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In this article, we consider the continuous wave �cw� propagation through the nonlinear periodic

structure that consists of alternating layers of both positive and negative Kerr coefficients along the

propagation direction. We investigate the modulational instability �MI� conditions required for the

generation of ultrashort pulses for the nonlinearity management system. We study the occurrence of

MI at the top and bottom edges of the photonic band gap �PBG� where the forward and backward

propagating waves are strongly coupled because of the presence of the grating structure. We also

study the MI when cw is detuned from the edges of the PBG into the anomalous and normal

dispersion regimes. In addition, we discuss the existence of gap solitons for the nonlinearity man-

agement system in the upper and lower branches of the dispersion curve through the MI gain

spectra. We observe the generation of higher order solitons in the nonlinear periodic structure when

the input power is increased beyond a certain critical level. Finally, we discuss the generation of

higher order Bragg grating solitons through the intensity evolution of the forward and backward

propagating fields. © 2005 American Institute of Physics. �DOI: 10.1063/1.1899824�

Optical transmission using a short optical pulse is a fun-

damental technology for accomplishing a high speed and

long distance global network. Among many optical trans-

mission formats, an optical soliton offers a great potential

to realize an advanced optical transmission system. For

instance, in the field of nonlinear optics, soliton is gener-

ated after the exact balance between the group velocity

dispersion and the fiber Kerr nonlinearity called self-

phase modulation (SPM). To realize solitons in fiber, fi-

bers of length of about hundreds of kilometers are re-

quired in order that dispersion counteracts with SPM. In

recent times, scientists have been able to generate solitons

in so-called fiber Bragg gratings (FBGs) whose length will

be of the order of a few centimeters. This is mainly be-

cause of the grating induced dispersion which is six or-

ders of magnitude greater than that of the conventional

standard telecommunication fiber. In FBG, the solitons

arise as a result of grating induced dispersion and Kerr

nonlinearity. It should be emphasized at this juncture

that just because the dispersion is many orders of mag-

nitude larger than that of glass, the interaction lengths

are reduced accordingly, enabling nonlinear pulse com-

pression as well as soliton generation and soliton dynam-

ics to be studied on length scales of centimeters. More-

over, these solitons have the ability to propagate through

the grating structure with velocities that can be substan-

tially less than that of the velocity of light in a pure glass

without dispersive broadening. Realizing the importance

of generation of solitons in Bragg grating structure, this

article attempts to address the generation of ultrashort

pulses through MI phenomenon.

I. INTRODUCTION

In recent times, there has been renewed interest in modu-

lational instability �MI� studies in both fiber and periodic

structure in fiber known as fiber Bragg grating, because of its

fundamental and applied interests.
1–3

It is well established

that when the input is a light pulse, the propagation in an

optical fiber is governed by the well-known nonlinear

Schrödinger �NLS� equation and the output can be described

in terms of a set of solitons. The issue to be investigated in

this article is, “what would happen if the input light wave has

continuous wave (cw) amplitude?” When it propagates

through a fiber, one can show that the input light wave be-

comes unstable for a small perturbation around the initial

amplitude. This instability is called the modulational insta-

bility �MI�, also known as Benjamin–Feir instability. This

phenomenon was predicted by Benjamin and Feir
4

for waves

on deep water and by Bespalov and Talanove
5

for electro-

magnetic waves in nonlinear media with cubic nonlinearity.

It should be noted that the MI has been observed in many

branches of physics such as nonlinear optics, plasma physics,

and condensed matter physics �fibers, magnetics, BECs, long

Josephson junction, etc.�.
Note that the perturbation of a cw in the MI process can

either originate from quantum noise or from a frequency

shifted signal. In the time domain, induced MI leads to the

break-up of the quasi-cw pump wave into a train of ul-

trashort pulses.
6

It has been shown that the temporal shape of

these ultrashort pulses depends not only on the powers of the
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different waves but also on the modulational frequency.
7

In

the frequency domain, the generation of high-repetition-rate

pulse trains resulting from MI is determined by the growth of

a cascade of sidebands. The number of harmonics is given by

the temporal shape of the generated pulses and is determined

by the initial conditions at the fiber input.
7

Based on the field

component involved in the MI process, MI is further classi-

fied into two types. The first one is the scalar MI involving a

single pump wave propagating in a standard nonbirefringent

fiber. The other one is known as the vector MI, which in-

volves more than one field component. Vector MI occurs in a

birefringent fiber due to cross-phase modulation �XPM� be-

tween two modes that extends the instability domain to the

normal dispersion regime, which is in contrast to the result of

the NLS equation. This vector MI is also called XPM in-

duced MI.

