PAPER • OPEN ACCESS

General bulk service queueing system with N policy, multiplevacations, setup time and server breakdown without interruption

To cite this article: S Sasikala et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042154

View the article online for updates and enhancements.

Related content
Analysis of bulk queueing system with single service and single vacation M Thangaraj and P Rajendran

- A group arrival retrial G - queue with multi optional stages of service, orbital search and server breakdown J Radha, K Indhira and V M Chandrasekaran

An unreliable group arrival queue with k stages of service, retrial under variant vacation policy J Radha, K Indhira and V M Chandrasekaran

General bulk service queueing system with N-policy, multiplevacations, setup time and server breakdown without interruption

S Sasikala, K Indhira and V M Chandrasekaran
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, India
E-mail: vmcsn@vit.ac.in

Abstract

In this paper, we have considered an $M^{X} / G(a, b) / 1$ queueing system with server breakdown without interruption, multiple vacations, setup times and N-policy. After a batch of service, if the size of the queue is $\xi(<a)$, then the server immediately takes a vacation. Upon returns from a vacation, if the queue is less than N, then the server takes another vacation. This process continues until the server finds atleast N customers in the queue. After a vacation, if the server finds at least N customers waiting for service, then the server needs a setup time to start the service. After a batch of service, if the amount of waiting customers in the queue is $\xi(\geq a)$, then the server serves a batch of $\min (\xi, b)$ customers, where $b \geq a$. We derived the probability generating function of queue length at arbitrary time epoch. Further, we obtained some important performance measures.

1. Introduction

A comprehensive survey on server vacation models can be found in Doshi [1]. Ke et al. [14], Chang and Ke [17] have examined bulk arrival queueing system with atmost J vacations. Lee et al. [7, 8] have analyzed thenon-Markovian queueing system with N-policy, single and multiple vacations. Single server queueing model with bulk serviceand multiple vacations considered by numerous researchers such as Arumuganathan and Jayakumar [3, 4], Arumuganathan and Ramaswami [16], Jayakumar and Senthilnathan [6, 13], Krishna Reddy et al. [2], Sasikala and Indhira [19]. Sikdar and Gupta [9] have considered bulk service queueing systems with single vacation. Recently, Singh et al. [18] have considered thenon-Markovian queueing system Bernoulli vacation.Ke [10] have examined an $M^{X} / G / 1$ queueing system with server break downs, startup and closedowntimes. Chaudhry [12] have analyzed $M^{X} / G / 1$ queueing system with setup time. Krishnamoorthy et al. [15] have analyzed an extensive study on queues with interruption. A detailed work on bulk queues can be found in Chaudhry and Templeton [11], Sasikala and Indhira [20].

This paper summarized as follows: In Section 2. We have given a brief description of the proposed queueing system. In Section 3.We derived the steady state differential-difference equations. Section 4 contains queue size distributions. In Section 5. We derived the probability generating function (PGF) of queue size. In Section 6.We have given some important performance measures.

2. Model description and system equations

We consider a gear and shafts manufacturing industry to specify an example for a bulk queueing system with server breakdown without interruption, multiple vacations, N-policy and setup time. A gear and shaft manufacturing industry makes different types of shafts andgears with different dimensions. Before starting of CNC machine, the operator requires pre-alignment steps. After every idle period, the operator starts to provide service only when the number of castings in thequeue is atleast N. If a breakdown occurs at any point, the service of the batch which is currently under service will be completed with some alternate technical arrangements.

Customers arrive in batches with the rate λ according to compound Poisson processes. The server provides service with minimum of a and maximum of b customers in a batch. After a service, if the server finds the queue is atleast a, then the server precedes its service for next batch. After a service, if the server finds the queue is less than a, then the server leaves for a vacation. On completion of a vacation, if the queue is less than N, then the server takes another vacation and so on. This process continues until the size of queue reaches atleast N. On completion of a vacation, if the queue is atleast N, then the server requires a setup time to start the service. If the server is break down at any point with probability π, then renovation period is considered.

