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Abstract: We consider an optical pulse propagating in a tapered photonic crystal fiber
(PCF) wherein dispersion as well as nonlinearity varies along the propagation direction. The
generalized nonlinear Schrödinger equation aptly models the pulse propagation in such a
PCF. The design of the tapered PCF is based on the analytical results, which demand that
the dispersion decrease exponentially and the nonlinearity increase exponentially. In this
paper, we adopt the generalized projection operator method for deriving the pulse-
parameter equations of the Lagrangian variation method and the collective variable method.
Besides, we consider another pulse profile called raised cosine (RC), which is aimed at
replacing the conventional hyperbolic secant pulse. From the detailed results, we infer that
the initial RC pulse evolves into a hyperbolic secant pulse. Further, in order to minimize the
input power requirement, we employ the idea of replacing the solid core in the PCF with
chloroform. In addition to the single pulse compression, we also investigate the possibility of
multisoliton pulse compression. Here, we consider eight chirped hyperbolic secant pulses as
input and generate a train of ultrashort pulses at 850 nm based on the chirped multisoliton
pulse compression. In a similar way, we extend this pulse compression with eight RC
pulses.

Index Terms: Photonic bandgap, photonic crystal fiber, pulse compression, soliton,
ultrashort pulse.

1. Introduction
In recent times, ultrashort pulses (USPs) at shorter wavelengths extending down to the visible
region with a high repetition frequency range (GHz–THz) have found wide applications, especially,
in bio-photonic sensors [1], optical coherence tomography [2]–[6], materials processing [7], etc.
There are some desirable features that USPs need to satisfy, such as being pedestal-free,
hyperbolic secant profiled, and transform-limited, for their deployment both in communication and
noncommunication-based applications. But, it is very difficult to meet these desirable characteristics
even with the carefully configured mode-locked lasers.

Hence, pulse-compression techniques have been the ultimate solution for generating USPs. Of
various schemes, the higher order soliton compression and adiabatic pulse compression tech-
niques are the ones in vogue for generating USPs [8]. Although the higher order soliton compres-
sion technique provides a large degree of compression, the compressed pulses suffer from
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significant pedestals leading to nonlinear interactions between neighboring solitons. On the other
hand, adiabatic soliton compression typically demands a monotonically decreasing dispersion
profile along the propagation direction [8]. Here, the dispersion varies slowly enough so that the
soliton self-adjusts to maintain the balance between dispersion and nonlinearity. Such a
compression has already been demonstrated experimentally through a myriad of schemes [8].
Besides, Moores pointed out that an exact chirped soliton solution to the nonlinear Schrödinger
(NLS) equation exists when we have exponentially varying dispersion [9]. One of the advantages of
the compression scheme based on exponentially varying dispersion is that the condition for
adiabatic compression does not need to be satisfied, and therefore, rapid compression is possible.
More recently, a technique known as self-similar analysis has been employed to study the linearly
chirped pulses in optical fibers [10], [11], fiber Bragg gratings (FBGs) [12], and photonic crystal
fibers (PCFs) [13], [14].

Very recently, we have investigated the chirped solitary pulses in the PCF, and based on the
results, we have proposed a novel design for generating the pedestal-free as well as chirp-free
USPs [13], [14]. In order to ensure the quality of the USPs, it is of paramount importance, from
the engineering point of view, to examine the dynamics of the pulses at various stages all along
the compression process. In this line, it is customary to study the pulse dynamics by deriving the
corresponding pulse-parameter equations. Here, we adopt the projection operator method (POM)
that facilitates arriving at two different sets of pulse-parameter equations of the Lagrangian
variation method (LVM) and the collective variable method (CVM) [15]. The performance of the
proposed compressor can be studied with many possible pulse profiles. However, the interest in
choosing raised-cosine (RC) pulse is mainly due to the ease of obtaining the same using the well-
known Mach–Zehnder modulators [8], [15]. Even though several authors have reported the pulse
compression at different wavelength regimes, pulse compression with two different pulse profiles
in the near-infrared region with high compression factor and low pedestal energy, to the best of
our knowledge, is being thoroughly addressed in this paper for the first time.

Until recently, the method of realizing USPs has been the usual trend of single pulse compression
[8]. Literatures clearly show that the single pulse compression has been accomplished using fibers,
FBGs as well as PCFs [8]–[14], [16]–[20]. With the exploding Internet traffic day by day, the ways
and means for increasing the bandwidth have attracted greater attention. It is known that the pulse’s
repetition rate does have a direct impact on the bit rate of the communication systems, which, in
turn, is related to the bandwidth. Hence, attempts have been made to use a train of USPs derived
from a continuous-wave (cw) source. This is quite often referred to as multisoliton pulse compres-
sion. Such a train of USPs has already been generated with a cw source both by using fiber and
FBGs [19], [20]. Therefore, here we demonstrate the multisoliton pulse compression at 850 nm
using a tapered PCF with both hyperbolic secant and RC pulses.

