
19 0.6949 0.5537 0.0067 0.6530
20 0.6642 0.5165 0.0072 0.6191
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Figure 9. Estimated membership functions of the experimental data for different bearing faults.

It can be noticed that when the data point is nearer to the cluster center, the magnitude

of membership value is higher and reached minimum when it moves further away from the

corresponding cluster.

4.4. Development of Fuzzy Rule Base and Inferencing System

Based on the estimated cluster centers of input statistical features, the fault classes are labelled for

each bearing fault class and fuzzy rules are extracted using Mamdani type fuzzy inferencing system as

shown in Figure 10a.
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Figure 10. Proposed Fuzzy inferencing system for bearing fault classification: (a) Input-Output

model of the proposed fuzzy inferencing system; (b) membership functions for output classes of

bearing condition.

For the given magnitude of input statistical features such as Mean, Variance, kurtosis value (KV),

Root Mean Square value (RMS), peak-peak value (PPV), shape factor (SF) crest factor (CF), impulse

factor (IF), the corresponding cluster is identified using FCM and output class is assigned by the

proposed fuzzy inferencing system. Following four rules are extracted using the estimated cluster

centers for the bearing classes and it is given in Table 6.

Table 6. Fuzzy rule base for bearing fault classification.

Rule No Generated Fuzzy Rules Using FCM

1 If (Mean is in1cluster1) and (Variance is in2cluster1) and (Kurtosis is in3cluster1) and (RMS
is in4cluster1) and (Peak_to_Peak is in5cluster1) and (sFactor is in6cluster1) and (cFactor is
in7cluster1) and (iFator is in8cluster1) then (No_Fault is out1cluster1)(Inner_Race_Fault is
out2cluster1)(Outer_Race_Fault is out3cluster1)(Ball_Fault is out4cluster1) (1)’

2 If (Mean is in1cluster2) and (Variance is in2cluster2) and (Kurtosis is in3cluster2) and (RMS
is in4cluster2) and (Peak_to_Peak is in5cluster2) and (sFactor is in6cluster2) and (cFactor is
in7cluster2) and (iFator is in8cluster2) then (No_Fault is out1cluster2)(Inner_Race_Fault is
out2cluster2)(Outer_Race_Fault is out3cluster2)(Ball_Fault is out4cluster2) (1)’

3 If (Mean is in1cluster3) and (Variance is in2cluster3) and (Kurtosis is in3cluster3) and (RMS
is in4cluster3) and (Peak_to_Peak is in5cluster3) and (sFactor is in6cluster3) and (cFactor is
in7cluster3) and (iFator is in8cluster3) then (No_Fault is out1cluster3)(Inner_Race_Fault is
out2cluster3)(Outer_Race_Fault is out3cluster3)(Ball_Fault is out4cluster3) (1)

4 If (Mean is in1cluster4) and (Variance is in2cluster4) and (Kurtosis is in3cluster4) and (RMS
is in4cluster4) and (Peak_to_Peak is in5cluster4) and (sFactor is in6cluster4) and (cFactor is
in7cluster4) and (iFator is in8cluster4) then (No_Fault is out1cluster4)(Inner_Race_Fault is
out2cluster4)(Outer_Race_Fault is out3cluster4)(Ball_Fault is out4cluster4) (1)’

From the extracted fuzzy rules given in Table 6, it can be noted that the rule base for bearing fault

classification is simple, computationally efficient and linguistically interpretable.

4.5. Validation of the Proposed Approach

In order to validate the proposed approach, 4 samples of feature vector were randomly picked in

each class of bearing faults for testing and validation purposes. The classification results are shown in

Table 7 and the overall performance of bearing fault classification is found to be 100%. These results

prove that the proposed approach is useful for classification and condition monitoring of bearing states.
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Table 7. Testing and validation of proposed approach for classification of bearing faults.

Test
No

Extracted Features (For Testing Purpose) Predicted
Class

Actual
Class

Classification
Accuracy

F1 F2 F3 F4 F5 F6 F7 F8

1 0.0127 0.0003 0.0004 0.0315 0.1452 1.2378 2.1583 3.3411 No Fault No Fault 100%
2 0.0121 0.0014 0.0102 0.0556 0.2482 1.3972 4.4643 5.6920 Inner Fault Inner Fault 100%
3 0.0649 0.0037 0.0012 0.0790 0.4435 1.3298 5.0841 5.6227 Outer Fault Outer Fault 100%
4. 0.2179 0.0820 0.0128 0.2722 1.7540 1.5768 5.9381 9.2712 Ball Fault Ball Fault 100%

Figure 11 shows the output of the proposed fuzzy rule based inferencing system for the given

input features. This method identifies and assigns the class of the bearing faults based on the highest

membership for output class. It can be seen from Table 7 that the predicted class by the proposed

method matches with the actual class of the bearing fault for all the input values given to the proposed

fuzzy inferencing system.
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Figure 11. Fuzzy rule inferencing system for bearing fault classification.

The performance of the proposed fuzzy rule-based classifier model is found to be better than SVM,

neural network [32]. Also, our fuzzy rule based classification method is more efficient and easier to use

than neural network, typically producing good results without any trial and error. Also, the proposed

fuzzy rule-based classifiers are easy to interpret, verify, and extend.

5. Conclusions

Roller element bearing forms the core of rotating machinery, and its monitoring has always been

of significant research interest. In order to enhance the capability of fault classification of bearings,

this paper proposes a fuzzy rule based classification approach using discrete wavelet transform (DWT)

and the Fuzzy C-means clustering (FCM) to identify fault types. The fault classification results show

that the proposed FCM based rule formation approach identified the fault categories of rolling-element

bearing more accurately and it grades the condition of the bearing. From the experimental results,

it is found that the overall performance of clustering and classification of bearing faults is found to

be 100% for identifying the states of the roller element bearings. The proposed method shows that

the fuzzy c means clustering method is more direct and easier to implement. It is evident from this

work, with the integration of fuzzy sets and fuzzy rule base, FCM is a very powerful tool for the

classification and grading of bearing faults. The proposed system can be easily implemented for the

early bearing fault identification through online monitoring since the DWT-FCM requires only lesser

amount of computation.
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