The occurrence of MI in fibers was first suggested by

Hasegawa and Brinkman.
8

Later it was experimentally veri-

fied by Tai, Hasegawa, and Tomita.
9

In addition, various

higher order linear and nonlinear effects such as higher order

dispersions, self-steepening, and time delayed Raman effects

have also been considered and these effects are found to

strongly influence MI in fibers.
1

Like in the case of fiber, MI in a FBG has been studied

at low and high power levels for both anomalous and normal

group velocity dispersion �GVD� regimes in the upper and

lower branches of the dispersion curve, respectively.
10

In the

anomalous GVD case, at relatively low powers, the gain

spectrum is found to be similar to the case of a uniform

index fiber. MI also occurs even in the normal GVD case

where MI has a threshold condition. Recently, MI has been

observed experimentally in an apodized grating structure

wherein a single pulse has been converted into a train of

ultrashort pulses.
11,12

In addition to temporal instabilities,

spatial temporal instabilities have also been studied in a non-

linear bulk medium with Bragg gratings in the presence of

Kerr-type nonlinearity.
13

Very recently, in the dynamic grat-

ing, it has been experimentally shown that there is no power

threshold for the occurrence of MI in the normal dispersion

regime.
14,15

In this article, we plan to discuss the MI-driven dynam-

ics and their subsequent generation of ultrashort pulses near

and away from the PBG structure for the nonlinearity man-

agement system under the influence of Kerr nonlinearity. We

also discuss the generation of higher order Bragg grating

solitons in the nonlinearity management system through MI

gain spectra scheme. This article is laid out as follows. In

Sec. II, we introduce the necessary and appropriate theoreti-

cal model to describe the nonlinear pulse propagation in the

nonlinearity management system. We also explore the char-

acteristics of the nonlinear periodic structure through the

nonlinear dispersion relation in Sec. III. In Sec. IV, by ap-

plying the standard linear stability analysis, we investigate

the occurrence of MI at the two edges of the photonic band

gap structure as well as on the upper and lower branches of

the dispersion curves. Section V deals with the discussion on

the existence of bright and dark gap solitons derived from

the various modulational instability conditions discussed in

the previous section. In continuation of the analysis, in Sec.

VI, we turn to discuss the generation of higher order solitons

in the nonlinear periodic structure for both forward and back-

ward propagating fields. Finally, we present conclusion of

this article in Sec. VII.

II. THEORETICAL MODEL

In recent works, He et al.,
16

Brzozowski et al.,
17

and

Pelinovsky et al.
18

have introduced the concept of nonlinear-

ity management of refractive optical gratings by suitably

compensating Kerr nonlinearities. This leads to the disap-

pearance of multistability resulting in hysteresis free opera-

tion, and they have modeled a complete analytical theory of

true all-optical limiting in nonlinear optical gratings.
19

Our

present work deals with the study of the nonlinear cw solu-

tion and its destabilization of the above-mentioned model by

utilizing the concept of MI.

Recently, Pelinovsky et al.
18,19

have arrived at the non-

linear coupled mode �NLCM� equations that govern the non-

linear pulse propagation in a nonlinear periodic structure

consisting of N alternating layers with different linear refrac-

tive indices and different Kerr nonlinearities having the

form
19

i
�A f

�z
+

i

vg

�A f

�t
+ �A f + �Ab + ���A f�

2 + 2�Ab�2�A f

+ ���2�A f�
2 + �Ab�2�Ab + A f

2
Ab

* + Ab
2
A f

*� = 0,

�1�

− i
�Ab

�z
+

i

vg

�Ab

�t
+ �Ab + �A f + ���Ab�2 + 2�A f�

2�Ab

+ ���2�Ab�2 + �A f�
2�A f + Ab

2
A f

* + A f
2
Ab

*� = 0.

Here z and t are the normalized spatial coordinate and

time, respectively, and vg is the group velocity. The param-

eters ��=�n̄ /c���−�B�� and � are the detuning and linear

coupling coefficients, respectively. The parameters � and �
are nonlinearity coefficients, � being the coefficient of non-

linearity management. When �=0, Eq. �1� reduces to the

well-known NLCM equations for the conventional FBG hav-

ing positive Kerr coefficients along the propagation direc-

tion, studied already extensively, in the literature.
10

III. NONLINEAR DISPERSION RELATION

Before investigating the MI conditions, first we explore

the characteristics of the nonlinear periodic structure in the

presence of Kerr nonlinearity through the nonlinear disper-

sion relation. It has been well established that knowledge of

the nonlinear dispersion curves obtained from the continuous

wave solutions of the coupled-mode equations provide con-

siderable physical insight into the existence of the photonic

band gap.
2,10

In order to derive the nonlinear dispersion re-

lation for the NLCM equations, we assume the following

form of the solution:

A f = u f exp�iqz�, Ab = ub exp�iqz� , �2�

where q=k−kB represents wave number, u f and ub are the

constants along the grating length, expressed generally in

terms of a parameter, f =ub /u f, which represents the ratio of
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the forward- to the backward-propagating waves. In other

words, the parameter f describes how the total power P0

=u f
2+ub

2 is divided between the forward- and backward-

propagating waves and hence can be written as

u f =� p0

1 + f2
, ub =� p0

1 + f2
f . �3�

Here, f can be positive or negative. For values of �f ��1.0,

the backward wave dominates. On substituting Eqs. �2� and

�3� in the basic equation, the following dispersion relations

can be arrived at:

q = − �
�1 − f2�

2f
−

�P0

2

1 − f2

1 + f2
− �P0�1 + f − f2

2f
� ,

�4�

� = − �
�1 + f2�

2f
−

3�P0

2
−

�P0

2f

f4 + f3 + 6f2 + 1

1 + f2
.