The discussed pulse compression schemes based on solid-core PCF do have the stringent
requirement of high peak power in order to initiate the compression process, which is a basic
constraint with these compressors. To overcome this barrier, we present an alternative scheme
involving filling out the core of the PCF with a suitable liquid of high nonlinear coefficient to enhance
the overall nonlinearity of the medium. In this paper, we choose chloroform to meet the high
nonlinearity requirement. In a nutshell, in this paper, we discuss the single-soliton as well as
multisoliton pulse compression with both the hyperbolic secant and RC profiles in solid-core and
chloroform-filled PCFs (CPCFs).

The paper is laid out as follows. In Section 2, we explain the dynamics of the pulse propagation in
a tapered PCF using the NLS equation wherein the dispersion and nonlinearity vary along the
propagation direction. In Section 3, we employ POM for hyperbolic secant pulse and obtain the two
sets of pulse-parameter equations, namely, LVM and CVM, which relate to the amplitude,
pulsewidth, and chirp for explaining the dynamics of pulse compression at various length scales.
We also carry out the similar dynamical studies for RC pulses. In this case, we analyze an important
issue that emerges during the evolution of RC pulse compression, i.e., convergence of RC
compressed pulse into hyperbolic secant pulse. In Section 4, we extend the aforementioned studies
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for CPCF. Further, we look at the possibility of generating a train of USPs, again, with both secant
and RC profiles, in Section 5. The findings of this work are summarized in Section 6.

2. Pulse Propagation in a Tapered PCF
The pulse propagation in a tapered PCF is described by the following modified NLS equation with
the varying dispersion and the nonlinear coefficients [10], [13], [14]:

@E
@z
þ i�2ðzÞ

2
@2E
@t2
¼ i�ðzÞ Ej j2E þ gðzÞ

2
E : (1)

Here, E , z, and t represent the slowly varying field envelope, normalized distance, and time,
respectively. The parameters �2ðzÞ, �ðzÞ, and gðzÞ are the varying dispersion coefficient, varying
nonlinear coefficient, and distributed gain/loss, respectively. We assume that the self-similar
solution of (1) is given by

Eðz; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �20DðzÞ

p R
t � Tc

1� �20DðzÞ

� �
exp i�1ðzÞ þ i

�2ðzÞ
2
ðt � TcÞ2

� �
exp

GðzÞ
2

� �
: (2)

Here, Tc , DðzÞ, and GðzÞ are the center of the pulse, the cumulative dispersion, and cumulative
gain/loss, respectively. The parameters �1 and �2 are the constant phase and chirp, respectively. In
(2), the functions DðzÞ, GðzÞ, �1ðzÞ, and �2ðzÞ are defined by

DðzÞ ¼
Zz
0

�2ðz 0Þ dz 0 GðzÞ ¼
Zz
0

gðz 0Þ dz 0

�1ðzÞ ¼�10 �
�

2

Zz
0

�2ðz 0Þ dz 0

1� �20Dðz 0Þð Þ2
�2ðzÞ ¼

�20

1� �20DðzÞ
:

Here, �, �10, and �20 are the constants of integration. In order to design an efficient optical pulse
compressor, we investigate the generation of chirped bright soliton. The chirped bright soliton
formation demands the following necessary and sufficient condition connected to dispersion,
nonlinearity, and gain of the medium

gðzÞ ¼ 1
�ðzÞ

d�ðzÞ
dz

þ 2�20�2ðzÞ
1� �20DðzÞ

(3)

where �ðzÞ ¼ �2ðzÞ=�ðzÞ. Finally, the chirped bright solitary wave in a tapered PCF is given by

Eðz; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20j jexpð��zÞ
�0expð�zÞ

s
1

T0expð��zÞ
sech

t � Tc

T0expð��zÞ

� �

� exp i�10 þ
i�20
2�T 2

0

1� expð�zÞ½ � þ i�expð�zÞ
2�20

ðt � TcÞ2
� �

(4)

where T0 and �20 are the initial pulsewidth parameter and initial chirp, respectively. Equation (4)
represents the bright soliton for varying profiles of the medium, namely, �2ðzÞ, �ðzÞ, and gðzÞ. It
should be noted that there exists a physical constraint that dictates that not all the three distributed
parameters can be varied simultaneously. However, two of them can be varied by keeping the third
one a constant. Therefore, we consider a most physically valid system wherein the dispersion and
nonlinearity vary along the propagation direction with the loss remaining a constant. On this line, the
dispersion and nonlinearity vary in the following way:

�2ðzÞ ¼ �20expð��zÞ; �ðzÞ ¼ �0expð�zÞ:
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Here, the parameters �20 and �0 are initial dispersion and nonlinearity of the medium, respectively.
Further, � is the decay rate of the dispersion, and � is the growth rate of the nonlinearity. Now, in
order to prove that the loss parameter is a constant one, we substitute the dispersion and
nonlinearity varying parameters in (3) and obtain the following expression for gðzÞ

gðzÞ ¼ �� � �ð	 � 1Þ
	 � 1þ expð��zÞ (5)

where

	 ¼ �

�20�20
: (6)

The loss/gain profile becomes a constant only when 	 ¼ 1. This implies that gðzÞ ¼ ��. Thus, the
hitherto mentioned analytical result, i.e., (4) is valid only when the dispersion decreases expo-
nentially and the nonlinearity increases exponentially with the loss remaining as a constant. These
are the crucial conditions that are to be met for the formation of the chirped optical soliton.

