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a b s t r a c t

In this paper, a mathematical model for HILV-I infection of CD4+ T-cells is investigated. The

force of infection is assumed be of a function in general form, and the resulting incidence

term contains, as special cases, the bilinear and the saturation incidences. The model can be

seen as an extension of the model [Wang et al. Mathematical analysis of the global dynam-

ics of a model for HTLV-I infection and ATL progression, Math. Biosci. 179 (2002) 207-217;

Song, Li, Global stability and periodic solution of a model for HTLV-I infection and ATL pro-

gression, Appl. Math. Comput. 180(1) (2006) 401-410]. Mathematical analysis establishes

that the global dynamics of T-cells infection is completely determined by a basic reproduc-

tion number R0. If R0 6 1, the infection-free equilibrium is globally stable; if R0 > 1, the

unique infected equilibrium is globally stable in the interior of the feasible region.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Human T-cell lymphotropic virus I (HTLV-I), which is a single-stranded RNA retrovirus, is linked to the development of

Adult T-cell leukemia (ATL), among many diseases. HTLV-I Infection is achieved through cell-to-cell contact [1,2]. To describe

the T-cell dynamics of the HTLV-I infection and the development of ATL, a mathematical model was first proposed by Stili-

anakis and Seydel [3]. The model consists of a system of nonlinear ordinary differential equations that divides CD4+ T cells

into four compartments: uninfected CD4+ T cells, latently infected cells, actively infected cells, and leukemia cells. Let T, TL, TA
and TM denote, respectively, the number of cells in the corresponding compartments. This model is formulated as follows:

_T ¼ K� lTT � kTAT;

_TL ¼ kTAT � ðlL þ aÞTL;

_TA ¼ aTL � ðlA þ qÞTA;

_TM ¼ qTA þ bTM 1�
TM

TMmax

� �

� lMTM;

ð1:1Þ
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whereK is the source of CD4+ T cells from precursors, the parameters lT, lL, lAand lM represent the death or removal rate of

the uninfected, latent infected, actively infected CD4+ T cells, and ATL cells, respectively. The parameter a is the transmission

rate at which latent infected CD4+ T cells become actively infected, k is the infection rate, q is the transmission rate at which

actively infected CD4+ T cells converts to ATL cells. Thus, 1/a and 1/q can be regarded as the mean latent and infectious peri-

ods, respectively. ATL cells proliferate at a rate b of a classical logistic growth function. TMmax is the maximal number that ATL

cells proliferate. All parameters in model (1.1) are assumed to be positive constants. The global dynamics of system (1.1)

have been further investigated by Wang et al. [4].

The bilinear incidence and the standard incidence (also called proportionate mixing incidence) are adopted by many

authors. However, there are a variety of reasons that the above incidence rates may require modification (see, [5–12]). A non-

linear incidence rate arising from saturation response of the infection in [13] has been incorporated into the above model.

The model is presented in the following form:

_T ¼ K� lTT � k
TA

1þ a1TA

T;

_TL ¼ k
TA

1þ a1TA

T � ðlL þ aÞTL;

_TA ¼ aTL � ðlA þ qÞTA;

_TM ¼ qTA þ bTM 1�
TM

TMmax

� �

� lMTM:

ð1:2Þ

The dynamical behavior of the model (1.2) has been investigated by Song [13]. They observed that the basic reproduction

numberR0 can determine the global dynamics of T-cells infection, i.e., ifR0 6 1, infected T-cells always die out; ifR0 > 1, the

unique infected equilibrium is globally stable in the interior of the feasible region. In our model, it is assumed that the inci-

dence rate is of form k f(TA)T, where k is the infection rate which accounts for the overall effects of HTLV-I reproduction such

as contact rate and infectivity. Thus, the model (1.2) can be modified into the following form:

_T ¼ K� lTT � kf ðTAÞT;

_TL ¼ kf ðTAÞT � ðlL þ aÞTL;

