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+is paper presents an adaptive inertia weight particle swarm optimization (AIWPSO) employed for solving the multiobjective
weight optimization problem of LQR applied for the vehicle active suspension system (ASS). To meet the competing control
objectives of ASS including the ride comfort, road handling, and suspension travel, the state feedback controller design for ASS is
formulated as an optimization problem and an improved PSO is employed for finding the optimal weights of the linear-quadratic
regulator (LQR). Specifically, for solving the premature convergence of the particles and imbalance between exploration and
exploitation capabilities of PSO, an adaptive inertia weight that updates the velocity of the particles based on the success rate is
used. +e efficacy of the AIWPSO-tuned LQR is experimentally tested on a quarter-car ASS plant using the hardware in loop
(HIL) testing for an uneven road surface. Experimental results highlight that, compared to conventional PSO-tuned LQR, the
proposed scheme can significantly minimize the vehicle body acceleration due to irregular road profile while guaranteeing the
minimum tire friction for passenger safety. +e ISO 2361-1 standards adopted to evaluate the ride and health criteria substantiate
that the proposed scheme reduces the vibration dose value by 25.34% for a bumpy road profile. Moreover, the cumulative power
spectral density (CPSD) of vehicle body acceleration assessed in both low- and high-frequency regions manifests the significant
improvement in the ride comfort.

1. Introduction

Active suspension systems in vehicles have gained con-
siderable attention in both academia and industry for their
potential to improve the ride comfort, road handling, and
passenger safety. Compared to passive suspension systems,
ASS provides better control performance in terms of
minimizing the vibrations of the vehicle body due to road
irregularities. In the last three decades, several control
techniques, such as adaptive control [1], H∞ [2], sliding
mode control [3], and fuzzy control [4, 5], have been put
forward for controlling the ASS. +e competing control
objectives of ASS, including the ride comfort, suspension
travel, and body motion, have motivated researchers to
employ linear-quadratic control to realize the optimal
performance without violating the constraints of the sys-
tem. LQR, the cornerstone of linear-quadratic Gaussian

(LQG)/loop transfer recovery (LTR), is an optimal state
feedback controller which offers several advantages in-
cluding robustness, guaranteed stability, and a structured
procedure which can be extended to multiple-input-mul-
tiple-output (MIMO) systems. Since LQR offers a gain
margin of at least (−6,∞) dB and a phase margin of
(−600, 600), it has been implemented in several engineering
applications ranging from satellite attitude control [6], fuel
cell technology [7], electric vehicles [8] to quadrotors [9].
In spite of the potential benefits of LQR, one of the major
fundamental design challenges with it, for real-time ap-
plications, is the optimal choice of weighting matrices.
+ere is no standard procedure available for the optimal
selection of penalty matrices of LQR. Even though Bryson’s
method provides the initial choice of the penalty matrices,
subsequently, it transforms into a guess-and-check ap-
proach, which is not only tedious but also time-consuming.
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Hence, the lack of knowledge of the impact of weighting
matrices on the closed-loop performance has motivated
researchers to explore the efficacy of swarm intelligence
techniques to solve the weight selection problem of LQR.

Formulating the control performance of double inverted
pendulum as a multiobjective fitness function, Wang et al.
[10] put forward a multiobjective binary probability opti-
mization algorithm for the selection of optimal weighting
matrices. +ey adopted a binary-coding scheme to reduce
the computational complexity and utilized integral absolute
error (IAE) and maximum deviation (MD) as the fitness
functions to improve the dynamic performance and stability
of the system. Hassani and Lee [11] proposed a quantum-
behaved PSO (QPSO) for deciding the optimal configuration
of LQR applied to two control problems, namely, stabilizing
an inverted pendulum and controlling an aircraft landing
system. By introducing an aggregated dynamic weighting
criterion, which dynamically combines both the hard and
soft constraints with the performance objective, they vali-
dated the performance using a one-tailed T-test to assess
whether the results are statistically significant. Ufnalski et al.
[12] used PSO to optimize the gains of LQR applied to a
voltage source inverter. By solving the LQR cost function
minimization problem using a gradientless optimization
technique, they proved that with only one penalty factor set
by the designer, the full-state feedback controller with in-
tegrator could produce high-quality voltage. For solving the
automatic fighter tracking problems, Tsai et al., [13]
employed PSO-based variable feedback gain control.
+rough simulation studies, they proved that, compared to
both Riccati equation-based and linear matrix inequality-
(LMI-) based LQR methods, PSO-based LQR offered su-
perior performance in terms of tracking the vehicle with
minimum position error. In this direction, some of the
notable contributions of PSO for optimal controller design
reported in the literature are power quality conditioner [14],
unmanned air vehicle [15], networked control system [16],
vision-based robot navigation [17], and smart structure
control [18]. Even though PSO has been widely applied for
LQR weight optimization, one of the common problems
with the standard PSO is that while solving multimodal
optimization problems, the particles may get trapped into
local optima, leading to premature convergence. Moreover,
as the inertia weight is kept constant, the conventional PSO
fails to maintain a balance between the exploration and
exploitation capabilities, resulting in suboptimal solutions.
Hence, to address these two fundamental issues of PSO, in
this work, we aim to utilize an adaptive inertia weight
scheme in the velocity update based on the success rate of the
particles. Utilizing the success rate of the particles as the
feedback parameter, the AIWPSO algorithm iteratively
updates the inertia weight so that it can not only avoid the
premature convergence but also significantly enhance the
convergence of the particles to arrive at the optimal solution.