Interestingly, the condition gðzÞ ¼ �� drives the loss coefficient same as the exponential growth
rate of the nonlinearity. One can implement the variable transformation for the electric field
envelope, E ¼ E 0exp � �

2

	 

z

� �
in (1). The resulting NLS equation in terms of E 0 will have no loss

term, and the nonlinear coefficient �ðzÞ will become a constant. However, we are not interested in
that kind of PCF for pulse compression at near-infrared regime. Instead, we desire to have the
condition on the loss coefficient as gðzÞ ¼ �� and proceed further for an appropriate design of PCF
to help generate USPs. Thus, the conditions on dispersion, nonlinearity, and loss play an
indispensable role in designing the PCF for the construction of an efficient pulse compressor. In the
tapered PCF, size of the air hole must vary exponentially to meet these required conditions. Hence,
the ratio d=� varies exponentially from 0.6 to 0.59. Here, d is the diameter of the hole, and � is the
pitch. Further, the pitch, �, varies from 1 to 0.95 
m. While choosing PCF parameters for designing
tapered PCF, it should be remembered that the dispersion decreases from the maximum possible
value to the minimum value within single-mode regime. Since the path of air hole size variation is
exponential, one can achieve dispersion-decreasing and nonlinearity-increasing PCF, as shown in
Fig. 1.

3. Pulse Compression in a Solid Core PCF

3.1. USPs With Hyperbolic Secant Profile
To illustrate the effect of pulse compression based on the analytical results, we consider a PCF of

length L ¼ 4LD , where the dispersion length, LD ¼ T 2
0 =�2. We calculate the group velocity

dispersion (GVD) of the PCF through the finite-element method (FEM), and its value at 850 nm has
been found to be 27.24 ps/nm/km. The nonlinear coefficient of silica is 2:3� 10�20 m2W�1.

Since the calculated linear length is 19.72 m for a given input pulsewidth (FWHM) of 800 fs, the
compression can be obtained at a shorter length compared with the case of conventional fiber.

Fig. 1. Design of a tapered PCF [13].
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Using FEM, GVD at the end of the PCF is found be 10.571 ps/nm/km. From the computed
dispersion and nonlinear data by FEM, we determine the dispersion decay rate � as 0.0121 and
nonlinearity growth rate � as 0.0008 by means of curve fitting. In (6), when 	 ¼ 1, we get � ¼ �20�20,
and hence, the initial chirp is calculated as �20=ð2�Þ ¼ �0:092 GHz/ps. Fig. 2 demonstrates the
compression of a chirped solitary pulse wherein the dotted and solid lines represent the intensity
profiles of initial and final compressed pulses, respectively. From the logarithmic plot shown at the
bottom of Fig. 2, it is obvious that the compressed pulse possesses a negligible amount of
pedestals that practically are hardly worrisome. We determine this pedestal energy in terms of
residual-field energy (RFE) with the following expression:

RFEð%Þ ¼

R1
�1

E � E1j j2 dt

R1
�1

Ej j2 dt
� 100

where E is the electric field envelope calculated by solving the NLS equation using the split-step
Fourier method, and E1 is the best fit of the hyperbolic secant pulse obtained by least-mean-square
fit for all the six parameters (amplitude, pulse peak temporal position, pulsewidth, chirp, velocity,
and constant phase).

This pedestal energy calculation here is exactly the same as that of the RFE calculation carried
out in the collective variable theory [21]. While the Newton–Raphson method is used to find the
best-fit ansatz function parameters as in [21], in this work, we adopt the least-mean-square method.
Fig. 3 depicts the pedestal energy evolution during the self-similar pulse compression process.
Further, this figure confirms that the pedestal energy generated during the compression process is

Fig. 2. Intensity profiles of initial (dashed lines) and compressed output pulse (solid lines) of a chirped
solitary pulse. The physical parameters are �20=2� ¼ �0:092 GHz/ps, �20 ¼ 27:24 ps/km/nm,
� ¼ 0:0121, �0 ¼ 0:1519 W�1m�1, and � ¼ 0:0008.

Fig. 3. RFE evolution during the self-similar pulse compression process.
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highly negligible on account of the fact that it is only a fraction of attojoule ð10�18 JÞ. Hence, based
on this analysis, we infer that one can generate clean short pulses that do not interact with the
neighboring pulses unlike the case of short pulses obtained from conventional compressors. By this
method, the compression factor is calculated to be 2.6.