We assume that,
X - be the batch size random variable.
$X(z)$ - be the probability generating function.
$S(x), V(x), R(x)$ and $H(x)$ represent the cumulative distribution functions of service time, vacation time, renovation time and setup time.
$\mathrm{s}(x), v(x), r(x)$ and $h(x)$ represent the corresponding probability density functions of service time, vacation time, renovation time and setup time.
$\mathrm{S}^{-}(\mathrm{t}), V^{-}(\mathrm{t}), R^{-}(\mathrm{t})$ and $H^{-}(\mathrm{t})$ represent the remaining service time, vacation time, renovation time and setup time.
$S^{*}(\theta), V^{*}(\theta), R^{*}(\theta)$ and $H^{*}(\theta)$ represent the Laplace-Stieltjes transforms of service time, vacation time, renovation time and setup time.
$\varphi(t)=j$ denotes the server is on $j^{\text {th }}$ vacation.
$O_{q}(t)$ bethe number of customers in queue.
$O_{s}(t)$ bethe number of customers in service.
$\mathrm{M}(t)=(1)[2]\{3\}(4)$, if server is on (busy)[secondary job]\{renovation\}(setup job)
$\Pi_{i, j}(x, t) d t=\operatorname{Pr}\left\{O_{s}(t)=i, O_{q}(t)=j, x<S^{-}(t) \leq x+d x, M(t)=1\right\}, j \geq 0, a \leq i \leq b$
$\Omega_{, j}(x, t) d t=\operatorname{Pr}\left\{O_{q}(t)=n, x<V^{-}(t) \leq x+d x, M(t)=2, \varphi(t)=j\right\}, n \geq 0, j \geq 1$
$\Phi_{n}(x, t) d t=\operatorname{Pr}\left\{O_{q}(t)=n, x<R^{-}(t) \leq x+d x, M(t)=3\right\}, n \geq 0$
$\Psi_{n}(x, t) d t=\operatorname{Pr}\left\{O_{q}(t)=n, x<H^{-}(t) \leq x+d x, M(t)=4\right\}, n \geq N$

3. System equations

The following steady state differential-difference equations are derived by using supplementary variable technique (see Cox [5]).
$-\frac{d \prod_{i 0}(x)}{d x}=-\lambda \prod_{i 0}(x)+(1-\pi) \sum_{m=a}^{b} \Pi_{m i}(0) s(x)+\Phi_{i}(0) s(x), a \leq i \leq b$
$-\frac{d \prod_{i j}(x)}{d x}=-\lambda \Pi_{i j}(x)+\sum_{k=1}^{j} \Pi_{i, j-k}(x) \lambda g_{k}, a \leq i \leq b-1, j \geq 1$