Moreover, for assessing the consistency and repeatability of
the optimization algorithms, the statistical analysis is also
reported. Hence, the major contributions of this paper are
twofold:

(1) +e multiobjective suspension control of quarter-car
ASS is formulated as an optimization problem and
the gains of the state feedback controller are opti-
mized using the AIWPSO algorithm which can
enhance the convergence and offer a balance be-
tween exploration and exploitation of the particles.

(2) +e efficacy of the proposed scheme to enhance the
ride comfort while assuring passenger safety is ex-
perimentally tested on a laboratory scale ASS. +e
CPSD analysis of the vehicle body acceleration is also
reported to quantitatively assess the vehicle body
vibrations in both low- and high-frequency regions.

+e remainder of the paper is organized as follows.
Section 2 presents the AA description, dynamical equations,
and performance measures. Section 3 briefly describes the
problem formulation for the optimal LQR design. Section 4
details the motivations for the adaptive inertia weight
scheme in the conventional PSO and the pseudocode of the
AIWPSO. Section 5 explains the statistical analysis of the
optimization algorithms and the experimental validation of
the proposed control scheme. Section 6 gives the concluding
remarks of the paper.

2. Active Suspension System

2.1. Mathematical Modeling. Figure 1 shows the schematic
diagram of a quarter-car model with ASS, which depicts the
two-mass-spring damper system. +e ASS consists of a
sprung mass Ms and an unsprung mass Mus, representing
the vehicle body and the wheel assembly in the quarter-car
model. Both the sprung mass and unsprung mass are
supported by springs and dampers. +e stiffness of the tire
with respect to the road is modeled by the springKus and the
damper Bus. Similarly, the bodyweight over the tire is bal-
anced by the springKs and the damper Bs. To counteract the
vertical forces created due to an uneven road surface, the
system contains an electrical actuator positioned between
the vehicle body and the wheel assembly [19–21].
+e suspension controller drives this actuator based on the
vehicle body acceleration and suspension travel. Using
the force balance equation based on Newton’s second law,
we obtain the following equation of motion of ASS:

Mus
€Zus � −Bs _zus − Bus _zus − Fc + Buszr

.

− Zus − Zs( 􏼁Ks − Zus − Zs( 􏼁Kus,

Ms
€Zs

� Bs _zus + Fc − Bszs
.
− Zs − Zus( 􏼁Ks.

(1)
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For obtaining the state-space model of the system, we
consider the following state and input vectors:
x � [Zs − Zus, _Zs, Zus − Zr, _Zus]

⊤, and u � Fc:

_x(t) �

0 1 0 1

−
Ks

Ms

−
Bs
Ms

0
Bs
Ms

0 0 1 0

Ks

Mus

Bs
Mus

−
Kus

Mus

−
Bs + Bus

Mus

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

0

1

Ms

0

−
1

Mus
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u(t),

y(t) �

1 0 0 0

−
Ks

Ms

−
Bs
Ms

0
Bs
Ms

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x(t) +

0

−
1

Ms

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦u(t).

(2)
+e four states of the ASS are Zs − Zus, _Zs, Zus − Zr, and

_Zus, which are the suspension deflection, the vehicle body
vertical velocity, the tire deflection, and the tire vertical
velocity, respectively. +e control force Fc created by the
electrical actuator acts as the control input, and the output
variables of interest are the vehicle body accelerationZs

..

and
the suspension deflection. Table 1 gives the plant parameters
of the ASS workstation.

2.2. Performance Measures. +e conflicting performance
requirements of ASS, which need to be considered while
designing a feedback controller, are as follows:

(1) Ride comfort: the primary objective of the vehicle
suspension system is to improve passenger comfort
by reducing the vehicle body accelerationZs

..