When �=0 in Eq. �4�, the dispersion relations for the case of

FBG having the same positive Kerr coefficients can be

retrieved.
10

When we introduce the positive/negative nonlin-

earity into the system, there is a corresponding increase/

decrease in the average refractive index of the medium. This

in turn shifts the center frequency from the middle of the

band gap. It also means that the high intensity electric field

shifts the PBG to either the upper or lower branches of the

dispersion curves depending on the sign of nonlinearity.

Thus positive nonlinearity shifts PBG down in energy and as

a result the center frequency now locally gets tuned to the

upper edge of the PBG. The negative nonlinearity shifts the

PBG up in energy, and hence the central frequency is now

shifted to the lower edge of the PBG. These events are

clearly depicted in Fig. 1.

When the power of the applied electric field exceeds a

certain threshold power called critical power, the applied

field drastically affects the PBG. This critical value of P0 can

be calculated from the nonlinear dispersion relation �4�. In

order to study the role of nonlinearity management coeffi-

cient on the PBG structure, first we intend to study the phys-

ics behind the role of nonlinearity on PBG in the absence of

nonlinearity management coefficient.
2

Whenever the applied

input power P0 exceeds the critical power, PC�=2� /��, there

is a formation of loop on the upper branch of the dispersion

curve and is shown in Fig. 2�a�. For the negative nonlinear-

ity, the loop is formed on the lower branch, which is also

shown in Fig. 2�b�.
Introducing the nonlinearity management into the system

ultimately reduces the size of the loop already formed. It can

also be seen that increasing nonlinearity management further

leads to the disappearance of the loop. The reason behind the

same could be attributed to the fact that the more we intro-

duce nonlinearity management, the more the system ceases

to hold its nonlinear flavor and that is why dispersion curves

resemble the case of the PBG of a linear case as shown in

Figs. 2�c� and 2�d�.

IV. LINEAR STABILITY ANALYSIS

The fundamental idea of linear stability analysis �LSA�
is to perturb the cw solution slightly and then study whether

this small perturbation grows or decays with propagation. It

should be emphasized that LSA is valid as long as the per-

turbation amplitude remains small compared with the cw

beam amplitude. If the perturbation amplitude grows large

FIG. 1. At low field strengths, center frequency falls within the PBG �left�.
At high field strengths, the center frequency gets tuned out of the PBG.

FIG. 2. �a� Role of positive nonlinear-

ity on the PBG in the absence of non-

linearity management. �b� Role of

negative nonlinearity on the PBG in

the absence of nonlinearity manage-

ment. �c� Role of nonlinearity manage-

ment coefficient, when �=0.4, on the

PBG. �d� Role of nonlinearity manage-

ment coefficient, when �=0.9, on the

PBG.
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enough to be comparable to that of the incident cw beam, the

numerical analysis must be adopted. In this section, we re-

strict ourselves to the former case. Here, we perturb slightly

the steady-state solutions, given by Eq. �2�, without imposing

boundary conditions at the grating ends.
11

After the pertur-

bation, Eq. �2� changes as

A j = �u j + a j�exp�iqz�, �j + f ,b� . �5�

Assuming that the perturbation a j is small, we substitute Eq.

�5� into the basic equations and linearize in a j to obtain

i� �a f

�z
+

1

vg

�a f

�t
� − �fa f + �ab +

�p0

1 + f2

��a f + a f
* + 2f�ab + ab

*�� +
�p0

1 + f2	1

2
a f + 2ab + ab

*

+ f�a f + 2a f
* + 2ab� + f2�2ab + ab

* + a f
*� − f3ab
 = 0,

�6�

− i� �ab

�z
−

1

vg

�ab

�t
� −

�

f
ab + �a f +

�p0

1 + f2
�2f�a f + a f

*� + f2�ab

+ ab
*�� +

�p0

1 + f2	−
1

2
ab + 2a f + a f

*

+ f�ab + 2a f + 2ab
*� + f2�2a f + a f

* − ab� −
ab

f
+ ab

*
 = 0.

In order to solve the set of two linearized equations

given by Eq. �6�, we assume a plane wave ansatz, constitut-

ing both forward and backward propagation, having the

form
2,10

a j = c j exp�i�Kz − �t�� + d j exp�− i�Kz − �t�� �j = f ,b� ,

�7�

where c j and d j are real constants, K the propagation con-

stant, and � the perturbation frequency. Following the

method discussed in Ref. 10, on substituting Eq. �7� into Eq.

�6�, we obtain a set of four homogeneous equations satisfied

by c j and d j,

�− K + s − �f + 	1 + 	2f�1 − f2� +
	2

2
�c f

+ �� + 2	1f + 2	2�1 + f2� + 2	2�cb + �	1 + 	2f�2 + f��d f

+ �2	1f + 	2�1 + f2��db = 0,

�� + 2	1f + 2	2�1 + f2� + 2	2�c f

+ �K + s −
�

f
+ 	1f2 −

	2

2
−

	2

f
+ 	2f�1 − f��cb

+ �2	1f + 	2�1 + f2��d f + �	1f2 + 	2�1 + 2f��db = 0,

�	1 + 	2f�2 + f��c f + �2	1f + 	2�1 + f2��cb

+ �K − s − �f + 	1 +
	2

2
+ 	2f�1 − f2��d f

+ �� + 2	1f + 2	2 + 2	2�1 + f2��db = 0,

�2	1f + 	2�1 + f2��c f + �	1f2 + 	2�1 + f��cb

+ �� + 2	1f + 2	2 + 2	2�1 + f2��d f

+ �− K − s −
�

f
+ 	1f2 −

	2

2
−

	2

f
+ 	2f�1 − f��db = 0.