$$
\begin{align*}
& -\frac{d \Pi_{b j}(x)}{d x}=-\lambda \Pi_{b j}(x)+(1-\pi) \sum_{m=a}^{b} \Pi_{m, b+j}(0) s(x)+\sum_{k=1}^{j} \Pi_{b, j-k}(x) \lambda g_{k}+\Phi_{b+j}(0) s(x) \tag{3}\\
& -\frac{d \Pi_{b j}(x)}{d x}=-\lambda \Pi_{b j}(x)+(1-\pi) \sum_{m=a}^{b} \Pi_{m, b+j}(0) s(x)+\sum_{k=1}^{j} \Pi_{b, j-k}(x) \lambda g_{k}+\Psi_{b+j}(0) s(x), j \geq N-b \\
& -\frac{d \Omega_{10}(x)}{d x}=-\lambda \Omega_{10}(x)+(1-\pi) \sum_{m=a}^{b} \Pi_{m 0}(0) v(x)+\Phi_{0}(0) v(x) \tag{4}\\
& -\frac{d \Omega_{1 n}(x)}{d x}=-\lambda \Omega_{1 n}(x)+(1-\pi) \sum_{m=a}^{b} \Pi_{m n}(0) v(x)+\sum_{k=1}^{n} \Omega_{1, n-k}(x) \lambda g_{k}+\Phi_{n}(0) v(x), n=1,2, \ldots a-1 \tag{5}\\
& -\frac{d \Omega_{1 n}(x)}{d x}=-\lambda \Omega_{1 n}(x)+\sum_{k=1}^{n} \Omega_{1, n-k}(x) \lambda g_{k}, n \geq a \tag{6}\\
& -\frac{d \Omega_{j 0}(x)}{d x}=-\lambda \Omega_{j 0}(x)+\Omega_{j-1,0}(0) v(x), j \geq 2 \tag{7}\\
& -\frac{d \Omega_{j n}(x)}{d x}=-\lambda \Omega_{j n}(x)+\Omega_{j-1, n}(0) v(x)+\sum_{k=1}^{n} \Omega_{1, n-k}(x) \lambda g_{k}, j \geq 2,1 \leq n \leq N-1 \tag{8}\\
& -\frac{d \Omega_{j n}(x)}{d x}=-\lambda \Omega_{j n}(x)+\sum_{k=1}^{n} \Omega_{1, n-k}(x) \lambda g_{k}, j \geq 2, n \geq N \tag{9}\\
& -\frac{d \Phi_{0}(x)}{d x}=-\lambda \Phi_{0}(x)+\pi \sum_{m=a}^{b} \Pi_{m 0}(0) r(x) \tag{10}\\
& -\frac{d \Phi_{n}(x)}{d x}=-\lambda \Phi_{n}(x)+\pi \sum_{m=a}^{b} \Pi_{m n}(0) r(x)+\sum_{k=1}^{n} \Phi_{n-k}(x) \lambda g_{k}, n \geq 1 \tag{11}\\
& -\frac{d \Psi_{n}(x)}{d x}=-\lambda \Psi_{n}(x)+\sum_{l=1}^{\infty} \Omega_{\ln }(0) h(x)+\sum_{k=1}^{n-N} \Psi_{n-k}(x) \lambda g_{k}, n \geq N \tag{12}
\end{align*}
$$

4. Queue size distribution

Let us assume the Laplace Stieltjes transforms (LST) of $\prod_{i j}(x), \Omega_{j n}(x), \Phi_{n}(x)$ and $\Psi_{n}(x)$ as
$\Pi_{i j}^{*}(\theta)=\int_{0}^{\infty} e^{-\theta x} \Pi_{i j}(x) d x, \Omega^{*}{ }_{j n}(\theta)=\int_{0}^{\infty} e^{-\theta x} \Omega_{j n}(x) d x$,
$\Phi_{n}^{*}(\theta)=\int_{0}^{\infty} e^{-\theta x} \Phi_{n}(x) d x, \Psi^{*}(\theta)=\int_{0}^{\infty} e^{-\theta x} \Psi_{n}(x) d x$
TakingLST of the Eqns. (1)-(13) and using Eqn. (14), we obtain,
$\theta \Pi_{i 0}^{*}(\theta)-\Pi_{i 0}(0)=\lambda \Pi_{i 0}^{*}(\theta)-(1-\pi) \sum_{m=a}^{b} \Pi_{m i}(0) S^{*}(\theta)-\Phi_{i}(0) S^{*}(\theta)$
$\theta \Pi_{i j}^{*}(\theta)-\Pi_{i j}(0)=\lambda \Pi_{i j}^{*}(\theta)-\sum_{k=1}^{j} \Pi_{i, j-k}^{*}(\theta) \lambda g_{k}, a \leq i \leq b-1(16)$
$\theta \Pi_{b j}^{*}(\theta)-\Pi_{b j}(0)=\lambda \Pi_{b j}^{*}(\theta)-(1-\pi) \sum_{m=a}^{b} \Pi_{m, b+j}(0) S^{*}(\theta)-\sum_{k=1}^{j} \Pi_{b, j-k}^{*}(\theta) \lambda g_{k}-\Phi_{b+j}(0) S^{*}(\theta)($