, arising
from an uneven road surface.

(2) Suspension travel: while ensuring the minimum level
of vehicle body acceleration, the ASS has to ensure
that the suspension deflection is regulated within the
permissible range, thereby preventing any structural
damage:

Vehicle body

Suspension

Ks Bs

Fc

Zus

–Fc

Ms

Zs

Controller

Mus

Kus Bus

Wheel

Tyre

Zr

Figure 1: Free body diagram of the quarter-car ASS.

Table 1: Quarter-car active suspension system plant parameters.

Symbol Description Value

Ms Sprung mass 2.45 kg
Mus Unsprung mass 1 kg
Bs Suspension damping constant 7.5 (N − s2/m)
Bus Tire damping constant 5 (N − s2/m)
Ks Suspension stiffness constant 490N/m (N − s2/m)

Kus Tire stiffness constant
1020N/m
(N − s2/m)

— Suspension travel range 3.8× 10− 2 m
— Accelerometer sensitivity 9.81 (m/s2/V)
— Suspension encoder resolution 942× 10− 6 m/count

—
Suspension motor torque

constant
0.115N-m/A
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Zs − Zus

􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌≤Zmax, (3)

where Zmax is the maximum suspension deflection.

(3) Road handling: to guarantee passenger safety, it is
paramount to ensure that the wheel assembly
maintains firm contact with the road. +erefore, the
static load of the tire has to be greater than its dy-
namic load as given as follows:

Ks Zus − Zr( 􏼁􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌≤ Ms +Musg( 􏼁. (4)

To realize a feedback controller which can solve these
conflicting control objectives, we aim to synthesize an optimal
state feedback controller based on linear-quadratic theory.
+en, we experimentally assess the performance of the op-
timal state feedback controller to suppress the vehicle body
vibration while guaranteeing passenger safety. In the fol-
lowing section, we present the problem formulation based on
the LQ theory and subsequently discuss the variant of the PSO
algorithm to solve the weight optimization problem of LQR.

3. Problem Formulation

For a linear time-invariant (LTI) system, the linear-qua-
dratic optimal control problem is as follows: given the
system

_x(t) � Ax(t) + Bu(t), t≥ 0, x(0) � x0,
y(t) � Cx(t) +Du(t), t≥ 0,

(5)

with the initial condition x(0) � x0, we find the optimal
control input u∗(t) that can regulate the system dynamics to
the desired state by minimizing the following quadratic
objective function:

J u∗( 􏼁 � 􏽚∞
0
xT(t)Qx(t) + uT(t)Ru(t)dt, (6)

where Q � QT is the positive semidefinite state penalty
matrix, and R � RT is the positive definite control input
penalty matrix. To make the cost function quadratic, the
penalty matrices, also called weighing matrices of LQR, are
chosen to be diagonal matrices.+e number of states decides
the order of the Q matrix, and the number of controls input
dictates the order of Rmatrix. With the assumption that the
pair (A, B) is controllable and the pair (A,C) is detectable,
LQR implements the following optimal state feedback law:

u � −Kx(t), (7)

whereK is the optimal state feedback gain determined based
on the following Lagrange multiplier based optimization
approach:

K � R− 1BTP. (8)

+e transformation matrix, P, is found by solving the fol-
lowing algebraic Riccati equation (ARE):

ATP + PA + Q − PBR− 1BTP � 0. (9)

+e tradeoff between the control effort and the speed of
response is largely decided by the choice of the weighting
matrices. However, because of the lack of knowledge on the
relation between the closed-loop performance and quadratic
weights, one of the challenges associated with the LQR
design is the technique for selecting the weighting matrices.
Even though Bryson’s rule provides the initial choice of Q
and R matrices, eventually, it is reduced to a trial and error
approach, which is both time-consuming and tedious.
Hence, to solve the weight selection problem of LQR, we
formulate the performance measures as a cost function and
discuss an adaptive inertia weight-based PSO algorithm in
the following section for solving the weight optimization
problem of LQR.