_TA ¼ aTL � ðlA þ qÞTA;

_TM ¼ qTA þ bTM 1�
TM

TMmax

� �

� lMTM;

ð1:3Þ

where the function f(TA) satisfies the following properties:

f ð0Þ ¼ 0; f 0ðTAÞ > 0; f 00ðTAÞ 6 0: ð1:4Þ

Obviously, the incidence rate with conditions (1.4) contains the bilinear and the saturation incidences. Thus, the model (1.3)

is an extension of the model (1.2). In this paper, we shall perform global analysis for the model (1.3). Especially, we shall

show the global stability of the equilibria for the model (1.3) by constructing a suitable Lyapunov function rather than uti-

lizing geometric approach of Li and Muldowney [14].

The organization of this paper is as follows: In the next section, the existence and the local stability of the equilibria in

system (1.3) are investigated. In Section 3, the global stability of the equilibria in system (1.3) is discussed. The paper ends

with brief remarks.

2. Equilibria and their local stability

From the first three equations of the system (1.3), we have

_T þ _TL þ _TA ¼ K� lLTL � lTT � ðlA þ qÞTA 6 K� cðT þ TL þ TAÞ;

where, c = min{lL,lT,lA + q}. It follows that limsupt?1(T + TL + TA) 6K/c. Thus, from the last equation of (1.3), we have

_TM 6 qK=cþ bTMð1� TM=TMmax Þ � lMTM ;

which implies that lim supt!1TMðtÞ 6 TM . Here TM is the positive root of the following quadratic equation

qK=cþ bTMð1� TM=TMmax Þ � lMTM ¼ 0:

Let

C ¼ fðT; TL; TA; TMÞ 2 R4
þ : T þ TL þ TA 6 K=c; TM 6 TMg:

It is easy to verify that the region C is positively invariant with respect to (1.3).

Since the first three equations of the system (1.3) do not contain TM, we first consider the following subsystem of (1.3).
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_T ¼ K� lTT � kf ðTAÞT;

_TL ¼ kf ðTAÞT � ðlL þ aÞTL;

_TA ¼ aTL � ðlA þ qÞTA:

ð2:1Þ

The subsystem (2.1) describes the infection dynamics of T cells. Obviously, system (2.1) lies in the following feasible region.

C0 ¼ fðT; TL; TAÞ 2 R3
þ; T þ TL þ TA 6 K=cg;

which is the projection of C onto the (T,TL,TM) subspace. System (2.1) obviously has always an infected free equilibrium

E0(K/lT,0,0). Now we find the other equilibria of system (2.1). Any equilibrium E(T,TL,TA) of system (2.1) satisfies the follow-

ing equations:

K� lTT � kf ðTAÞT ¼ 0;

kf ðTAÞT � ðlL þ aÞTL ¼ 0;

aTL � ðlA þ qÞTA ¼ 0:

ð2:2Þ

From the second and third equations of (2.2), we obtain

T ¼
ðlL þ aÞTL

kf ðTAÞ
; TL ¼

lA þ q
a

TA: ð2:3Þ

After substituting (2.3) into the first equation of (2.2), we have

gðTAÞ ¼
def

K�
lTðlL þ aÞðlA þ qÞTA

akf ðTAÞ
�
ðlL þ aÞðlA þ qÞ

a
TA: ð2:4Þ

From (2.4), it can be easily seen that the function g(TA) is negative for large positive TA. Now we determine the sign of deriv-

ative of the function g(TA)

g0ðTAÞ ¼ �
lTðlL þ aÞðlA þ qÞ

ak
f ðTAÞ � TAf

0ðTAÞ

f 2ðTAÞ
�
ðlL þ aÞðlA þ qÞ

a
: ð2:5Þ

From the properties of the function f(TA), in particular, f(0) = 0, and f0 0(TA) 6 0, it follows that f(TA) � TA f0(TA)P 0. Conse-

quently, from (2.5), we have g0(TA) < 0, for all TA > 0. Thus, when the function g(TA) satisfies g(0) > 0, it follows from the above

discussions that g(TA) = 0 has a positive root. Noticing that

gð0Þ ¼ lim
TA!0

gðTAÞ ¼ K�
lTðlL þ aÞðlA þ qÞ

akf 0ð0Þ
:

Let

R0 ¼
akf 0ð0ÞK

lTðlL þ aÞðlA þ qÞ
:

Thus, we have gð0Þ ¼ K 1� 1
R0

� �

. Hence, if R0 > 1, system (2.1) has a unique chronic-infection equilibrium E� T�; T�
L; T

�
A

� �
.

Thus, we first establish the following results:

Theorem 2.1. If R0 6 1, system (2.1) has only the infection-free equilibrium E0(K/lT , 0,0); If R0 > 1, system (2.1) has two

equilibria: infection-free equilibrium E0and a unique endemic equilibrium E� T�; T�
L; T

�
A

� �
in the interior of C0.

Let P� T�; T�
L; T

�
A; T

�
M

� �
be a chronic infection equilibrium of system (1.3), where T�; T�

L , and T�
A is given in (2.2), T�

M satisfies

the following quadratic equation

bT2
M � TMmax ðb� lMÞTM � qT�

ATMmax ¼ 0:

Similar to analysis of paper [4], we have following results

Theorem 2.2. If R0 6 1, P0(K/lT,0,0,0) is the only uninfected equilibrium of system (1.3) for b 6 lM; P1ðK=lT ;0;

0; TMmax
ðb� lMÞ=bÞ is a second uninfected equilibrium of system (1.3) for b > lM. If R0 > 1, there exists a unique chronic

infection equilibrium P�ðT�; T�
L; T

�
A; T

�
MÞ in the interior of C.

Remark 1. R0 can be regarded as a basic reproduction number or the contact number in the literature of epidemiological

models [4,15]. It represents the average number of secondary infection caused by a single primary actively infected T cell

introduced in a pool of susceptible T cells during its entire infection period.

We now investigate the local geometric properties of the equilibria in system (2.1).
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Linearizing system (2.1) at equilibrium E0
K
lT
;0; 0

� �

, we have

ðkþ lTÞ k2 þ ðlL þ aþ lA þ qÞkþ ðlL þ aÞðlA þ qÞ � akf 0ð0Þ
K

lT

� �

¼ 0: ð2:6Þ

Clearly, one root of the above Eq. (2.6) is k1 = �lT, the other two roots are determined by the quadratic equation

k2 þ ðlL þ aþ lA þ qÞkþ ðlL þ aÞðlA þ qÞ � akf 0ð0Þ
K

lT

¼ 0: ð2:7Þ

Since R0 < 1 is equivalent to ðlL þ aÞðlA þ qÞ > akf 0ð0Þ K
lT
, hence all roots of Eq. (2.7) have negative real parts if and only if

R0 < 1. If R0 > 1, the characteristic Eq. (2.6) has one eigenvalue with positive real part. So, E0 is unstable with dim Ws(E0) = 2

and dim Wu(E0) = 1.

Now let us consider the stability of E0 for R0 ¼ 1. In fact, since R0 ¼ 1 is equivalent to ðlL þ aÞðlA þ qÞ ¼ akf 0ð0Þ K
lT
, thus,

from Eq. (2.7), we have

hðkÞ ¼ k2 þ ðlL þ aþ lA þ qÞk: ð2:8Þ

Obviously, k = 0 is one of roots of Eq. (2.8), the other root is k = �(lL + a + lA + q) < 0. Hence, E0 is stable for R0 ¼ 1. We now

give the following stability results for E0.

Theorem 2.3. If R0 < 1, the disease-free equilibrium E0 of system (2.1) is locally asymptotically stable. If R0 ¼ 1, E0 is stable. If

R0 > 1, E0 is a saddle point with dim Ws(E0) = 2 and dim Wu(E0) = 1.