$$
\begin{align*}
& \theta \Pi^{*}{ }_{b j}(\theta)-\Pi_{b j}(0)=\lambda \Pi_{b j}^{*}(\theta)-(1-\pi) \sum_{m=a}^{b} \Pi_{m, b+j}(0) S^{*}(\theta)-\sum_{k=1}^{j} \Pi_{b, j-k}^{*}(\theta) \lambda g_{k}-\Psi_{b+j}(0) S^{*}(\theta) \tag{18}\\
& \theta \Omega^{*}{ }_{10}(\theta)-\Omega_{10}(0)=\lambda \Omega^{*}{ }_{10}(\theta)-(1-\pi) \sum_{m=a}^{b} \Omega_{m 0}(0) V^{*}(\theta)-\Phi_{0}(0) V^{*}(\theta) \tag{19}\\
& \theta \Omega^{*}{ }_{1 n}(\theta)-\Omega_{1 n}(0)=\lambda \Omega^{*}{ }_{1 n}(\theta)-(1-\pi) \sum_{m=a}^{b} \Pi_{m n}(0) V^{*}(\theta)-\sum_{k=1}^{n} \Omega^{*}{ }_{1, n-k}(\theta) \lambda g_{k}-\Phi_{n}(0) V^{*}(\theta) \tag{20}\\
& \theta \Omega^{*}{ }_{1 n}(\theta)-\Omega_{1 n}(0)=\lambda \Omega^{*}{ }_{1 n}(\theta)-\sum_{k=1}^{n} \Omega_{1, n-k}^{*}(\theta) \lambda g_{k} \tag{21}\\
& \theta \Omega^{*}{ }_{j 0}(\theta)-\Omega_{j 0}(0)=\lambda \Omega^{*}{ }_{j 0}(\theta)-\Omega_{j-1,0}(0) V^{*}(\theta) \tag{22}\\
& \theta \Omega^{*}{ }_{j n}(\theta)-\Omega_{j n}(0)=\lambda \Omega^{*}{ }_{j n}(\theta)-\Omega_{j-1, \mathrm{n}}(0) V^{*}(\theta)-\sum_{k=1}^{n} \Omega^{*}{ }_{j, n-k}(\theta) \lambda g_{k} \tag{23}\\
& \theta \Omega^{*}{ }_{j n}(\theta)-\Omega_{j n}(0)=\lambda \Omega^{*}{ }_{j n}(\theta)-\sum_{k-1}^{n} \Omega^{*}{ }_{j, n-k}(\theta) \lambda g_{k} \tag{24}\\
& \theta \Phi_{0}^{*}(\theta)-\Phi_{0}(0)=\lambda \Phi_{0}^{*}(\theta)-\pi \sum_{m=a}^{b} \Pi_{m 0}(0) R^{*}(\theta) \tag{25}\\
& \theta \Phi_{n}^{*}(\theta)-\Phi_{n}(0)=\lambda \Phi_{n}^{*}(\theta)-\pi \sum_{m=a}^{b} \Pi_{m n}(0) R^{*}(\theta)-\sum_{k=1}^{n} \Phi^{*}{ }_{n-k}(\theta) \lambda g_{k} \tag{26}\\
& \theta \Psi^{*}{ }_{n}(\theta)-\Psi_{n}(0)=\lambda \Psi^{*}{ }_{n}(\theta)-\sum_{l=1}^{\infty} \Omega_{\ln }(0) H^{*}(\theta)-\sum_{k=1}^{n-N} \Psi^{*}{ }_{n-k}(\theta) \lambda g_{k} \tag{27}
\end{align*}
$$