This set has a nontrivial solution if and only if the 4�4

determinant formed by the coefficients matrix vanishes as

given in the following:

�
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

� = 0, �8�

where

m11 = − K + s − �f + 	1 + 	2f�1 − f2� +
	2

2
,

m12 = � + 2	1f + 2	2�1 + f2� + 2	2,

m13 = 	1 + 	2f�2 + f� ,

m14 = 2	1f + 	2�1 + f2� ,

m21 = � + 2	1f + 2	2�1 + f2� + 2	2,

m22 = K + s −
�

f
+ 	1f2 −

	2

2
−

	2

f
+ 	2f�1 − f� ,

m23 = 2	1f + 	2�1 + f2� ,

m24 = 	1f2 + 	2�1 + 2f� ,

m31 = 	1 + 	2f�2 + f� ,

m32 = 2	1f + 	2�1 + f2� ,

m33 = K − s − �f + 	1 +
	2

2
+ 	2f�1 − f2� ,

m34 = � + 2	1f + 2	2 + 2	2�1 + f2� ,

m41 = 2	1f + 	2�1 + f2� ,

m42 = 	1f2 + 	2�1 + f� ,

m43 = � + 2	1f + 2	2 + 2	2�1 + f2� ,

m44 = − K − s −
�

f
+ 	1f2 −

	2

2
−

	2

f
+ 	2f�1 − f� .

This condition leads to a fourth-order polynomial in s

= �� /vg� whose roots depend on K, �, and P0. The four roots

of the polynomial in s determine the stability of the continu-

ous wave solution. It is well established that MI occurs when

there is an exponential growth in the amplitude of the per-

turbed wave, which in turn implies the existence of a nonva-

nishing imaginary part in the complex parameter s.
2,10

The
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MI phenomenon is measured by a gain given by G

��Im sm�, where Im sm denotes the imaginary part of sm

which is the root with the largest imaginary part. First we

study the MI for the general case �where f �0 and f 
0� and

then consider the two more special cases when f = ±1.

A. The anomalous dispersion regime „f<0…

First we consider the general case where the parameter f

with a value less than zero i.e., f �0, describes the detuning

of the cw from the edge of the PBG into the anomalous

dispersion regime. We obtain the gain spectra of MI for both

the anomalous and normal dispersion regimes for the follow-

ing two cases: �a� gain, G�K ,����Im sm�K ,��� for a particu-

lar value of the input power P0, and �b� G�K , P0�
��Im sm�K , P0�� for a particular value of the linear coupling

constant �.

In the anomalous dispersion regime, for comparatively

small values of the input power, say P0=0.1 and nonlinearity

management coefficient, say �=0.001, we obtain the gain

spectrum having two distinct sidelobes on either side of zero

propagation constant region and with a zero value along the

line where the propagation constant vanishes. Also, the side-

lobes broaden with increasing height as the value of the lin-

ear coupling coefficient � increases as depicted in Fig. 3�a�.
For the same situation, but having comparatively large value

of the nonlinearity management coefficient, say, �=0.5, the

sidelobes vanish and, instead, we obtain a gain spectrum

centered around the zero propagation constant region with a

maximum value along the line where the propagation con-

stant vanishes. Also, the centered lobe broadens with increas-

ing �, as is portrayed in the surface plot of Fig. 3�b�.

B. Top of the photonic band gap „f=−1…

It is well known that the condition f =−1 represents the

tuning of the cw into the top of the photonic band gap. Now

on repeating the same procedure for f =−1.0, in addition to

having a centered lobe, we observe two distinct curves

whose heights reduce on either side of the zero propagation

constant when the coupling coefficient � is increased, which

is as shown in Fig. 4.

C. The normal dispersion regime „f>0…

Now, we consider the other general case for which the

parameter f is greater than zero i.e., f 
0, which represents

the detuning of the cw into the lower branch of the disper-

sion curve where the grating-induced dispersion is normal.

FIG. 3. �a� Gain spectrum in the anomalous dispersion regime, for the

physical parameters: P0=0.1, �=0.001, �=0.5, and f =−0.5. �b� Gain spec-

trum in the anomalous dispersion regime, for the following physical param-

eters: P0=0.1, �=0.5, �=0.5, and f =−0.5.

FIG. 5. Gain spectrum in the normal dispersion regime when P0=0.5, �
=0.001, �=0.5, and f =0.5.

FIG. 4. Gain spectrum at the top of the PBG for the following physical

parameters: P0=0.5, �=0.9, �=0.5, and f =−1.
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For the normal dispersion regime, for f =0.5 and for com-

paratively small values of the nonlinearity management co-

efficient, say �=0.001, the gain spectrum has values except

along the line where the propagation constant vanishes

which is shown in Fig. 5. For comparatively large values of

the nonlinearity management coefficient, say �=0.5, the gain

spectrum has a “w” shaped form centered around the zero

propagation constant region and with the edges being flat-

tened, as depicted in Fig. 6.