In addition, we derive the pulse-parameter equations for further analyzing the evolution of the
compressed pulses in terms of the associated parameters, namely, amplitude, pulsewidth, and
chirp. Here, we adopt POM that facilitates arriving at two different sets of pulse-parameter equations
of LVM and CVM. As the self-similar analysis reveals the wave shape of the bright solitary pulse as
hyperbolic secant, we use the following hyperbolic secant function as an ansatz to derive the pulse-
parameter evolution equations

E ¼ x1sech
t
x2

� �
exp i

x3
2
t2 þ ix4

 �
(7)

where x1, x2, x3, and x4 represent the pulse amplitude, width, chirp, and phase, respectively. Using
this ansatz in the modified NLS equation, we end up with two sets of pulse-parameter equations.
However, both sets of equations are of same functional forms, differing only in their corresponding
coefficients. The functional forms for both the methods are given by,

dx1
dz
¼ �2ðzÞ

2
x1x3

dx2
dz
¼ � �2ðzÞx2x3

dx3
dz
¼ �2ðzÞ x2

3 �
�1

x4
2

� �
� �2�ðzÞx

2
1

x2
2

dx4
dz
¼ �3�2ðzÞ

x2
2

þ �4�ðzÞx2
1 : (8)

Here, the constants �n ’s (n ¼ 1 to 4) are different. For LVM, the �n ’s are given by

�1 ¼
4
�2

�2 ¼
4
�2

�3 ¼
1
3

�4 ¼
5
6
:

On the other hand, the constants �n ’s for CVM are given by

�1 ¼
30
�4

�2 ¼
30
�4

�3 ¼
1
6
þ 5
4�2

�4 ¼
2
3
þ 5
4�2

:

These pulse-parameter equations, indeed, do very clearly explain the behavior of the compressed
self-similar pulses in different length scales of the PCF structure.

To explore into the dynamics of the pedestal-free USPs, we solve the two sets of pulse-
parameter equations numerically. Fig. 3 (a1, b1, and c1) illustrates the evolution of the pulse
amplitude, width, and chirp, having been examined using LVM’s equations of motion. To confirm
these results further, we solve the modified NLS equation using the split-step Fourier method.

Here, the solid curve corresponds to the analytical results, dot-dashed to numerical results, and
dotted ones to LVM. Similarly, for CVM, the corresponding evolution plots are designated as a2, b2,
and c2. From Fig. 3 (a1, b1 and a2, b2), the intensity of the pulse under compression increases
exponentially at different length scales, and the corresponding pulsewidth decreases exponentially.
This process further confirms the rapid compression. During the compression process, the chirp
associated with the compressed pulses increases exponentially over the distance, and the same is
clearly depicted in Fig. 4 (c1 and c2). Thus, the dechirper is required in the proposed compressor
scheme. It may be noted that the variations of amplitude, pulsewidth, and chirp with respect to the
distance are all exactly one and the same when studied analytically, semianalytically (both LVM and
CVM) as well as numerically, as evident from Fig. 4.
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3.2. USPs Using RC Profile
In practice, the generation of pulses of hyperbolic secant profile is difficult at high bit rates. But

Mach–Zehnder modulators, which form an important entity of optoelectronic communication
systems, do provide RC pulses, which, in turn, could serve as a better alternative for generating
USPs. More detailed study on the dynamics of RC ansatz pulse propagation in dispersion-managed
fiber systems has already been reported [22]. The RC ansatz is written as

E ¼ x1
2

1þ cos
�t
x2

� �� �
exp

ix3t2

2
þ ix4

� �
: (9)

Now, we carry out the pulse compression studies for the RC pulse too. In this line, we once again
solve the governing NLS equation with hitherto mentioned RC ansatz as an initial condition. It is to
be noted that the investigations on RC pulse have been carried out with the same physical
parameters that were employed in the case of hyperbolic secant pulses. It is practically difficult to
match the energy, peak amplitude, and pulsewidth simultaneously for a hyperbolic secant pulse
and an RC pulse. Hence, we match only peak amplitude and energy of both the profiles. Eventually,
the third parameter, namely, pulsewidth, can be calculated from the expressions relating to the
energy of RC and hyperbolic secant pulse profiles. We delineate the compression results by means
of spectrograms as well as intensity plots with linear and logarithmic scales.

Fig. 5 depicts the spectrogram for initial and compressed pulses of RC profile. From the figure, it
is clear that the spectrogram of compressed RC pulse has relatively smaller pulsewidth with
corresponding expansion in the spectral domain. Fig. 6 sheds light on the compression of chirped
RC pulse in terms of intensity plots. The dotted and solid lines represent the initial and final
compressed pulses, respectively. From the logarithmic plot in Fig. 6, it can be seen that the
compressed RC pulse exhibits only a negligible amount of pedestals.

We compute the amount of pedestal generated in the same way as in the previous section. The
pedestal energy evolution of an RC pulse is shown in Fig. 7.

An important worthy point to be noted is that the amount of pedestal energy generated is just only
half the amount of pedestal energy produced by hyperbolic secant pulse in the adiabatic pulse
compression technique, which has been discussed in [13]. Thus, in the self-similar pulse

Fig. 4. Comparison of hyperbolic secant pulse evolution changes in terms of amplitude, pulsewidth, and
chirp for LVM (a1, b1, c1) and CVM (a2, b2, c2). The physical parameters are same as in Fig. 2.
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compression scheme, the advantage of deploying the RC profiles for the pulse compression stems
from the compromising level of pedestals compared with that of hyperbolic secant pulses. However,
RC compression scheme with self-similar analysis is superior to adiabatic compression using
hyperbolic secant pulse. Hence, we believe that the compressed RC pulses obtained through self-
similar analysis will find applications that require USPs.