To find the system size distribution, we assume probability generating functions as follows,
$\Pi_{i}^{*}(z, \theta)=\sum_{j=0}^{\infty} \Pi_{i j}^{*}(\theta) z^{j}, \Pi_{i}(z, 0)=\sum_{j=0}^{\infty} \Pi_{i j}(0) z^{j}$
$\Omega^{*}{ }_{j}(z, \theta)=\sum_{l=1}^{\infty} \Omega^{*}{ }_{l j}(\theta) z^{j}, \Omega_{j}(z, 0)=\sum_{l=1}^{\infty} \Omega_{l j}(0) z^{j}$
$\Phi^{*}(z, \theta)=\sum_{n=0}^{\infty} \Phi^{*}{ }_{n}(\theta) z^{n}, \Phi(z, 0)=\sum_{n=0}^{\infty} \Phi_{n}(0) z^{n}$
$\Psi^{*}(z, \theta)=\sum_{n=N}^{\infty} \Psi^{*}{ }_{n}(\theta) z^{n}, \Psi(z, 0)=\sum_{n=N}^{\infty} \Psi_{n}(0) z^{n}$
Multiply z^{n} with both sides of the Eqns. (15)-(27), taking summation over n and using the Eq. (28).
Let $\Theta=\theta-\lambda+\lambda X(z)$, we get

$$
\begin{align*}
& \Theta \Pi_{i}^{*}(z, \theta)=\Pi_{i}(z, 0)-S^{*}(\theta)\left[(1-\pi) \sum_{m=a}^{b} \Pi_{m i}(0)+\Phi_{i}(0)\right] \tag{29}\\
& \Theta \Pi_{b}^{*}(z, \theta)=\Pi_{b}(z, 0)-\frac{S^{*}(\theta)}{z^{b}}\left[\begin{array}{c}
(1-\pi) \sum_{m=a}^{b}\left(\Pi_{m}(z, 0)-\sum_{j=0}^{b-1} \Pi_{m j}(0) z^{j}\right)+ \\
\Psi(\mathrm{z}, 0)+\sum_{j=1}^{N-b-1} \Phi_{b+j} z^{b+j}
\end{array}\right] \tag{30}
\end{align*}
$$

$$
\begin{align*}
& \Theta \Omega_{1}^{*}(z, \theta)=\Omega_{1}(z, 0)-V^{*}(\theta)\left[(1-\pi) \sum_{n=0}^{a-1} \prod_{m n}(0) z^{n}+\sum_{n=0}^{a-1} \Phi_{n}(0) z^{n}\right] \tag{31}\\
& \Theta \Omega_{j}^{*}(z, \theta)=\Omega_{j}(z, 0)-V^{*}(\theta)\left[\sum_{n=0}^{N-1} \Omega_{j-1, n}(0) z^{n}\right] \tag{32}\\
& \Theta \Phi^{*}(z, \theta)=\Phi(z, 0)-\pi R^{*}(\theta) \prod_{m}(z, 0) \tag{33}\\
& \Theta \Psi^{*}(z, \theta)=\Psi(z, 0)-H^{*}(\theta) \sum_{l=1}^{\infty} \Omega_{\mathrm{ln}}(0) z^{n} \tag{34}
\end{align*}
$$