4. AIWPSO for LQR Weight Optimization

PSO, a stochastic population-based optimization algorithm,
is a swarm intelligence technique proposed by Kennedy and
Eberhart by being inspired by the social behavior of birds
and fish [22]. Utilizing the group of particles that represent
the potential solutions for the given optimization problem,
PSO moves the particles around the n-dimensional hyper-
space to find the global optimal solution by minimizing the
fitness function. +e particles use both their personal best
and the neighbors’ best performances to reach the optimal
solution. Figure 2 illustrates the velocity update mechanism
in a standard PSO. +e position and velocity of the particles
are updated during every iteration based on the following
equations:

vdk(t + 1) � wvdk(t) + c1rand1 x
d
pbestk

− xdk(t)􏼐 􏼑
+ c2rand2 x

d
gbestk

− xdk(t)􏼐 􏼑,
xdk(t + 1) � xdk(t) + v

d
k(t + 1),

(10)

where c1 and c2 are the cognitive acceleration constants,
which influence the learning rate of the particles, w is the
inertia weight, and rand1 and rand2 are the uniformly
distributed random vectors. pbest indicates the local opti-
mum and gbest represents the global optimum. One of the
major advantages of PSO is that it is a derivative-free op-
timization algorithmwhich is less sensitive to the type of cost
function. Furthermore, the convergence of PSO is not af-
fected by the initial conditions of the particles and the size of
the nonlinearity problem [23]. Hence, PSO has found ap-
plications in several areas such as aerospace [24], antenna
design [25], and power systems [26]. However, the two
standard limitations of PSO have restricted its use in solving
several real-world optimization problems. Firstly, while
solving multimodal optimization problems, the particles
may get trapped into local optima, leading to premature
convergence or loss of diversity. Secondly, the PSO fails to
draw a balance between the exploration and exploitation
capabilities of the particles, which result in suboptimal so-
lutions. Hence, to address these problems, several variants of
PSO have been put forward in the last three decades.
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In order to improve the convergence, Eberhart and Shi
[27] initially proposed the idea of making the inertia weight
in the velocity update function dynamic instead of constant
as in the case of conventional PSO. Subsequently, several
adaptation mechanisms in the inertia weight have been
introduced in the PSO including random inertia weights,
time-varying inertia weights, and adaptive inertia weights.
For a detailed survey on the adaptive mechanisms, the
readers can refer to [28]. It is important to mention that the
major focus of this paper is to explore the adaptive inertia
weight mechanism to enhance the convergence and improve
the exploration and exploitation capabilities of the particles.
Exploitation is the capability of the algorithm to further
refine the best solution found so far, by inspecting a small
neighborhood of that solution. In contrast, exploration
indicates the potential of the algorithm to leave the current
optimal solution and explore better solutions. Putting large
emphasis on the exploration results in pure random search
in the search space. On the other hand, overly focusing on
exploitation leads to premature convergence. Hence, it is
important to draw a balance between the exploration and
exploitation capabilities in order to take advantage of the
ability of the algorithm to not only find all possible solutions
but also refine the solutions to reach the global optimum
without compromising on convergence. In order to address
these issues, we aim to employ the adaptive inertia weight
scheme, which uses the success rate of the particles, for
updating the velocity of the particles. Figure 3 illustrates the
adaptive inertia weight mechanism reinforced PSO. +e
basic methodology behind the velocity update is as follows.
While solving the optimization problem, if the fitness value
of the current iteration is more than that of the previous
iterations, the success rate (SR) is set to 1; else, SR is set to
zero. +erefore, the SR can be represented as follows:

SRi �
1, F<Fpbesti

,

0, F≥Fpbesti
.

⎧⎨⎩ (11)

+e percentage of success (PS) is determined using SR as
follows:

PS �
􏽐Ni�1 SCi
N

, (12)

where N indicates the number of particles. A high value of
PS indicates that the particle’s current position is far away

from the optimum point and the swarm is slowly
approaching the optimum. In contrast, a low PS value in-
dicates that the particles are moving around the optimum
without much improvement. Hence, it is reasonable to select
the inertia weight w as a function of PS. +e adaptive inertia
weight factor (AIWF) chosen as a linear function which
maps the values of PS to the range of w is given by

w(t) � wmax − wmin( 􏼁PS + wmin. (13)

+e range of the inertia weight is [0, 1]. Utilizing the
success rate of the particles as a feedback parameter,
AIWPSO determines the state of the particles and enhances
the convergence by adaptively updating the inertia weights.

To investigate the impact of the inertia weight on the
local and global search capabilities of PSO, let us consider
two different situations as follows. First, as shown in
Figure 4(a), two particles, moving toward the optimum, are
close to each other but located far from the global optimum.
If we neglect the effect of personal and global best positions
in equation (10), then aw value greater than 1 accelerates the
particle with maximum velocity and a value of w less than 1
decelerates the particle velocity to 0. In the second situation,
depicted in Figure 4(b), the global and local best positions
are close to the optimum and the particles can explore the
small region, also called the improvement region, and en-
hance the quality of best solutions [29, 30]. If the velocity of
the particle is high, the particle will continue to oscillate
around the improvement region with less probability of
achieving a better solution. Hence, in this situation,
the velocity of the particle can be minimized by reducing the
inertia weight. Algorithm 1 presents the pseudocode of
the AIWPSO algorithm to solve the dynamic optimization
problem.