Now we discuss local stability of the infected equilibrium E⁄ forR0 > 1. Linearizing system (2.1), the jacobian matrix at E⁄

is given by

J ¼

�lT � kf T�
A

� �
0 �kf

0
T�
A

� �
T�

kf T�
A

� �
�lL � a kf

0
T�
A

� �
T�

0 a �lA � q

0

B
@

1

C
A; ð2:9Þ

The characteristic equation associated with J is

k3 þ a1k
2 þ a2kþ a3 ¼ 0; ð2:10Þ

where,

a1 ¼ lA þ qþ lL þ aþ lT þ kf T�
A

� �
> 0;

a2 ¼ ðlA þ qþ lL þ aÞ lT þ kf T�
A

� �� �
þ ðlA þ qÞðlL þ aÞ � akf 0 T�

A

� �
T�;

a3 ¼ ðlT þ kf T�
A

� �
ðlL þ aÞðlA þ qÞ � aklT f

0 T�
A

� �
T�:

Using 0 < f 0 T�
A

� �
6 f T�

A

� �
=T�

A, and (2.3), we obtain

a2 P ðlA þ qþ lL þ aÞ lT þ kf T�
A

� �� �
þ ðlA þ qÞðlL þ aÞ � kaf ðT�

AÞ=T
�
AT

�

¼ ðlA þ qþ lL þ aÞðlT þ kf ðT�
AÞÞ þ ðlA þ qÞðlL þ aÞ � ðlA þ qÞðlL þ aÞ > 0;

a3 ¼ ðlA þ qÞðlL þ aÞðlT þ kf ðT�
AÞÞ � aklT f

0 T�
A

� �
T�
P ðlA þ qÞðlL þ aÞ lT þ kf T�

A

� �� �
� aklT f T�

A

� �
=T�

AT
�

¼ kf T�
A

� �
ðlA þ qÞðlL þ aÞ > 0:

To finish the proof, we shall show that D = a1a2 � a3 > 0 by using the Routh–Hurwits criterion. In fact,

D ¼ a1ðlA þ qÞ lT þ kf T�
A

� �� �
þ a1 ðlA þ aÞðlL þ aÞ � kaf 0 T�

A

� �
T�

� 	
þ ðlA þ qÞðlL þ aÞ � lT þ kf T�

A

� �� �

þ lL þ aþ lT þ kf T�
A

� �� �
ðlL þ aÞ lT þ kf T�

A

� �� �
� ðlA þ qÞðlL þ aÞ lT þ kf T�

A

� �� �
þ kalT f

0 T�
A

� �
T�

P a1ðlA þ qÞ lT þ kf T�
A

� �� �
þ a1 ðlA þ aÞðlL þ aÞ � ka

f T�
A

� �
T�

T�
A


 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ lL þ aþ lT þ kf T�
A

� �� �
ðlL þ aÞ lT þ kf T�

A

� �� �

þ kalT f
0 T�

A

� �
T� > 0

(It is easy to calculate that the term in the bracket is zero by Eq. (2.3).)

By Routh–Hurwitz criterion, we have

Theorem 2.4. If R0 > 1, the unique equilibrium E⁄ of system (2.1) is locally asymptotically stable.

By the above discussion, we have obtained that if R0 > 1, E0 is unstable. From the jacobian matrix J0 of system (2.1) at E0,

we obtain that J0 possesses one eigenvalue with positive real part and two eigenvalues with negative real part. Similar to the

proof in [16], and by applying the Perron–Frobenius Theorem, we can show W sðE0Þ
T
intðR3

þÞ ¼ /, where Ws(E0) denotes the
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stable manifold of E0. Thus, by applying Theorem 4.6 in [17], it is easy to show the uniform persistence of system (2.1). There-

fore, system (1.3) is uniformly persistent. Biologically, the uniform persistence characterizes that a primary HTLV-I infection

of T cells leads to chronic infection.