Put $\theta=\lambda-\lambda X(z)$ in the Eqns. (29)-(34), we get

$$
\begin{align*}
& \prod_{i}(z, 0)=S^{*}(\lambda-\lambda X(z))\left[(1-\pi) \sum_{i=a}^{b-1} \prod_{m i}(0)+\Phi_{i}(0)\right] \tag{35}\\
& \prod_{b}(z, 0)=\frac{S^{*}(\lambda-\lambda X(z))}{z^{b}}\left[(1-\pi) \sum_{m=a}^{b}\left(\prod_{m}(z, 0)-\sum_{j=0}^{b-1} \prod_{m j}(0) z^{j}\right)+\Psi(z, 0)+\sum_{j=1}^{N-b-1} \Phi_{b+j} z^{b+j}\right] \tag{36}\\
& \Omega_{1}(z, 0)=V^{*}(\lambda-\lambda X(z))\left[(1-\pi) \sum_{n=0}^{a-1} \prod_{m n}(0) z^{n}+\sum_{n=0}^{a-1} \Phi_{n}(0) z^{n}\right] \tag{37}\\
& \Omega_{j}(z, 0)=V^{*}(\lambda-\lambda X(z)) \sum_{n=0}^{N-1} \Omega_{j-1, n}(0) z^{n} \tag{38}\\
& \Phi(z, 0)=\pi R^{*}(\lambda-\lambda X(z)) \prod_{m}(z, 0) \tag{39}\\
& \Psi(z, 0)=H^{*}(\lambda-\lambda X(z)) \sum_{l=1}^{\infty} \Omega_{\ln }(0) z^{n} \tag{40}
\end{align*}
$$

Substitute the Eqns. (35)-(40) in the Eqns. (29)-(34), we obtained as
$\Pi_{i}^{*}(z, \theta)=\frac{\left(S^{*}(\lambda-\lambda X(\mathrm{z}))-S^{*}(\theta)\right)\left[(1-\pi) \sum_{i=a}^{b-1} \prod_{m i}(0)+\Phi_{i}(0)\right]}{\Theta}$
$\Omega_{1}^{*}(z, \theta)=\frac{\left(V^{*}(\lambda-\lambda X(\mathrm{z}))-V^{*}(\theta)\right)\left[(1-\pi) \sum_{i=0}^{a-1} \prod_{m i}(0) z^{i}+\sum_{n=0}^{a-1} \Phi_{n}(0) z^{n}\right]}{\Theta}$
$\Omega_{j}^{*}(z, \theta)=\frac{\left(V^{*}(\lambda-\lambda X(\mathrm{z}))-V^{*}(\theta)\right) \sum_{n=0}^{N-1} \Omega_{j-1, n}(0) z^{n}}{\Theta}$
$\Phi^{*}(z, \theta)=\frac{\left(\mathrm{R}^{*}(\lambda-\lambda X(z))-R^{*}(\theta)\right)\left[\pi \prod_{m}(z, 0)\right]}{\Theta}$
$\Psi^{*}(z, \theta)=\frac{\left(H^{*}(\lambda-\lambda X(z))-H^{*}(\theta)\right)\left[\sum_{l=1}^{\infty} \Omega_{l n}(0) z^{n}\right]}{\Theta}$
$\Pi^{*}(z, \theta)=\frac{\left(S^{*}(\lambda-\lambda X(z))-S^{*}(\theta)\right) f(z)}{\left(z^{b}-(1-\pi) S^{*}(\lambda-\lambda X(z))\right) \Theta}$

$$
f(z)=(1-\pi)\left[\sum_{i=a}^{b-1} \prod_{i}(z, 0)-\sum_{j=0}^{b-1} \prod_{m j}(0) z^{j}\right]+\Psi(z, 0)+\sum_{j=1}^{N-b-1} \Phi_{b+j}(0) z^{b+j}
$$

5. Probability generating function

We can attain probability generating functions of the queue size at different completion epochs by substituting $\theta=0$ in the Eqns. (41)-(46). Let $P(z)$ be the probability generating function of the expected queue length at an arbitrary time epoch, then