Figure 5 shows the proposed AIWPSO-based LQR de-
sign for multiobjective suspension control. +e suspension
travel and the tire displacement are measured using optical
encoders, and the suspension velocity and tire velocity are
obtained using the following second-order derivative filter
with the natural frequency of oscillation being
ωn � 15.7(rad/sec).

H(s) �
ω2n

s2 + 2ζωns + ω
2
n

. (14)

Since the dynamics of ASS is modeled as a fourth-order
system, the Q matrix should be a 4×4 positive semidefinite
matrix. In addition, as the system receives one control input
Fc from the actuator, the input penalty R is a scalar. Hence,
the resultant cost function to be optimized is

J � 􏽚∞
0
q1x

2
1 + q2x

2
2 + q3x

2
3 + q4x

2
4 + R1u

2
1􏼐 􏼑dt, (15)

where q1, q2, q3, and q4 are the weights of suspension travel,
suspension velocity, tire deflection, and tire velocity, re-
spectively. Similarly, R1 is the weight factor for the control
force generated by the actuator. For optimizing the weights
using the PSO algorithm, the following integral square error
(ISE) is considered as the fitness function:

Gbest

Pbest

Cognitive component

Social component

xi (t) vi (t)

vi (t)

vi (t + 1)

xi (t + 1)

Figure 2: PSO velocity diagram.
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Velocity
calculation

xi (t) Position
calculation

Calculate Pbest, Gbest,
SR, and PS

AIWF

Adaptive mechanism

vi (t + 1) xi (t + 1)

Figure 3: AIWPSO schematic diagram.

f (x)

x

Velocity vector

Improvement zone

Next position zone

Global minimum

Global best position

Particle position

(a)

Velocity vector

Improvement zone

Next position zone

Global minimum

Global best position

Particle position

x

f (x)

(b)

Figure 4: AIWPSO Scenarios. (a) Near global solution. (b) Far from global solution.

(1) Initialize the population size N, the dimensions D, maximum no of iterations Tmax, inertia weight ω, location boundary
[xdmin, x

d
max], and velocity boundary [vdmin, v

d
max].

(2) for i � 1 toTmax

(3) Initialize the success rate (SR)� 0
(4) for i � 1 toN
(5) Compute the fitness of the particles f � 􏽒 e2(t)dt
(6) if f<fPbesti
(7) SR� SR + 1
(8) fPbesti

←f
(9) xPbesti←xi
(10) end
(11) if f<fGbesti
(12) fGbesti

←f
(13) xGbesti←xi
(14) end
(15) for i � 1 toD
(16) Update the velocity and position of the particle
(17) vdk(t + 1) � wvdk(t) + c1rand1(x

d
pbestk

− xdk(t)) + c2rand2(x
d
gbestk

− xdk(t))
(18) xdk(t + 1) � xdk(t) + v

d
k(t + 1)

(19) end
(20) Calculate the percentage of success using 14
(21) Update the inertia weight using 15
(22) end
(23) end

ALGORITHM 1: AIWPSO algorithm.
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F � 􏽚∞
0
e2(t)dt. (16)

+e objective is to find the optimal weights of the LQR
and determine the state feedback gain vector
K � [k1, k2, k3, k4] such that the controller can meet the
competing performance objectives of ASS.

5. Experimental Results and Discussion

Figure 6 shows the ASS workstation, which consists of three
plates on top of each other. +e top plate, suspended with
two springs over the middle plate, emulates the vehicle body
and contains an accelerometer to acquire the acceleration of
the vehicle body with respect to plant ground. A servomotor
placed between the top and middle plates acts as an actuator
to counteract the vertical forces created due to an uneven
road profile. +e middle plate maintains contact with the
bottom plate through a spring. +e bottom plate, which
resembles the wheel of the quarter car, is connected to a DC
motor to generate the road excitation in the system. +e
rotational motion created due to the torque from the motor
is translated into linear motion using the lead screw and
gearing mechanism for creating different road profiles.

Figure 7 shows the ASS experimental test-bed, which
consists of a quarter-car ASS workstation interfaced with a
computer, power amplifiers, and an 8-channel USB-based
data acquisition module (DAQ). To measure the suspension
deflection and tire displacement, the ASS contains three
optical encoders, which have a resolution of 4096 counts/
revolution in quadrature mode. Similarly, to acquire the
vehicle body acceleration relative to the ground, the top plate
is attached with an accelerometer with a range of ±10 g. +e
power amplifiers, which drive the servomotors, can offer a
regulated supply of ±10V at 3A.+e DAQ board, which has
a resolution of 12 bits, acquires signals at a sampling rate of
500Hz. For HIL testing, the control algorithm implemented
in Simulink is interfaced with the ASS workstation using the
Quanser real-time control prototype software. Figure 8
shows the suspension control implementation in Simulink.