Therefore, we have the following result.

Theorem 2.5. If R0 > 1, then system (1.3) is uniformly persistent in Int C, i.e., there exists a constant 0 < g < 1 (independent of

initial conditions), such that any solution (T(t),TL(t),TA(t), TM(t)) of (1.3) satisfies lim inft?+1T(t) > g,lim inft?+1TL(t) > g, lim
inft?+1TA(t) > g, and lim inft?+1TM(t) > g.

3. The global stability of the equilibria

In this section, we shall provide a sufficient condition preventing oscillations, and lead to a globally asymptotically stable

for chronic infection steady state. That is, if R0 6 1, the infection-free equilibrium E0 is globally stable; and if R0 > 1, the

unique chronic-infection equilibrium E⁄ is globally stable in the feasible region. To do this, we first consider the following

function

V1ðT; TA; TLÞ ¼ T � T� ln T þ
lL þ a
a

TA � f ðT�
AÞ

Z TA

T�
A

ds
f ðsÞ

 !

þ TL � T�
L ln TL: ð3:1Þ

It is obviously that V1(T,TA,TL) is well defined and continuous for all T, TA, TLP 0 in the feasible regionC0. From (3.1), we have

the following facts:

@V1

@T
¼ 1�

T�

T
;

@V1

@TA

¼
lL þ a
a

1�
f T�

A

� �

f ðTAÞ


 �

;
@V1

@TL

¼ 1�
T�
L

TL

;

@2V1

@T2
¼

T�

T2
> 0;

@2V1

@T2
A

¼
lL þ a
a

f T�
A

� �
f 0ðTAÞ

f 2ðTAÞ
> 0;

@2V1

@T2
L

¼
f ðT�Þ

T2
L

> 0;

@2V1

@TA@T
¼

@2V1

@TL@T
¼

@2V1

@TL@TA

¼ 0:

Hence, the existing unique equilibrium E⁄ (for R0 > 1) is the only extremum and global minimum of the function, and

V1(T,TA, TL)?1 at the boundary. So, V1(T,TA,TL) is indeed a Lyapunov function.

Calculating the derivation of V1 along the solutions of (2.1) and using (2.2), we obtain that

dV1

dt
¼ _T �

T�

T
_T þ

lL þ a
a

_TA �
f T�

A

� �

TA

_TA

� �

þ _TL �
T�
L

TL

_TL

¼ 1�
T�

T

� �

K� lTT � kf ðTAÞT
� �

þ
lL þ a
a

1�
f ðT�

AÞ

TA


 �

aTL � ðlA þ qÞTA

� 	
� 1�

T�
L

TL

� �

kf ðTAÞT � ðlL þ aÞTL

� �

¼ lTT
� 2�

T

T� �
T�

T

� �

� kf ðT�
AÞT

� T�

T
þ

T

T�

f ðTAÞ

f ðT�
AÞ

T�
L

TL

þ
f T�

A

� �

f ðTAÞ

TL

T�
L

� 2

� �

þ kf ðT�
AÞT

� f ðTAÞ

f ðT�
AÞ

�
TA

T�
A

þ
TA

T�
A

f ðT�
AÞ

f ðTAÞ

� �

¼ �lTT
� T

T� þ
T�

TðtÞ
� 2

� �

� kf ðT�
AÞT

� T�

T
þ

T

T�

f ðTAÞ

f T�
A

� �
T�
L

TL

þ
f T�

A

� �

f ðTAÞ

TL

T�
L

� 3

 !

þ kf T�
A

� �
T� 1�

f ðT�
AÞ

f ðTAÞ

� �
f ðTAÞ

f T�
A

� ��
TA

T�
A

 !