Fig. 6. Compression of a chirped RC pulse for the same parameter values as in Fig. 2.

Fig. 5. Spectrogram (left) of initial pulse of 800 fs FWHM pulsewidth with an initial peak intensity 0.33 W.
Spectrogram (right) of final compressed pulse produced by self-similar process after a length of 4LD .
The physical parameters are same as in Fig. 2.

Fig. 7. RFE evolution of an RC pulse for the same parameter values as in Fig. 2.
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3.3. Convergence of Compressed RC Pulse
As we study the compression of RC pulse profile, it is better to analyze the nature of the profile at

the end of the compression process. Therefore, we fit the final compressed RC pulse profile with the
hyperbolic secant pulse profile. In Fig. 8, while the solid curve represents the compressed RC
pulse, the dotted one belongs to the hyperbolic secant pulse. From the logarithmic plot, we infer that
the compressed RC pulse tries to converge into the hyperbolic secant profile, which is reflected
from its tendency to coalesce into hyperbolic profile. Thus, the initial RC pulse profile evolves into a
hyperbolic secant pulse profile during the compression process.

Having discussed the RC pulse compression by means of complete numerical simulation, next,
we would like to analyze how these numerical results would evolve when compared with variational
equations, i.e., pulse-parameter equations of hyperbolic secant ansatz. Henceforth, we compare
the numerical results of RC compressed pulses with that of variational equations of hyperbolic
secant. The evolutions of RC pulse parameters are shown in Fig. 9 wherein (a1, b1, and c1) and
(a2, b2, and c2) correspond to the LVM and CVM results, respectively. From the results, it is
obvious that the amplitude and pulsewidth parameters calculated from the numerical analysis are
oscillating closely over the respective self-similar analytical solution parameters. However, in
contrast to analytical results, interestingly, the chirp associated with the RC compressed pulse
almost attains zero as shown in Fig. 9 (c1 and c2).

In the case of RC pulse compression, the chirp evolves in such a way to compensate for the initial
value of the chirp. We find that the chirp oscillates around the zero value. Thus, the compressed RC

Fig. 9. Amplitude, pulsewidth, and chirp evolutions over 4LD distance propagation. In Figs. (a1), (b1),
and (c1) and (a2), (b2), and (c2), the dashed lines represent the results of LVM and CVM, respectively.
The solid and dotted lines correspond to full numerical and analytical results, respectively.

Fig. 8. Comparison of a chirped RC compressed pulse with that of hyperbolic secant pulse in logarithmic
scale for the same parameter values as in Fig. 2.
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pulse does not require the dechirper, and this is one of the primary advantages of deploying RC
profile for the pulse compression.

From the results of Figs. 8 and 9, we can conclude that the initial RC pulse slowly evolves into
hyperbolic secant profile, as hyperbolic secant pulse is the exact solution of the system as per the
self-similar analysis. Thus, RC can serve as a better alternative for hyperbolic secant pulse in
generating the USPs if one could compromise with the tiny amount of pedestal energy generated by
RC pulse.

It turns out to be a fundamental curiosity to investigate on the evolution of the RC compressed
pulses in the compression process extending beyond 4LD . Upon propagating the RC pulse beyond
4LD , we expect a much pronounced convergence of the final compressed RC pulse closer to the
hyperbolic secant profile. In this line, we carry out the RC pulse compression simulation over a
distance of 8LD . Fig. 10 shows the spectrograms of the initial pulse as well as the compressed RC
pulse after propagating over a distance of 8LD . The spectrogram of the compressed RC pulse for a
propagation distance of 8LD is relatively more elliptical compared with that of the one of 4LD . The
higher degree of ellipticity in the case of 8LD , which is also the case for compressed hyperbolic
secant profile, substantiates our argument that RC compressed pulse turns into hyperbolic secant
profile. Small oscillations in the contour lines of the spectrogram of the compressed pulse show the
existence of tiny pedestals.

The convergence of RC compressed pulse can also be understood by comparing the intensity
plots of both RC and hyperbolic secant pulses. When compared with Fig. 8 obtained for 4LD , we
find that a major portion of the compressed RC pulse does exactly match with the hyperbolic pulse
in Fig. 11, which is plotted for 8LD . For further confirming the convergence of RC compressed pulse,
we once again analyze the evolutions over a distance of 8LD by numerically solving the pulse-
parameter equations of both LVM and CVM, and the relevant results are presented in Fig. 12. From
Fig. 12, the amplitude and pulsewidth parameters calculated from numerical analysis oscillate
closely over the respective self-similar analytical results. An important point to be noted here is that
the amplitude of these oscillations gets reduced as the pulse propagates for a longer distance,
suggesting that they are converging toward the exact self-similar hyperbolic secant pulse.