$$
\left.\begin{array}{rl}
P(\mathrm{z}) & =\sum_{i=a}^{b-1} \Pi_{i}(z)+\Pi_{b}(z)+\sum_{l=1}^{\infty} \Omega_{l}(z)+\Phi(z)+\Psi(z) \\
& {\left[\begin{array}{l}
(1-\pi) S^{*}(\lambda+\lambda X(z)) \sum_{i=0}^{a-1} d_{i} z^{i}+\left(S^{*}(\lambda+\lambda X(z))-1\right) G_{i}+H^{*}(\lambda+\lambda X(z))\left(V^{*}(\lambda+\lambda X(z))-1\right) \\
\left(\pi R^{*}(\lambda+\lambda X(z)) S^{*}(\lambda+\lambda X(z))+z^{b}-1\right) \sum_{i=0}^{N-1} q_{i} z^{i}+\pi S^{*}(\lambda+\lambda X(z))\left(R^{*}(\lambda+\lambda X(z))-1\right) G_{i}+ \\
\left(H^{*}(\lambda+\lambda X(z)) V^{*}(\lambda+\lambda X(z))-1\right) \sum_{i=0}^{a-1} d_{i} z^{i+b}+ \\
H^{*}(\lambda+\lambda X(z)) V^{*}(\lambda+\lambda X(z))\left(\pi R^{*}(\lambda+\lambda X(z)) S^{*}(\lambda+\lambda X(z))-1\right) \sum_{i=0}^{a-1} d_{i} z^{i}
\end{array}\right]} \\
& =\frac{(-\lambda+\lambda X(z))\left(z^{b}-(1-\pi) S^{*}(\lambda+\lambda X(z))\right)}{} \\
& p_{i}=\sum_{m=a}^{b} \Pi_{m i}(0), q_{i}=\sum_{l=1}^{\infty} \Omega_{\ln }(0), R_{i}=\Phi_{i}(0), d_{i}=(1-\pi) p_{i}+R_{i}
\end{array}\right] \begin{aligned}
& G_{i}=\sum_{i=a}^{b-1} d_{i} z^{b}-(1-\pi) \sum_{i=0}^{b-1} p_{i} z^{i}+\sum_{i=1}^{N-b-1} R_{i+b} z^{i+b}
\end{aligned}
$$

Remark 1: The probability generating function has to satisfy $P(1)=1$.

$$
\begin{array}{r}
\lambda E(X)\left[(E(S)+\pi E(R))\left(\sum_{i=0}^{b-1} d_{i}-(1-\pi) \sum_{i=0}^{b-1} p_{i}+\sum_{i=0}^{N-b-1} R_{i+b}\right)+\pi E(V)\left(\sum_{i=0}^{a-1} d_{i}+\sum_{i=0}^{N-1} q_{i}\right)+\pi E(H) \sum_{i=0}^{a-1} d_{i}=\right. \\
\lambda \pi E(X)
\end{array}
$$

Here q_{i}, p_{i} are probabilities, so the left side of the above Eqn. must be positive. Thus $\lambda \pi E(X)>0$, if $\rho=\lambda \pi E(X)$, then $\rho<1$ is the case to be fulfilled for the existence of steady state under consideration.

6. Some important performance measures

6.1. Expected queue length

The expected queue size L_{q} is obtained by differentiating $P(z)$ at $z=1$ and it is given below,

where,
$f_{1}=R_{2} T_{1}^{2}-2 \pi b R_{1}-2 \lambda \pi^{2} R_{1}+2 \pi R_{1} S_{1} T_{1}+2 \pi S_{1} R_{1}+\lambda E(X) S_{2} T_{1}+S_{3} T_{1}+2 S_{1} T_{1}+2 S_{1}^{2}(1-\pi)-2 b S_{1}-S_{1} T_{2}$
$f_{2}=R_{2} T_{1}^{2}-2 b \pi R_{1}+2 \pi R_{1} S_{1}\left(1-\pi+T_{1}\right)+\lambda E(X) \mathrm{S}_{2} T_{1}-2 b S_{1}+2(1-\pi) \mathrm{S}_{1}^{2}+2 \pi R_{1} H_{1} T_{1}+$