: ð3:2Þ

Since the arithmetic mean is greater than or equal to the geometric mean, we have

T

T� þ
T�

T
P 2; for all T P 0

T�

T
þ

T

T�

f ðTAÞ

f ðT�
AÞ

T�
L

TL

þ
f ðT�

AÞ

f ðTAÞ

TL

T�
L

P 3; for all T; TA; TL P 0:

ð3:3Þ

Since the function f(TA) is concave, it is easy to obtain the following inequalities,

f ðTAÞ

f ðT�AÞ
P

TA
T�A
; for 0 6 TA 6 T�

A

f ðT�
A
Þ

f ðTAÞ
6

TA
T�
A

for TA > T�
A

So, we have

1�
f T�

A

� �

f ðTAÞ

� �
f ðTAÞ

f T�
A

� ��
TA

T�
A

 !

6 0; ð3:4Þ
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with equality if and if TA ¼ T�
A.

Hence, it follows from (3.2), (3.3) and (3.4) that dV1ðT;TL ;TAÞ
dt

6 0. The equality dV1ðT;TL ;TAÞ
dt

¼ 0 holds if and only if

T ¼ T�; TA ¼ T�
A; TL ¼ T�

L. Thus, the largest compact invariant set in C0 ¼ fðT; TL; TAÞ j _V1ðT; TL; TAÞ ¼ 0g is the singleton E⁄. By

LaSalle invariance principle [18] and Therorem 2.4, we can conclude that the infected equilibrium E⁄ of system (2.1) is glob-

ally asymptotically stable for R0 > 1.

At last, we consider the global stability of the infection-free equilibrium E0.

Let us consider the following Lyapunov function:

V2ðT; TA; TLÞ ¼ T �
K

lT

ln T þ
lL þ a
a

TA þ TL: ð3:5Þ

Calculating the derivation of V2 along the solutions of (2.1), we have

dV2

dt
¼ _T �

K

lT

_T

T
þ
lL þ a
a

_TA þ _TL ¼ �
lT

T
T �

K

lT

� �2

þ
kK

lT

TA

f ðTAÞ

TA

�
ðlL þ aÞðlA þ qÞlT

akK

� �

: ð3:6Þ

Using the concavity of the function f(TA), it is easy to obtain that f0(0)P f(TA)/TA(t). Hence, from (3.6), we have

dV2

dt
6�

lT

T
T�

K

lT

� �2

þ
kKf 0ð0Þ

lT

TA 1�
ðlLþaÞðlAþqÞlT

akKf 0ð0Þ

� �

6�
lT

T
T�

K

lT

� �2

þ
kKf 0ð0Þ

lT

TA 1�
1

R0

� �

60 ðif R061Þ:

Thus, the maximal compact invariant set in {T,TL,TA) 2C0: dV2/dt = 0} is singleton {E0} whenR0 6 1. The global stability of E0
follows from the LaSalle Invariant Principle [18].

In summary, we have the following conclusions.

Theorem 3.1. IfR0 6 1, then the infection-free equilibrium E0 is globally asymptotically stable inC0; IfR0 > 1, then E0 is unstable

and the unique chronic-infection equilibrium E⁄ is globally asymptotically stable in int C0.

Finally, from systems (1.1), (1.2) and (1.3), we know that the proliferation of ATL cells is always determined by the fol-

lowing equation

_TM ¼ qTA þ bTM 1�
TM

TMmax

� �

� lMTM:

Hence, similar to discussions in [4,13], together with the information on the T-cell dynamics obtained in the previous sec-

tions, we obtain the following results on the global dynamics of (1.3).

Theorem 3.2. Suppose that R0 6 1. Then

(1) If b 6 lT, then the infection-free equilibrium P0(K/lT,0,0,0) is globally stable in C0;
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Fig. 1. Variation of T, TL with time showing the stability of the chronic-infection equilibrium for the parameter valuesK = 6, lT = 0.006, k = 0.1, a = 0.1, b = 6,

lL = 0.006, a = 0.0004, lA = 0.05q = 0.00004, b = 0.0003, lM = 0.0005, TMmax = 2200.
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(2) If b > lT, then the infection-free equilibrium P0(K/lT , 0,0,0) is unstable and the second infection-free equilibrium

P1ðK=lT ;0;0; TMmax ðb� lMÞ=bÞ is globally stable in C/{T,0,0,0):0 6 T(t) 6K/ lT}.