Also, the chirp evolution for 8LD distance of propagation clearly shows that the initial chirp is
almost compensated. Thus, we infer that the chirp almost attains zero value for longer distance of
propagation. With all these findings, we claim that the proposed PCF pulse compressor based on
self-similar analysis not only produces high-quality compressed pulses but also works like a pulse
shape modulator since it has the potential to compress any pulse profiles in addition to hyperbolic
secant pulse. Another merit of the proposed compressor lies in its ability to work with pulses of any

Fig. 10. Spectrogram (left) of initial RC pulse. Spectrogram (right) of final compressed pulse over a
distance of 8LD . The physical parameters are same as in Fig. 2.
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profiles matching to the case of slightly perturbed hyperbolic secant profile such that the input profile
evolves as hyperbolic secant profile upon compression.

4. RC Pulse Compression in a CPCF
In the previous sections, we have discussed the feasibility of achieving pulse compression within a
short distance when compared with conventional fiber. Nonetheless, the process requires huge
amount of peak power for inducing required nonlinearity to cope with the enhanced dispersion in
PCF. In this section, we try to overcome this power requirement by filling out the core of the PCF
with a suitable liquid possessing the desired nonlinear coefficient that would be sufficient enough for
the pulse compression with a relatively less input power. Very recently, studies on supercontinuum
generation [23] and pedestal-free USPs in terms of soliton-type pulses have been carried out in
CPCF [13].

The proposed CPCF is shown in Fig. 13(b). The filling of chloroform can be done in the core of
the PCF by capillary force technique [24]. This CPCF has dc=�c ¼ 0:8, with �c ¼ 1 
m. Here, the
core diameter D is chosen to be the same as the diameter of air hole in the outer ring dc , i.e.,
D ¼ dc . In order to meet with the requirement of exponentially dispersion-decreasing profile and
exponentially nonlinearity-increasing profile, we design the tapered CPCF by varying the size of the
air hole from 0.8 to 0.665 and pitch from 1 
m to 1.08 
m [6]. By FEM, we calculate the GVD to be

Fig. 12. Amplitude, pulsewidth, and chirp evolutions over 8LD distance propagation. In Figs. (a1), (b1),
and (c1) and (a2), (b2), and (c2), the dashed lines represent the results of LVM and CVM, respectively.
The solid and dotted lines correspond to full numerical and analytical results, respectively.

Fig. 11. Comparison of a chirped RC compressed pulse with that of hyperbolic secant pulse in
logarithmic scale for the same parameter values (as in Fig. 2) for 8LD propagation distance.
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68.71 ps/nm/km at 850 nm. This is 2.5 times greater than the GVD value of the solid-core PCF,
which is 27.24 ps/nm/km. Further, the nonlinearity of CPCF is almost 200 times greater than that of
the solid-core PCF. Therefore, by using CPCF, one can achieve the same compression factor with
the input power being 200 times lower than the requirement for the solid-core PCF. Fig. 14
includes the spectrogram of the initial pulse as well as the compressed one at 8LD . It may be
noted that the spectrogram of compressed RC pulse being highly elliptical signifies the crucial
point that RC pulse evolves into hyperbolic secant profile upon being compressed. Further, small
oscillations in the contour lines in the spectrogram of the compressed pulse get vanished unlike
the case of the solid-core PCF.

Comparing the intensity profiles of hyperbolic secant as well as RC pulse both in the case of
solid-core PCF (as in Fig. 11) and the proposed CPCF (as in Fig. 15), one could easily figure out
that the matching between the profiles of hyperbolic secant and RC pulse is more conspicuous in
the case of CPCF only.

As discussed previously, we now delve into the dynamics of the RC pulse compression in CPCF.
The discussions relating to the variation in amplitude, pulsewidth, and chirp with respect to
propagation distance are almost same here too. However, an important point to be highlighted here
is that the amplitude of oscillations is much lower when compared with the solid-core PCF. This
advantage stems from filling out the appropriate liquid within the core to augment to the nonlinearity
(see Fig. 16).

Fig. 13. (a) Schematic diagram of a solid-core PCF and a (b) CPCF [13].

Fig. 14. Spectrogram (left) of initial RC pulse. Spectrogram (right) of final compressed pulse over a
dis tance of 8LD in CPCF. The phys ica l parameters are �20=2� ¼ �0:092 GHz/ps,
�20 ¼ 68:72 ps/km/nm, � ¼ 0:03, �0 ¼ 26:3 W�1m�1, and � ¼ 0:006.
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Thus far, we have investigated the compression of RC pulse in PCF and CPCF, designed using
self-similar analysis. We find that the RC-shaped pulse can undergo the same amount of
compression like the hyperbolic secant pulse, but with generation of tiny pedestals. The amount of
pedestal generated is quantified in terms of pedestal energy, which is calculated by the difference in
the electric field envelopes between the RC compressed pulse and the best-fit hyperbolic secant
pulse whose parameters are the same as that of the RC pulse. We observe that during the
compression of the RC pulse, the profile of the pulse slowly evolves toward the hyperbolic secant
shape as per self-similar analysis. More importantly, initial chirp of the RC pulse gets compensated
during compression in both PCF and CPCF compressors, which, in-turn, can avoid the need for the
dechirper in the proposed self-similar-analysis-based PCF compressors. From all the results reported
here for the RC pulse compression, we conclude that the CPCF compressor is a better device to
efficiently compress pulses with initial profile, different from that of the hyperbolic secant shape.