Table 2 gives the parameters of the PSO and AIWPSO for
optimizing the weights of LQR. From a control standpoint,
the number of parameters to be optimized is 5, which in-
clude the four states and the control input. Hence, the di-
mension of the particles is initialized to 5, and the range of
weights for the Q matrix is assigned from 0 to 500.
Moreover, to guarantee a feasible control input, the range of
the input penalty factor is set between 0 and 10, keeping the
servomotor voltage constraint. In both conventional PSO
and AIWPSO, the number of particles is initialized to 30,
and the iteration based termination condition is chosen with
the maximum number of iterations being 500.

Figure 9 shows the convergence of the fitness function
for both PSO and AIWPSO. It is evident from the fitness plot
that the AIWPSO converges faster than the conventional
PSO. To be specific, PSO takes 60 iterations to converge
whereas the AIWPSO takes only 30 iterations to converge to
the minimum fitness value. To highlight the improvement in
convergence, we also illustrate the convergence of the
particles in each domain as a 3D scatter plot. Figure 10 shows
the initial random distribution of the particles, and Figure 11
depicts the convergence after 100 iterations. Likewise, from
the convergence of the particles for every 100 iterations
shown in Figures 12–15, we can discern that unlike the
conventional PSO, which takes around 500 iterations in all 5
domains to converge, the AIWPSO converges to the optimal
solutions in about 200 iterations. +e main reason for the
faster convergence can be attributed to the adaptive inertia
weights which are dynamically adjusted based on the success
rate of the particles.

Since PSO is a stochastic optimization algorithm, to
assess the accuracy and repeatability, the experiments are
conducted for 10 trials to statistically analyze the solutions of
both conventional PSO and AIWPSO. Table 3 gives statis-
tical measures such as minimum, maximum, standard de-
viation, and range of the optimal solutions. It is evident that
the range andmean fitness values of AIWPSO is significantly
less than those of PSO. Hence, the proposed LQR optimi-
zation scheme has better precision and consistency in
achieving the optimal solution. Table 4 gives the optimized
state and input penalty matrices of LQR from both
algorithms.

+e controller performance is tested for two classes of
road inputs, namely, a trapezoidal road profile and a bump
road profile. Firstly, a trapezoidal road profile with an
amplitude of 20 cm at a frequency of 0.5 rad/sec is gen-
erated using the servomotor and lead screw arrangement,
which is positioned at the bottom of the ASS plant. From
Figure 16, which shows the suspension travel response of
both PSO and AIWPSO, we can note that compared to
PSO, the AIWPSO optimized LQR results in better steady-
state response and regulates the suspension movement
close to the road profile to avoid the tire structural damage.
Figure 17, which illustrates the tire deflection, highlights
that tire displacement is precisely governed to match the
road profile in AIWPSO so that passenger safety is guar-
anteed. Moreover, to assess the passenger ride comfort, the
vertical vehicle body acceleration is shown in Figure 18.
Clearly, the proposed scheme outperforms the
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Żs

Zus – Zr
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Figure 5: Proposed AIWPSO-tuned LQR for quarter-car ASS.
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conventional PSO-tuned LQR and significantly improves
the ride comfort. It is also important to assess the vibration
of the vehicle body in both low- and high-frequency do-
mains. Hence, the CPSD of the vehicle body acceleration is

computed and shown in Figure 19. We can note that both
during the low- and high-frequency spectra, the proposed
scheme significantly minimizes the vibration of the chassis.
Finally, the control effort generated through the electrical

Top plate
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Level gears
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with encoder

Middle plate

Base encoder

Suspension motor
connected with encoder

Figure 6: Quarter-car ASS workstation.
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Figure 7: Experimental test-bed.
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Figure 10: Random Initialization of particles. (a) PSO. (b) AIWPSO.

Table 2: Parameters of PSO and AIWPSO algorithms.