D. Bottom of the photonic band gap „f=1…

The condition f =1 corresponds to tuning the cw beam

into the bottom of the photonic band gap. On repeating the

same procedure for f =1.0, for comparatively small values of

the �Nonlinear Management Coefficient� NMC, say �
=0.001, the gain spectrum has zero value along the zero

propagation constant region. However, it has maximum val-

ues along the line where the propagation constant vanishes

for comparatively large values of the NMC, say �=0.5, and

this is shown in Fig. 7. So far, we have plotted the gain

spectrum by varying the linear coupling constant � and keep-

ing the input power P0 fixed. Now on keeping the linear

coupling constant � fixed and on varying the input power P0,

we observe that the MI condition is achieved for compara-

tively small values of P0 for both the anomalous and normal

dispersion regimes. This is depicted in the surface plots

given by Figs. 8 and 9.

Having discussed the MI gain spectra for both anoma-

lous and normal dispersion regimes in the upper and lower

branches of the dispersion curve for the nonlinearity man-

agement system, in Sec. V, we show the existence of the

soliton in the upper and lower branches of the dispersion

curve through the same physical parameter values for which

the MI gain spectra have already been obtained.

V. DISCUSSION ON THE EXISTENCE OF GAP
SOLITONS

The gap and Bragg solitons have been extensively inves-

tigated by many research groups in FBG and still the inves-

tigations on these exciting entities are alive. For instance,

Chen and Mills
20

were the first to predict the existence of

self-localization of a light wave within the �Photonic Band

Gap� PBG of a nonlinear grating.

To investigate these solitons in FBG, so far, two theoret-

ical approaches have been developed. The first one is the

coupled mode theory which describes a coupling between

FIG. 8. Gain spectrum in the anomalous dispersion regime for various val-

ues of the input power P0 and when �=0.1, �=1.4, �=0.2, and f =−0.5.

FIG. 9. Gain spectrum in the normal dispersion regime for various values of

the input power P0 and when �=0.1, �=1.4, �=0.2, and f =0.5.

FIG. 6. Gain spectrum in the normal dispersion regime when P0=0.5, �
=0.5, �=0.5, and f =0.5.

FIG. 7. Gain spectrum at the bottom of the PBG when �=0.001, �=1.4,

�=0.2, and f =1.
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forward and backward traveling modes where the nonlinear

pulse propagation is described by the NLCM equations. In

general, the NLCM equations are nonintegrable and are ap-

plicable anywhere in the PBG structure. However, in a few

cases, NLCM equations have analytical solutions represent-

ing the solitary wave solutions. The most general form of the

solitary wave solutions to the NLCM equations, for the first

time, was derived by Aceves and Wabnitz.
21

It is to be noted

that the most general solutions of Aceves and Wabnitz lead

to the slow Bragg solitons, already predicted by Christod-

ulides and Joseph.
22

The second one is the Bloch wave analysis, which is

used to describe the nonlinear pulse propagation near the

PBG structure. To achieve the same, usually a technique

known as multiple scale analysis is adopted. Using the mul-

tiple scale analysis, Aceves
23

investigated the gap soliton

bullets in the Kerr-type planar waveguides. Very recently,

following the same multiple scale analysis, we have investi-

gated the bright and dark solitons in FBG.
24

At this juncture, we would like to show the generation of

bright and dark solitons in the upper and lower branches of

the dispersion curve through the MI gain spectra scheme. In

order to show the existence of solitons in this periodic struc-

ture, we adopt a technique known as multiple scale analysis.

In order to introduce the multiple scale analysis, we extend

the linear solution to the following form:

�A f

Ab

� = �1/2A��1,�2,Z�� 1

− 1
�e−i�t + �U1 + �3/2U2 + �2U3

+ . . . , �9�

where �1=�t, �2=�2t, and Z=�1/2z. Now, we proceed to solve

for �A f ,Ab� for successive orders in �. Balancing the O ���
terms gives

LU1 = − i
�A

�Z
�1

1
�e−i�t. �10�

The solution of Eq. �10� is found to be

U1 = −
i

2�

�A

�Z
�1

1
�e−i�t. �11�

Next, we turn to compute the higher order corrections to

�A f ,Ab�. Balancing the O��3/2� terms gives

LU2 = �− i
�A

��1

−
1

2�

�2A

�Z2
− �3� − 5���A�2A�� 1

− 1
�e−i�t

+ c.c. �12�

In order to solve Eq. �12�, the secular terms should be

equated to zero and therefore,

i
�A

��1

+
1

2�

�2A

�Z2
+ �3� − 5���A�2A = 0. �13�

Equation �13� represents the pulse propagation outside

the PBG structure. The variable E, in Eq. �13�, represents the

amplitude of the envelope associated with the Bloch wave

formed by a superposition of E f and Eb. For the first time,

Sipe and Winful
25

derived this kind of NLS type equation

from the NLCM equations. Sterke and Sipe
26,27

derived the

NLS equation based on the envelope function approach and

also presented the soliton solution outside the PBG structure.