5. Multi-Pulse Compression in PCF and CPCF

5.1. Generation of a Train of USPS With Hyperbolic Secant Pulses
Based on the results presented in Sections 2–4, one can understand that the proposed

compressor effectively generates the short pulse when input is a single broad pulse in time domain.

Fig. 16. Amplitude, pulsewidth, and chirp evolutions over 8LD distance propagation in CPCF. In Figs.
(a1), (b1), and (c1) and (a2), (b2), and (c2), the dashed lines represent the results of LVM and CVM,
respectively. The solid and dotted lines correspond to full numerical and analytical results, respectively.

Fig. 15. Comparison of a chirped RC compressed pulse with that of hyperbolic secant pulse in
logarithmic scale for the same parameter values as in Fig. 14 for 8LD in CPCF.
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In this section, the objective is to check if the proposed compressor could generate a train of short
pulses with the input being more than one pulse. For the illustration purpose, we take eight chirped
hyperbolic secant pulses for generating a train of USPs at 850 nm by means of the chirped
multisoliton pulse compression.

Fig. 17 demonstrates the compression of chirped multisolitary pulses, wherein the dotted and
solid lines represent the intensity profiles of initial and final compressed pulses, respectively. Here,
the initial pulsewidth of 800 fs, measured as FWHM, is compressed to 200 fs over a propagation
distance of 8LD . In this paper, the separation between hyperbolic secant pulses is chosen to be the
same as that of RC pulses. From the logarithmic plot shown at the bottom of Fig. 17, it is obvious
that the compressed pulses exhibit the negligible amount of pedestals. These pedestals arise
because of the nonlinear tail interactions between pulses. Further, the initial pulse train possesses a
very high degree of interacting electric fields in the tail parts, and the same is quite evident from the
logarithmic intensity plot.

As has been delved in the single pulse compression, for multisoliton pulse compression too, we
carry out the compression studies in the CPCF for reducing the required peak power. A train of
short pulses with the minimum peak power obtained from the temporally broadened hyperbolic
pulses is shown in Fig. 18. The impact of filling chloroform in the core of the PCF can very well be

Fig. 17. Compression of a train of chirped solitary pulses in solid-core PCF over a propagation distance
of 8LD . Dashed and solid lines represent the intensity plots of initial and compressed pulse trains,
respectively. The parameter values are same as in Fig. 2.

Fig. 18. Compression of a train of chirped solitary pulses in CPCF over a propagation distance of 8LD .
Dashed and solid lines represent the intensity plots of initial and compressed pulse trains, respectively.
The parameter values are same as in Fig. 14.
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appreciated by the awful decrement in the peak power of the compressed pulses from CPCF as
against the case of solid-core PCF. An important point to emphasize at this juncture is that the
amount of pedestal produced in the CPCF compression scheme is less than that in the case of the
solid-core PCF.

5.2. Generation of a Train of USPS With Chirped RC Pulses
It is important to underpin the deployment of RC pulses in place of hyperbolic secant profiled

pulses, without compromising much on the magnitude of the pedestals. In the earlier discussions,
we have demonstrated the compression of both hyperbolic secant and RC pulse profiles with the
input being a single pulse. From the detailed investigation, it could be inferred that the compressed
RC pulse almost attains the zero chirp, whereas the hyperbolic secant pulse is not completely chirp-
free. As a result, RC pulses obviate the necessity for a dechirper, and undoubtedly, this results in
realizing a compact and efficient pulse compressor. Another important point is that the RC pulse
slowly evolves into hyperbolic secant-shaped pulse. These interesting results are the main driving
force for investigating a train of USPs using RC pulses against the compressed hyperbolic secant
train of pulses.

Fig. 19 demonstrates the compression of chirped RC pulses, wherein the dotted and solid lines
represent the intensity profiles of initial and final compressed pulses, respectively. From the
logarithmic plot shown at the bottom of Fig. 19, it could be seen that the compressed RC pulses
have some pedestals whose magnitude is larger than that of the compressed hyperbolic secant
pulses with the same separation between the pulses. These pedestals appear because of nonlinear
tail interaction between pulses as well as deviation of the initial RC pulse profile from the self-similar
hyperbolic secant pulse. In order to understand the global behavior of the compressed RC pulses,
we compare the intensity plot of compressed hyperbolic secant pulses with that of the compressed
RC pulses, and the same is depicted in Fig. 20. Here, the solid and the dotted curves relate to the
cases of RC and hyperbolic secant pulses, respectively.

From the logarithmic plot, we find that the RC pulse profiles do exactly match with that of the
hyperbolic secant pulses. Thus, at the end of the compression process, these initial RC pulses do
evolve into hyperbolic secant pulses.