Parameter Notation PSO AIWPSO

Particles P 30 30
Iteration i 500 500
Dimension d 5 5
Inertia weight w 0.9 AIWF
Cognitive factors c1 c2􏼂 􏼃 0.9 1.2􏼂 􏼃 0.2 0.9􏼂 􏼃
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actuator, as illustrated in Figure 20, proves that the force is
restricted within ± 10N for a feasible control input.It is
also important to test the performance of the system for the
speed breaker scenario. Hence, a pattern consisting of a
series of half-sine waves is generated which emulates a
speed breaker, and the performance of the controller in
terms of vehicle body acceleration and suspension travel is

illustrated in Figures 21 and 22, respectively. Figure 23,
which shows the CPSD plot of the acceleration, reveals that
compared to PSO-tuned LQR, the proposed approach
offers a significant reduction in vertical acceleration in both
low- and high-frequency spectra, thereby considerably
increasing passenger comfort. Moreover, to quantify the
performance of the controller for both the road profiles
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Figure 12: Particle convergence after 200 iterations. (a) PSO. (b) AIWPSO.
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Figure 11: Particle convergence after 100 iterations. (a) PSO. (b) AIWPSO.
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Figure 13: Particle convergence after 300 iterations. (a) PSO. (b) AIWPSO.
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Figure 14: Particle convergence after 400 iterations. (a) PSO. (b) AIWSO.
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Figure 15: Particle convergence after 500 iterations. (a) PSO. (b) AIWPSO.

Table 3: Statistical analysis.

Parameter PSO AIWPSO

Mean 0.0192 0.0148
Standard deviation 0.00086 0.00074
Max 0.182 0.0143
Min 0.02122 0.01545
Range 0.0032 0.0019

Table 4: Weighting matrices of LQR.

Parameter PSO AIWPSO

Weighting matrices
Q � diag(246.45, 172.49, 90.12, 8.29) Q � diag(38.23, 92.46, 21.12, 79.76)

R� 0.0319 R� 0.00312

Table 5: Performance indices for ASS.

Road profile Controller RMS (m/s2) FWRMS (m/s2) VDV (m/s1.75)

Trapezoidal
PSO-LQR 0.032 0.019 0.039

AIWPSO-LQR 0.018 0.012 0.027

Sine-bump
PSO-LQR 0.413 0.256 0.801

AIWPSO-LQR 0.291 0.214 0.598
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considered for evaluation, we compute three performance
measures based on the ISO 2361-1 standards, which pro-
vide a guide to evaluate the human exposure to whole-body
vibrations [31, 32]. +e three performance metrics

considered are root means square (RMS) of suspension
travel, frequency-weighted RMS (FWRMS) of acceleration,
and vibration dose value (VDV), which are mathematically
described as follows:
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Figure 20: Actuator force for a trapezoidal profile.
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Figure 21: Suspension deflection for a bumpy road profile.
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RMS suspension travel �
1

T
􏽚T

0
Zs(t) − Zus(t)􏼂 􏼃2dt􏼨 􏼩(1/2), (17)

Awh �
1

T
􏽚T

0
awh􏼂 􏼃2dt􏼨 􏼩(1/2), (18)

VDV � 􏽚T
0
awh􏼂 􏼃4dt􏼨 􏼩(1/4), (19)

where awh is the frequency-weighted acceleration. Table 5
gives the performance metrics of the control schemes for the
two road profiles. For a trapezoidal road profile, compared to
conventional PSO-tuned LQR, the AIWPSO-tuned LQR
reduces the FWRMS of body acceleration by 36.8% and the
VDV by 30.76%. Similarly, for a bumpy road excitation, the
proposed scheme reduces the FWRMS and VDV by 16.4%
and 25.34%, respectively, compared to the conventional
PSO-tuned LQR. +ese metrics highlight that the proposed
scheme significantly improves not only the passenger
comfort but also passenger safety by guaranteeing firm
contact of the tire with the road surface.

6. Conclusions

To solve the weight optimization problem of LQR applied to a
vehicle suspension system, this paper has presented an im-
proved PSO which utilizes the adaptive inertia weight scheme.

+e LQR weight selection problem is formulated as an opti-
mization problem and the AIWPSO is utilized to find the
optimal weights. Even though PSO is a robust optimization
algorithm, it fails to draw a balance between the exploration
and exploitation of the particles in search of the global opti-
mum. Moreover, in the conventional PSO, the particles get
trapped in the local optima, resulting in loss of diversity. Hence,
to solve these two fundamental issues with PSO, an adaptive
inertia weight is employed so that the velocity of the particles
can be updated using the success rate as a feedback parameter.
+e statistical analysis of the optimal solutions highlights that
compared to the conventional PSO, the AIWPSO can not only
improve the convergence but also enhance the repeatability.
+e efficacy of the proposed scheme is experimentally validated
on a quarter-car ASS for practical a road profile. +e exper-
imental results corroborate that the proposed scheme con-
siderably improves passenger comfort and road handling.
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Supplementary Materials

+e supplementary materials include HIL testing of the
active suspension system. (Supplementary Materials)

References

[1] I. Fialho and G. J. Balas, “Road adaptive active suspension
design using linear parameter-varying gain-scheduling,” IEEE
Transactions on Control Systems Technology, vol. 10, no. 1,
pp. 43–54, 2002.

