Header menu link for other important links
X
Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone
Lakshmi N.V, Tambe P,
Published in Informa UK Limited
2018
Volume: 25
   
Issue: 1
Pages: 47 - 67
Abstract

In this work, the combination of graphene decorated with graphene quantum dots (G-D-GQDs) and barium titanate (BaTiO3) nanoparticles filled poly (vinyledene fluoride) (PVDF) nanocomposites are prepared using solvent casting method. The modification of G-D-GQDs and BaTiO3 nanoparticles with polyvinyl pyrrolidone (PVP) show finer dispersion in PVDF matrix as compared to unmodified G-D-GQDs and BaTiO3 nanoparticles in PVDF matrix. XRD of PVDF nanocomposites shows the formation of α and β form of PVDF crystals. The incorporation of the combination of PVP modified BaTiO3 nanoparticles and G-D-GQDs in PVDF matrix show a decrease in crystallization temperature (Tc), percent crystallinity (Xc) and increase in thermal stability as compared to unmodified PVDF/BaTiO3/G-D-GQDs nanocomposites, due to interaction of PVP modified nanoparticles with PVDF. Further, the incorporation of the combination of 20 wt.% BaTiO3 nanoparticles and 3 wt.% G-D-GQDs in PVDF matrix show a giant dielectric constant. The giant dielectric constant is achieved due to accumulation of more charges across conductor-insulator interface, more numbers of microcapacitor formed and enhanced interfacial compatibility between BaTiO3/G-D-GQDs with PVDF through PVP. The loss tangent (tan δ) of PVP modified G-D-GQDs and BaTiO3 nanoparticles and its PVDF nanocomposites is low due to lower leakage current, which make the material suitable for various applications. © 2017 Informa UK Limited, trading as Taylor & Francis Group.

About the journal
JournalComposite Interfaces
PublisherInforma UK Limited
ISSN0927-6440
Open Access0