The next natural curiosity is to explore into the compression of RC pulses in the CPCF. Fig. 21
shows the compression of chirped RC pulses, wherein the dashed and solid lines indicate the
intensity profiles of initial and final compressed pulses, respectively. From the logarithmic plot, it
turns out that the compressed pulses have some pedestals that are greater than the case of
compressed hyperbolic secant pulses with the separation between the pulses being the same. As
expected, the pedestals generated in the case of CPCF compressor are lesser than the solid-core
PCF compressor.

Fig. 19. Compression of a train of RC pulses in solid-core PCF over a propagation distance of 8LD .
Dashed and solid lines represent the intensity plots of initial and compressed pulse trains, respectively.
The parameter values are same as in Fig. 2.
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Fig. 22 illustrates the comparison of the compressed RC pulses (solid lines) with that of
compressed hyperbolic pulses (dashed lines) in CPCF. This logarithmic plot throws light on the
merit of the RC compressed pulses over the compressed hyperbolic pulses.

It is very interesting to note that the degree of pedestals generated while compressing RC pulses
in CPCF is same as the pedestals generated upon compressing hyperbolic secant pulses in solid-
core PCF. This crucial aspect leads to relatively a better convergence of compressed RC pulses
into hyperbolic secant profile over a propagation distance of 8LD when solid-core PCF is replaced
by CPCF.

6. Conclusion
Based on the analytical results of chirped soliton, we have designed a pulse compressor using a
tapered PCF and discussed the possibility of generating pedestal-free USPs around 850 nm. A
complete dynamics of the compressed pulses, such as the variations in the amplitude, pulsewidth,

Fig. 21. Compression of a train of RC pulses in CPCF over a propagation distance of 8LD . Dashed and
solid lines represent the intensity plots of initial and compressed pulse trains, respectively. The
parameter values are same as in Fig. 14.

Fig. 22. Comparison of intensity plots of a train of compressed RC pulses with that of hyperbolic secant
pulses in logarithmic scale in CPCF.

Fig. 20. Comparison of intensity plots of a train of compressed RC pulses with that of hyperbolic secant
pulses in logarithmic scale.
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and chirp, has also been studied using POM. Hence, we have derived two different sets of pulse-
parameter equations of LVM and CVM. We have observed that the analytical, semianalytical, and
full numerical results pertaining to amplitude, pulsewidth, and chirp match very well in all the
domains of study. It may be noted that the compressed hyperbolic pulses have some residual chirp
and hence require a dechirper. On the other hand, compressed RC pulses are almost chirp-free,
and this turns out to be a major advantage of RC pulse compression scheme compared with those
in vogue. In addition, in order to analyze the performance of the proposed compressor, an attempt
has also been made for compressing the RC pulse. We did fit the compressed RC pulse with that of
hyperbolic secant pulse. The RC compressed pulse evolution has been studied for 4LD as well as
8LD distance of propagation. From the result, it has been found that the RC pulse has evolved into
hyperbolic secant pulse for a propagation distance of 8LD .

We have found that the hitherto discussed compressor demands a large input power for initiating
the compression process. Thus, in this work, we have also addressed this crucial issue and
prescribed the remedy for the same by filling the chloroform liquid in the core region of the PCF.
This new design helps enhance all the characteristics of the compressed pulse. Consequently,
CPCF turns undoubtedly superior to the conventional solid-core PCF. Thus, the advantage of
deploying the RC profiles for the pulse compression stems from the compromising level of
pedestals compared with that of hyperbolic secant pulses.

In addition to the issues discussed above, we have also demonstrated the multisoliton pulse
compression with the eight hyperbolic secant pulses. But the previous experience clearly indicates
that the generation of pulses of hyperbolic secant profile has always been a challenging problem.
To overcome this barrier, we have deployed RC pulses as an alternative to the hyperbolic secant
profile. In this paper, the separation between hyperbolic secant pulses has been chosen to be the
same as that of RC pulses. Here also, we fit the compressed RC pulses with that of hyperbolic
secant pulses. From the results, we have found that the compressed RC pulses have evolved into
the hyperbolic secant pulses. Thus, it can be seen that, while the train of solitary pulses generated
with the input being hyperbolic secant pulses almost have no pedestals, the one produced by the
RC pulses does have pedestals, although down to a negligible level. We reiterate that the amount of
pedestals generated while compressing RC pulses in CPCF are same as the pedestals generated
with the hyperbolic secant pulses in solid-core PCF. This vital point assures a better convergence of
compressed RC pulses into hyperbolic secant profile over a propagation distance of 8LD when
solid-core PCF is replaced by CPCF.

To sum up the various pulse compression schemes that have been discussed in this work over a
distance of 8LD , we would like to mention that the pulse compression, both as a single pulse and a
train of pulses, has been done with hyperbolic secant as well as RC profiles in solid-core PCF as
well as CPCF. Revisiting the various results, we firmly believe that the scheme involving generation
of a train of USPs by using CPCF unarguably stands unique among the rest of the schemes owing
to its merits discussed in the text.
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