[2] X. Shao, F. Naghdy, and H. Du, “Reliable fuzzy H∞ control
for active suspension of in-wheel motor driven electric ve-
hicles with dynamic damping,” Mechanical Systems and
Signal Processing, vol. 87, pp. 365–383, 2017.

[3] V. S. Deshpande, B. Mohan, P. D. Shendge, and S. B. Phadke,
“Disturbance observer based sliding mode control of active
suspension systems,” Journal of Sound and Vibration, vol. 333,
no. 11, pp. 2281–2296, 2014.

[4] J. Lin, R.-J. Lian, C.-N. Huang, and W.-T. Sie, “Enhanced
fuzzy sliding mode controller for active suspension systems,”
Mechatronics, vol. 19, no. 7, pp. 1178–1190, 2009.

[5] J. Cao, P. Li, and H. Liu, “An interval fuzzy controller for
vehicle active suspension systems,” IEEE Transactions on
Intelligent Transportation Systems, vol. 11, no. 4, pp. 885–895,
2010.

[6] H. Arefkhani, S. H. Sadati, and M. Shahravi, “Satellite attitude
control using a novel constrained magnetic linear quadratic
regulator,” Control Engineering Practice, vol. 101, Article ID
104466, 2020.

[7] M. Habib, F. Khoucha, and A. Harrag, “GA-based robust LQR
controller for interleaved boost DC-DC converter improving
fuel cell voltage regulation,” Electric Power Systems Research,
vol. 152, pp. 438–456, 2017.

[8] Z. Han, N. Xu, H. Chen, Y. Huang, and B. Zhao, “Energy-
efficient control of electric vehicles based on linear quadratic
regulator and phase plane analysis,” Applied Energy, vol. 213,
pp. 639–657, 2018.

[9] M. Mahmoodabadi and N. R. Babak, “Robust fuzzy linear
quadratic regulator control optimized by multi-objective
high exploration particle swarm optimization for a 4
degree-of-freedom quadrotor,” Aerospace Science and
Technology, vol. 97, pp. 1–13, 2020.

[10] L. Wang, H. Ni, W. Zhou, P. M. Pardalos, J. Fang, and M. Fei,
“MBPOA-based LQR controller and its application to the
double-parallel inverted pendulum system,” Engineering
Applications of Artificial Intelligence, vol. 36, pp. 262–268,
2014.

[11] K. Hassani and W.-S. Lee, “Multi-objective design of state
feedback controllers using reinforced quantum-behaved
particle swarm optimization,”Applied Soft Computing, vol. 41,
pp. 66–76, 2016.

[12] B. Ufnalski, A. Kaszewski, and L.M. Grzesiak, “Particle swarm
optimization of the multioscillatory LQR for a three-phase
four-wire voltage-source inverter with an LC output filter,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 1,
pp. 484–493, 2014.

[13] S.-J. Tsai, C.-L. Huo, Y.-K. Yang, and T.-Y. Sun, “Variable
feedback gain control design based on particle swarm opti-
mizer for automatic fighter tracking problems,” Applied Soft
Computing, vol. 13, no. 1, pp. 58–75, 2013.

[14] S. B. Karanki, M. K. Mishra, and B. K. Kumar, “Particle
swarm optimization-based feedback controller for unified

power-quality conditioner,” IEEE Transactions on Power
Delivery, vol. 25, no. 4, pp. 2814–2824, 2010.

[15] H. B. Duan and S. Q. Liu, “Non-linear dual-mode receding
horizon control for multiple unmanned air vehicles formation
flight based on chaotic particle swarm optimisation,” IET
Control -eory & Applications, vol. 4, no. 11, pp. 2565–2578,
2010.

[16] Z. Qi, Q. Shi, and H. Zhang, “Tuning of digital PID controllers
using particle swarm optimization algorithm for a CAN-based
DC motor subject to stochastic delays,” IEEE Transactions on
Industrial Electronics, vol. 67, no. 7, pp. 5637–5646, 2019.

[17] K. D. Sharma, A. Chatterjee, and A. Rakshit, “A
PSO–Lyapunov hybrid stable adaptive fuzzy tracking control
approach for vision-based robot navigation,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 61, no. 7,
pp. 1908–1914, 2012.
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