Without deriving the NLS equation from NLCM equations,

Feng and Kneubuhl
28

investigated the formation of new

types of solitary wave solutions called out gap solitary wave

solutions in the periodic structure. Recently, Iizuka and

Wadati
29

used reductive perturbation method and derived

similar type of NLS equation in FBG. Recently, Aceves, in

his recent work, considered higher order effects in FBG and

hence derived perturbed NLS equation to describe gap soli-

ton bullets in planar waveguides. In this article, we also con-

sider the impact of higher order effects in FBG and derive

the perturbed NLS equation. Then, we solve it for studying

the formation of bright and dark Bragg solitons in both upper

and lower branches of the dispersion curve in FBG. In order

to study the impact of higher order effects, we continue to

balance O��2� terms and this gives rise to

LU3 = �i
�

2�
�2�A�2

�A

�Z
+ A2

�A*

�Z
� −

i

2�
�− i

�A

��1

��
��1

1
�e−i�t + c.c. �14�

Using Eq. �13�, the equation for U3 can be written as

U3 = −
i

4�2	�3� − 5���2�A�2
�A

�Z
+ A2

�A*

�Z
� +

1

2�

�3A

�Z3

��1

1
�e−i�t + c.c. �15�

Equation �15� represents the perturbation terms that must

be added to the NLS equation when we consider the higher

order effects in the FBG structure. With this result, the NLS

equation changes into the �Perturbed Nonlinear Schrödinger�
PNLS equation, which is presented in the following:

i
�A

��1

+
1

2�

�2A

�Z2
+ �3� − 5���A�2A +

1

8�3

�3A

�Z3

+
i

4�2
�3� − 5���2�A�2

�A

�Z
+ A2

�A*

�Z
� = 0. �16�

It should be noted that, for the first time, Aceves derived

this kind of PNLS equation in his recent work.
20

Here, we

investigate bright and dark Bragg solitons with higher order

effects at both upper and lower branches of the PBG.

Bright and dark bragg solitons. Here we will construct

both bright and dark Bragg solitons for the PNLS equation

that describes the nonlinear pulse propagation with higher

order effects in the nonlinear periodic structure. Using the

coupled amplitude-phase method, we solve the PNLS equa-

tion and discuss the generation of bright and dark Bragg

solitons. For this purpose, we rewrite Eq. �16� in the form:

i
�A

��1

+ a
�2A

�Z2
+ ib

�3A

�Z3
+ c�A�2A + id�4�A�2

�A

�Z
+ 2A2

�A*

�Z
�

= 0, �17�

a=1/2�, b=1/8�3, c= �3�−5��, and d= �2�−5�� /4�2. The

coefficients a and b represent, namely, second- and third-
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order dispersions. The parameter c is the nonlinear term rep-

resenting the self-phase modulation. The last term in Eq. �17�
accounts for self-steepening which results from including the

first derivative of the slowly varying part of the nonlinear

polarization. To solve Eq. �17�, we consider the solution of

the form
30

A�z,�1� = Q��1 + vg
�exp�i�kZ − ��1�� , �18�

where the function Q is a real one. The unknown parameters

k and � are directly related to the shifts in the wave number

and frequency, respectively, while the factor vg is the group

velocity of the wave. Using Eq. �18� in Eq. �17� and remov-

ing the exponential term, we get

ivgQx − kQ + a⌊Qxx − 2i�Qx

− Q�2⌋ + b⌊iQxxx + 3�Qxx − 3i�2Qx − Q�3⌋ + cQ3

+ d⌊3iQ2Qx + �Q3⌋ = 0

Now, separating the real and imaginary parts, we have

vgQ� + bQxxx + �− 2a� − 3b�2 + 3dQ2�Qx = 0, �19�

− kQ + �a + 3b��Qxx + �c + d��Q3 − �a�2 + b�3�Q = 0.

�20�

Since Eq. �19� possesses only third-order and first-order de-

rivatives, it can be written in the following form:

bQxxx = �− vg + 2a� + 3b�2 − 3dQ2�Qx.

Integrating this, we get

Qxx = �2a� + 3b�2 − vg

b
�Q − �d

b
�Q3. �21�

Writing Eq. �20� in the following form

Qxx = � k + a�2 + b�3

a + 3b�
�Q − � c + d�

a + 3b�
�Q3. �22�

It is clear that Eqs. �21� and �22� can be equivalent only

under the following conditions:

�2a� + 3b�2 − vg

b
� = � k + a�2 + b�3

a + 3b�
�,

�d

b
� = � c + d�

a + 3b�
� .

From the above-noted relations, we find � and k as

� =
cb − da

2bd
,

k =
�2a� + 3b�2 − vg��a + 3b�� − ab�2 − b2�3

b
.

�23�

Equation �21� can also be written as

d� =
dQ

��2a� + 3b�2 − vg

b
�Q2 −

1

2
�d

b
�Q4 + C

, �24�

where C is an arbitrary constant of integration. From Eq.

�24�, it is possible to get the different analytical solutions for

different values of the constant of integration C. Among

these solutions, we focus our attention on the solutions of

bright and dark Bragg solitons. Now, we discuss how the

bright soliton is formed outside the PBG but inside the FBG.

Thereafter, we apply the same condition to the physical pa-

rameters in Eq. �24� and finally we obtain the bright soliton

solution analytically. To discuss the bright soliton formation,

we consider the self-focusing effect in FBG structure. Be-

cause of this effect, the central frequency of the carrier wave

is tuned close to but outside the photonic band gap of the

periodic structure. It physically means that the central fre-

quency is moved to the upper branch of the dispersion curve,

FIG. 10. Surface plot for the intensity of the bright one soliton �forward and backward propagating� when P0=0.05, �=1.4, �=0.2, vg=0.005, �=0.2, and

�=10−4.