$$
2 \pi S_{1} H_{1}\left(1-\pi+T_{1}\right)+H_{2} T_{1}^{2}-2 b \pi H_{1}
$$

$f_{3}=2 \pi R_{1} T_{1}+2 S_{1}, f_{4}=2 \pi R_{1} T_{1}$
$f_{5}=V_{2} T_{1}^{2}+\lambda \pi V_{3} T_{1}-2 \pi b V_{1}-\pi V_{1} T_{2}+2 \pi V_{1} H_{1} T_{1}+2 \pi R_{1} V_{1} T_{1}+2 \pi S_{1} V_{1}\left(1-\pi+T_{1}\right)$
$f_{6}=2 V_{1} T_{1}, f_{7}=2 \pi V_{1} T_{1}, f_{8}=2 \pi H_{1} T_{1}$
and $T_{1}=\lambda \pi E(X), T_{2}=\lambda \pi E\left(X^{2}\right), S_{1}=\lambda E(S) E(X), S_{2}=\lambda E\left(S^{2}\right) E(X), S_{3}=\lambda E(S) E\left(X^{2}\right)$
$R_{1}=\lambda E(R) E(X), R_{2}=\lambda E\left(R^{2}\right) E(X), H_{1}=\lambda E(H) E(X), H_{2}=\lambda E\left(H^{2}\right) E(X), V_{1}=\lambda E(V) E(X)$
$V_{2}=\lambda E\left(V^{2}\right) E(X), V_{3}=\lambda E(V) E\left(X^{2}\right)$

6.2. Expectedwaiting time in the queue

$E(W)=\frac{L_{q}}{\lambda E(X)}$
Where L_{q} is given in Eqn. (48).

7. Conclusion

We analyzed the steady state behavior of $M^{X} / G(a, b) / 1$ queue with server breakdown without interruption, multiple vacations, setup time and N-policy. We derived the steady state equations for the proposed queueing system. Also, we derived the probability generating functions for queue size. Further, we have presented some important performance measures.

References

[1] Doshi B T 1986 Queue. Syst. 1 29-66
[2] Krishna Reddy G V, Nadarajan R and Arumuganathan R 1998 Computers and Opr. Res. 25 957-967
[3] Arumuganathan R and Jayakumar S 2005 App. Math. Modell. 29 972-986
[4] Arumuganathan R and Jayakumar S 2004 Inform. Manage. Sci.15 45-60
[5] Cox D R 1955 Proc. Camb. Phil. Soc.51(3) 433-441
[6] Jayakumar S and Senthilnathan B 2014 Int. J. Oper. Res. 19 114-139
[7] Lee H W, Lee S S, Park J O and Chae K C 1994 J. App. Probab31 476-496
[8] Lee S, S Lee H W, Yoon S H and Chae K C 1995 Computers Opr. Res. 22 173-189
[9] Sikdar K and Gupta U C 2005 Computers. Opr. Res. 32 943-966
[10] Ke J C 2007 App. Math. Modell. 31 1282-1292
[11] Chaudhry M L and Templeton J G C 1983 A First Course in Bulk Queues(John Wiley \& Sons New York)
[12] Choudhury G 2000 Queue. Syst. 36 23-38
[13] Jeyakumar S and Senthilnathan B 2012 App. Math. Comp. 219 2618-2633
[14] Ke J C, Huang H I and Chu Y K 2010 App. Math. Modell. 34 451-466.
[15] Krishnamoorthy A, Pramod P K and Chakravarthy S R 2014 Queues with interruptions: a survey TOP 22

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042154 doi:10.1088/1757-899X/263/4/042154

290-320
[16] Arumuganathan R and Ramaswami K 2005 Indian J. Pue app. Math. 36 301-317
[17] Chang F M and Ke J C 2009 J. Comp. App. Math. 232 402-414
[18] Singh C J Jain M and Kumar B 2016 Ain Shams Eng. J.7415-429
[19] Sasikala S and Indhira K 2017 Inter. J. Pure and App Math. 113 290-298
[20] Sasikala S and Indhira K 2016 Inter. J. Pure and App Math. 106 43-56