Theorem 3.3. Suppose that R0 > 1. Then E0 is unstable and the unique chronic-infection equilibrium P� T�; T�
L; T

�
A; T

�
M

� �
is globally

stable in int C.

This result is demonstrated in following Figures. Figs. 1, 2 are showing the stability of the chronic-infection equilibrium

(675.24,304.46,2.4338,0.48659) when the function f(TA) is given by aTA
1þbTA

and R0 = 2.081668. Figs. 3,4 are demonstrating the

same result for the function f(TA) as a (1 � exp(�b TA)), when R0 = 1.748601 and chronic-infection equilibrium is given by

(706.74,274.93,2.1977,0.4394). Finally, Fig. 5 is showing the phase plot of TM verses TA which clearly shows that chronic-

infection equilibrium is stable.
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Fig. 2. Variation of TA, TM with time showing the stability of the chronic-infection equilibrium for the parameter values K = 6, lT = 0.006, k = 0.1, a = 0.1,

b = 6, lL = 0.006, a = 0.0004, lA = 0.05, q = 0.00004, b = 0.0003, lM = 0.0005, TMmax = 2200.
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Fig. 3. Variation of T, TL with time showing the stability of the chronic-infection equilibrium for the parameter values K = 6, lT = 0.006, k = 0.1, a = 0.07,

b = 0.2, lL = 0.006, a = 0.0004, lA = 0.05, q = 0.00004, b = 0.0003, lM = 0.0005, TMmax = 2200.
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4. Concluding remarks

In system (1.3), if we assume f ðTAÞ ¼
TA

1þa1TA
, the function f(TA) obviously satisfies the conditions (1.4), and system (1.3)

becomes system (1.2). Our results obtained in this paper have the same conclusions established in the paper [4,13], i.e.,

the global dynamics of system (1.1), (1.2) and (1.3) are completely determined by a basic reproduction number R0. More

specifically, if R0 6 1, no chronic HLTV-I infection of T-cells is possible and ATL cells demonstrate a typical logistical behav-

T
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Fig. 4. Variation of TA, TM with time showing the stability of the chronic-infection equilibrium for the parameter values K = 6, lT = 0.006, k = 0.1, a = 0.07,

b = 0.2, lL = 0.006, a = 0.0004, lA = 0.05, q = 0.00004, b = 0.0003, lM = 0.0005, TMmax = 2200.

Fig. 5. Phase plot of TM verses TA showing the stability of the chronic-infection equilibrium for the parameter values K = 6, lT = 0.006, k = 0.1, a = 0.07,

b = 0.2, lL = 0.006, a = 0.0004, lA = 0.05, q = 0.00004, b = 0.0003, lM = 0.0005, TMmax = 2200.
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iour: if b 6 lT, any ATL cells present will die out and the only uninfected equilibrium P0(K/lT,0,0,0) is globally stable in the

feasible region; if b > lT, a second uninfected equilibrium P1ðK=lT ;0;0; TMmax ðb� lMÞ=bÞ exists and is globally stable in the

feasible region; any existing ATL cells will proliferate to the carrying capacity TMmax ðb� lMÞ=b; if R0 > 1, a primary HTLV-

I infection T-cells always leads to chronic infection, and and the unique chronic-infection equilibrium P�ðT�; T�
L; T

�
A; T

�
MÞ exists

and is globally stable in the feasible region. System (1.1) and (1.2) with the bilinear incidence and the saturation infection

rate, respectively, can be regarded as special cases of system (1.3).
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