FIG. 11. Surface plot for the intensity of the bright two soliton �forward

propagating� when P0=10.0, �=1.4, �=0.2, vg=0.005, �=0.2, and �

=10−4.
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where the grating induced group velocity dispersion �GVD�
is anomalous. This anomalous GVD exactly gets balanced

with the nonlinearity and, as a result, we have the bright

soliton formation outside PBG but inside the periodic �FBG�
structure, which is termed as bright Bragg soliton. As we

consider positive nonlinearity in the formation of bright soli-

ton, we choose the cubic nonlinear term as positive and C

=0 in Eq. �24�, and obtain the following bright soliton solu-

tion:

A =�2�2a� + 3b�2 − vg�
d

sec h��2a� + 3b�2 − vg

b
�

��ei�kz−��1�. �25�

It should be noted that the existence of solitary waves in the

upper branch of the dispersion curve has already been ex-

perimentally demonstrated.
31

Note that the formation of

these solitons depends on the critical power of the MI gain

spectra. From the MI gain spectrum of Fig. 8, we find that

the critical power �Pc� is less than 0.2. Therefore, the bright

soliton is formed in the upper branch �AD regime� for the

input power P0
0.2.

From the experimental point of view, it is necessary to

know the magnitude of the peak power, P0, to excite the

bright Bragg soliton. Similarly, the soliton period, T0, turns

out to be another important physical parameter that is in-

volved in the formation of Bragg soliton. From the bright

Bragg soliton solution, we calculate the important and inter-

esting physical parameters such as soliton power and pulse

width in the form,

T0 =� 1

�2a� + 3b�2 − vg�
, P0 =

2�2a� + 3b�2 − vg�
d

.

With the known values of the parameters a, b, c, and d in

a FBG, we can calculate � using Eq. �23�. After calculating

the value of � from Eq. �23�, for a given T0, we can easily

calculate the value of �1 from the above-presented relations.

By computing all the physical parameter values, we can cal-

culate the power required for generating the bright Bragg

soliton. In addition, we have also found the relation connect-

ing input power P0 and pulse width T0 as

T0 =� 2

dP0

.

Similarly, there is another interesting class of solitons

called dark solitons and now we discuss the formation of the

same in the FBG. Instead of positive nonlinearity, we con-

sider the negative nonlinearity, which gives rise to the self-

defocusing effect in the FBG. This self-defocusing effect

shifts the central frequency of the carrier wave to the lower

branch of the dispersion curve where we have normal GVD.

This normal GVD exactly gets balanced with the negative

nonlinearity and as a result we get the dark soliton formation

outside the PBG but inside the FBG structure. This soliton is

referred to as dark Bragg soliton. For analytical purpose,

considering the negative nonlinearity, the constant in Eq.

�24� is chosen in such a way that the value of the expression

inside the square root is a perfect square and hence we obtain

the dark solitary wave solution as follows:

A =��2a� + 3b�2 − vg�
d

tanh��2a� + 3b�2 − vg

2b
�

��ei�kz−��1�. �26�

It should be emphasized that the dark soliton is formed

in the lower branch for P0
0.25 as we observe the critical

power from the MI gain spectrum of the normal dispersion

regime, which is nearly 0.25 as shown in Fig. 9. As has been

discussed in the bright soliton case, it is also possible to

calculate the power and pulse width for dark Bragg soliton

case and the same are given in the following:

T0 =� 2

�2a� + 3b�2 − vg�
, P0 =

�2a� + 3b�2 − vg�
d

.

By knowing all the physical parameter values, one can

calculate the power required to generate dark Bragg soliton.

VI. GENERATION OF HIGHER ORDER SOLITONS

Earlier in this article we discussed the generation of

bright and dark solitons near the photonic band gap struc-

tures through the MI gain spectra scheme. In what follows,

FIG. 12. Intensity plot of the bright one and two soliton for various input

powers P0=0.2 �dashed curve�, P0=0.5 �dotted curve�, P0=0.7 �solid

curve�. FIG. 13. Surface plot for the intensity of the bright two soliton �backward

propagating� when P0=10.0, �=1.4, �=0.2, vg=0.005, �=0.2, and �

=10−4.
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we turn to discuss the generation of higher order Bragg grat-

ing solitons for both forward and backward propagating

modes near the photonic band gap structure. In order to study

the intensity evolution of the forward and backward propa-

gating waves in terms of nonstationary soliton solution in the

nonlinear periodic structure, first, we find the values of the

perturbation parameters U1, U2, and U3. We note that these

parameters have already been dealt with in our earlier

studies.
24

The parameter U1 is calculated as

U1 = −
i

2�

�A

�Z
�1

1
�e−i�t. �27�

In the similar way, the parameter U2 is calculated as

LU2 = �− i
�A

��1

−
1

2�

�2A

�Z2
− �3� − 5���A�2A�� 1

− 1
�e−i�t

+ c.c. �28�

The expression for last parameter U3 turns out to be

U3 = −
i

4�2	�3� − 5���2�A�2
�A

�Z
+ A2

�A*

�Z
� +

1

2�

�3A

�Z3

��1

1
�e−i�t + c.c. �29�

Now, we discuss the forward and backward field inten-

sity evolution in the nonlinear periodic structure by substi-

tuting the perturbation parameters U1, U2, U3 and soliton

envelope E obtained by Bloch wave analysis into Eq. �9�.
Here we consider the two cases for studying the forward and

backward field evolutions as we have constructed both the

bright and dark solitons. First, we consider the bright-soliton

envelope for which we study the generation of higher order

Bragg grating solitons in terms of the intensity of the for-

ward field evolution. For comparatively low value of the

input power, the formation of one soliton is observed. The

bright one soliton in a periodic structure in terms of forward

and backward field evolutions is clearly depicted in Fig. 10.

For a given value of vg, as the input power increases

beyond a certain power level, the influence of the nonlinear

effects in the system is not negligible and hence plays an

indispensable role in the formation of higher order bright

solitons. For instance, the formation of two soliton is ob-

served when the input power P0 is 0.2 and during this pro-

cess amplification as well as compression occurs. This is

clearly shown in Fig. 11. It is interesting to note that this

physical process is the same as pointed out by Mollenauer et

al.
32

Now, by fixing the value of input power and on decreas-

ing the value of coupling parameter �, compression and am-

plification take place for corresponding changes in the value

of �. We also study the generation of higher order solitons

for forward propagating field for various values of the input

power.

FIG. 14. Surface plot for the intensity of the dark one soliton �forward and backward propagating� when P0=0.045, �=1.4, �=0.2, vg=0.005, �=0.2, and

�=10−4.

FIG. 15. Surface plot for the intensity of the dark two soliton �forward

propagating� when P0=10.0, �=1.4, �=0.2, vg=0.005, �=0.2, and �

=10−4.

FIG. 16. Intensity plot of the dark one soliton for various input power P0

=0.2 �dashed curve�, P0=0.5 �dotted curve�, P0=0.7 �solid curve�.
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The corresponding intensity evolution two-dimensional

�2D� plots for various values of the input power are as shown

in Fig. 12. That is, Fig. 12 clearly depicts the generation of

one and two bright solitons in the nonlinear periodic struc-

ture as the input power is increased. Similarly, surface plot

for the evolution of the backward field has also been ob-

tained for the same physical parameter values and is clearly

depicted in Fig. 13. In the second case, we also carry out the

above-presented analysis for the dark soliton profile. To do

so, we substitute the dark soliton profile and the perturbation

parameters into Eq. �9�. As in the bright soliton case, in this

case also, we observe the generation of higher order solitons

for moderately high values of the input power. For instance,

when the input power is moderately low, the formation of

dark one soliton has been observed for both forward and

backward fields which are clearly depicted in Fig. 14. As has

been discussed in the bright soliton case, the generation of

two soliton has been observed when the input is increased

beyond a certain level, say P0=0.2. For this case, the inten-

sity surface plot of forward field evolution is shown in Fig.

15. Following the above-presented analysis, one can easily

understand the variation of the intensity of the propagating

fields with respect to input power, with the help of 2D inten-

sity plots for various values of the input power. Figure 16

clearly shows the generation of higher order dark solitons.

Similarly, the dark two-soliton generation in terms of back-

ward field intensity is depicted in Fig. 17.

VII. CONCLUSION

In this article, the modulational instability conditions re-

quired for the generation of ultrashort pulses have been in-

vestigated in BG under the influence of Kerr nonlinearity for

both the anomalous and normal dispersion regimes as well as

at the edges of the photonic band gap. In addition, from the

various MI gain spectra scheme, we have also discussed the

formation of Bragg grating solitons near the band edge when

the carrier frequency of the laser pulse is detuned to either

upper or lower branch of the dispersion curve depending on

the sign of nonlinearity. Hence the governing NLCM equa-

tions were reduced to NLS and PNLS type equations using

the multiple scale analysis. The PNLS equation, which incor-

porates both the higher order dispersive effects and self-

steepening effects, has been derived to analyze the impact of

nonlinearity on the pulse propagation in FBG. From the

PNLS equation, the generation of bright and dark Bragg soli-

tary waves has been investigated by coupled-phase ampli-

tude method. It should be noted that the generation of higher

order solitons is observed as the input power is increased.

Thus, we have also discussed the generation of higher order

bright and dark solitons in terms of the forward and back-

ward propagating fields in the nonlinear periodic structure.

Based on the arguments, we believe that ultrashort pulses

could be generated experimentally for various values of the

input power as the physical parameters of the system are

closely related to numerical studies of all optical limiting in

the nonlinearity management system. We have found that

there exists a relation between the total input power and the

soliton pulse width, and observed that on increasing the total

input power, the soliton pulse amplitude increases for both

the anomalous and normal dispersion regimes and also gets

compressed. Besides we have explored the characteristics of

the nonlinear periodic structure in the presence of Kerr non-

linearity for the nonlinearity management system through the

nonlinear dispersion relation by studying the shift of the

PBG in both upper and lower branches of the dispersion

curve. The stability of these generated solitons in the MI

driven dynamics is considered to be another important and

interesting issue which will be communicated later.
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